Abstract

We propose a hologram calculation technique that enables reconstructing a shaded three-dimensional (3D) image. The amplitude distributions of zone plates, which generate the object points that constitute a 3D object, were two-dimensionally modulated. Two-dimensional (2D) amplitude modulation was determined on the basis of the Phong reflection model developed for computer graphics, which considers the specular, diffuse, and ambient reflection light components. The 2D amplitude modulation added variable and constant modulations: the former controlled the specular light component and the latter controlled the diffuse and ambient components. The proposed calculation technique was experimentally verified. The reconstructed image showed specular reflection that varied depending on the viewing position.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
    [CrossRef] [PubMed]
  2. B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18(6), 311–317 (1975).
    [CrossRef]
  3. J. F. Blinn, “Models of light reflection for computer synthesized pictures,” ACM SIGGRAPH Computer Graphics 11(2), 192–198 (1977).
    [CrossRef]
  4. K. Matsushima, “Computer-generated holograms for three-dimensional surface objects with shade and texture,” Appl. Opt. 44(22), 4607–4614 (2005).
    [CrossRef] [PubMed]
  5. K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48(34), H54–H63 (2009).
    [CrossRef] [PubMed]
  6. H. Nishi, K. Hayashi, Y. Arima, K. Matsushima, and S. Nakahara, “New techniques for wave-field rendering of polygon-based high-definition CGHs,” Proc. SPIE 7957, 79571A (2011).
    [CrossRef]
  7. K. Yamaguchi and Y. Sakamoto, “Computer generated hologram with characteristics of reflection: reflectance distributions and reflected images,” Appl. Opt. 48(34), H203–H211 (2009).
    [CrossRef] [PubMed]
  8. K. Yamaguchi and Y. Sakamoto, “Computer-generated holograms considering background reflection on various object shapes with reflectance distributions,” Proc. SPIE 7619, 761909 (2010).
    [CrossRef]
  9. T. Mishina, M. Okui, and F. Okano, “Calculation of holograms from elemental images captured by integral photography,” Appl. Opt. 45(17), 4026–4036 (2006).
    [CrossRef] [PubMed]
  10. K. Yamamoto, T. Mishina, R. Oi, T. Senoh, and T. Kurita, “Real-time color holography system for live scene using 4K2K video system,” Proc. SPIE 7619, 761906, 761906-10 (2010).
    [CrossRef]
  11. K. Wakunami and M. Yamaguchi, “Calculation for computer generated hologram using ray-sampling plane,” Opt. Express 19(10), 9086–9101 (2011).
    [CrossRef] [PubMed]
  12. K. Choi, J. Kim, Y. Lim, and B. Lee, “Full parallax viewing-angle enhanced computer-generated holographic 3D display system using integral lens array,” Opt. Express 13(26), 10494–10502 (2005).
    [CrossRef] [PubMed]
  13. S.-H. Shin and B. Javidi, “Speckle-reduced three-dimensional volume holographic display by use of integral imaging,” Appl. Opt. 41(14), 2644–2649 (2002).
    [CrossRef] [PubMed]
  14. M. C. King, A. M. Noll, and D. H. Berry, “A new approach to computer-generated holography,” Appl. Opt. 9(2), 471–475 (1970).
    [CrossRef] [PubMed]
  15. J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9(11), 405–407 (1966).
    [CrossRef]
  16. G. L. Rogers, “Gabor diffraction microscopy: the hologram as a generalized zone-plate,” Nature 166(4214), 237 (1950).
    [CrossRef] [PubMed]
  17. W. J. Siemens-Wapniarski and M. P. Givens, “The experimental production of synthetic holograms,” Appl. Opt. 7(3), 535–538 (1968).
    [CrossRef] [PubMed]
  18. M. Lucente, “Optimization of hologram computation for real-time display,” Proc. SPIE 1667, 1–6 (1992).
  19. O. Bryngdahl and A. Lohmann, “Single-sideband holography,” J. Opt. Soc. Am. 58(5), 620–624 (1968).
    [CrossRef]
  20. T. Mishina, F. Okano, and I. Yuyama, “Time-alternating method based on single-sideband holography with half-zone-plate processing for the enlargement of viewing zones,” Appl. Opt. 38(17), 3703–3713 (1999).
    [CrossRef] [PubMed]
  21. Y. Takaki and Y. Tanemoto, “Band-limited zone plates for single-sideband holography,” Appl. Opt. 48(34), H64–H70 (2009).
    [CrossRef] [PubMed]
  22. Y. Takaki and M. Yokouchi, “Speckle-free and grayscale hologram reconstruction using time-multiplexing technique,” Opt. Express 19(8), 7567–7579 (2011).
    [CrossRef] [PubMed]
  23. G. J. Ward, “Measuring and modeling anisotropic reflection,” ACM SIGGRAPH Computer Graphics 26(2), 265–272 (1992).
    [CrossRef]

2011 (3)

2010 (2)

K. Yamaguchi and Y. Sakamoto, “Computer-generated holograms considering background reflection on various object shapes with reflectance distributions,” Proc. SPIE 7619, 761909 (2010).
[CrossRef]

K. Yamamoto, T. Mishina, R. Oi, T. Senoh, and T. Kurita, “Real-time color holography system for live scene using 4K2K video system,” Proc. SPIE 7619, 761906, 761906-10 (2010).
[CrossRef]

2009 (3)

2006 (1)

2005 (2)

2002 (1)

1999 (1)

1992 (2)

M. Lucente, “Optimization of hologram computation for real-time display,” Proc. SPIE 1667, 1–6 (1992).

G. J. Ward, “Measuring and modeling anisotropic reflection,” ACM SIGGRAPH Computer Graphics 26(2), 265–272 (1992).
[CrossRef]

1977 (1)

J. F. Blinn, “Models of light reflection for computer synthesized pictures,” ACM SIGGRAPH Computer Graphics 11(2), 192–198 (1977).
[CrossRef]

1975 (1)

B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18(6), 311–317 (1975).
[CrossRef]

1970 (1)

1968 (2)

1966 (1)

J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9(11), 405–407 (1966).
[CrossRef]

1950 (1)

G. L. Rogers, “Gabor diffraction microscopy: the hologram as a generalized zone-plate,” Nature 166(4214), 237 (1950).
[CrossRef] [PubMed]

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Arima, Y.

H. Nishi, K. Hayashi, Y. Arima, K. Matsushima, and S. Nakahara, “New techniques for wave-field rendering of polygon-based high-definition CGHs,” Proc. SPIE 7957, 79571A (2011).
[CrossRef]

Berry, D. H.

Blinn, J. F.

J. F. Blinn, “Models of light reflection for computer synthesized pictures,” ACM SIGGRAPH Computer Graphics 11(2), 192–198 (1977).
[CrossRef]

Bryngdahl, O.

Choi, K.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Givens, M. P.

Hayashi, K.

H. Nishi, K. Hayashi, Y. Arima, K. Matsushima, and S. Nakahara, “New techniques for wave-field rendering of polygon-based high-definition CGHs,” Proc. SPIE 7957, 79571A (2011).
[CrossRef]

Javidi, B.

Kim, J.

King, M. C.

Kurita, T.

K. Yamamoto, T. Mishina, R. Oi, T. Senoh, and T. Kurita, “Real-time color holography system for live scene using 4K2K video system,” Proc. SPIE 7619, 761906, 761906-10 (2010).
[CrossRef]

Lee, B.

Lim, Y.

Lohmann, A.

Lucente, M.

M. Lucente, “Optimization of hologram computation for real-time display,” Proc. SPIE 1667, 1–6 (1992).

Matsushima, K.

Mishina, T.

Nakahara, S.

H. Nishi, K. Hayashi, Y. Arima, K. Matsushima, and S. Nakahara, “New techniques for wave-field rendering of polygon-based high-definition CGHs,” Proc. SPIE 7957, 79571A (2011).
[CrossRef]

K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48(34), H54–H63 (2009).
[CrossRef] [PubMed]

Nishi, H.

H. Nishi, K. Hayashi, Y. Arima, K. Matsushima, and S. Nakahara, “New techniques for wave-field rendering of polygon-based high-definition CGHs,” Proc. SPIE 7957, 79571A (2011).
[CrossRef]

Noll, A. M.

Oi, R.

K. Yamamoto, T. Mishina, R. Oi, T. Senoh, and T. Kurita, “Real-time color holography system for live scene using 4K2K video system,” Proc. SPIE 7619, 761906, 761906-10 (2010).
[CrossRef]

Okano, F.

Okui, M.

Phong, B. T.

B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18(6), 311–317 (1975).
[CrossRef]

Rogers, G. L.

G. L. Rogers, “Gabor diffraction microscopy: the hologram as a generalized zone-plate,” Nature 166(4214), 237 (1950).
[CrossRef] [PubMed]

Sakamoto, Y.

K. Yamaguchi and Y. Sakamoto, “Computer-generated holograms considering background reflection on various object shapes with reflectance distributions,” Proc. SPIE 7619, 761909 (2010).
[CrossRef]

K. Yamaguchi and Y. Sakamoto, “Computer generated hologram with characteristics of reflection: reflectance distributions and reflected images,” Appl. Opt. 48(34), H203–H211 (2009).
[CrossRef] [PubMed]

Senoh, T.

K. Yamamoto, T. Mishina, R. Oi, T. Senoh, and T. Kurita, “Real-time color holography system for live scene using 4K2K video system,” Proc. SPIE 7619, 761906, 761906-10 (2010).
[CrossRef]

Shin, S.-H.

Siemens-Wapniarski, W. J.

Takaki, Y.

Tanemoto, Y.

Wakunami, K.

Ward, G. J.

G. J. Ward, “Measuring and modeling anisotropic reflection,” ACM SIGGRAPH Computer Graphics 26(2), 265–272 (1992).
[CrossRef]

Waters, J. P.

J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9(11), 405–407 (1966).
[CrossRef]

Yamaguchi, K.

K. Yamaguchi and Y. Sakamoto, “Computer-generated holograms considering background reflection on various object shapes with reflectance distributions,” Proc. SPIE 7619, 761909 (2010).
[CrossRef]

K. Yamaguchi and Y. Sakamoto, “Computer generated hologram with characteristics of reflection: reflectance distributions and reflected images,” Appl. Opt. 48(34), H203–H211 (2009).
[CrossRef] [PubMed]

Yamaguchi, M.

Yamamoto, K.

K. Yamamoto, T. Mishina, R. Oi, T. Senoh, and T. Kurita, “Real-time color holography system for live scene using 4K2K video system,” Proc. SPIE 7619, 761906, 761906-10 (2010).
[CrossRef]

Yokouchi, M.

Yuyama, I.

Appl. Opt. (9)

K. Matsushima, “Computer-generated holograms for three-dimensional surface objects with shade and texture,” Appl. Opt. 44(22), 4607–4614 (2005).
[CrossRef] [PubMed]

K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48(34), H54–H63 (2009).
[CrossRef] [PubMed]

K. Yamaguchi and Y. Sakamoto, “Computer generated hologram with characteristics of reflection: reflectance distributions and reflected images,” Appl. Opt. 48(34), H203–H211 (2009).
[CrossRef] [PubMed]

T. Mishina, M. Okui, and F. Okano, “Calculation of holograms from elemental images captured by integral photography,” Appl. Opt. 45(17), 4026–4036 (2006).
[CrossRef] [PubMed]

S.-H. Shin and B. Javidi, “Speckle-reduced three-dimensional volume holographic display by use of integral imaging,” Appl. Opt. 41(14), 2644–2649 (2002).
[CrossRef] [PubMed]

M. C. King, A. M. Noll, and D. H. Berry, “A new approach to computer-generated holography,” Appl. Opt. 9(2), 471–475 (1970).
[CrossRef] [PubMed]

W. J. Siemens-Wapniarski and M. P. Givens, “The experimental production of synthetic holograms,” Appl. Opt. 7(3), 535–538 (1968).
[CrossRef] [PubMed]

T. Mishina, F. Okano, and I. Yuyama, “Time-alternating method based on single-sideband holography with half-zone-plate processing for the enlargement of viewing zones,” Appl. Opt. 38(17), 3703–3713 (1999).
[CrossRef] [PubMed]

Y. Takaki and Y. Tanemoto, “Band-limited zone plates for single-sideband holography,” Appl. Opt. 48(34), H64–H70 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9(11), 405–407 (1966).
[CrossRef]

Commun. ACM (1)

B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18(6), 311–317 (1975).
[CrossRef]

J. Opt. Soc. Am. (1)

Nature (2)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

G. L. Rogers, “Gabor diffraction microscopy: the hologram as a generalized zone-plate,” Nature 166(4214), 237 (1950).
[CrossRef] [PubMed]

Opt. Express (3)

Proc. SPIE (4)

M. Lucente, “Optimization of hologram computation for real-time display,” Proc. SPIE 1667, 1–6 (1992).

H. Nishi, K. Hayashi, Y. Arima, K. Matsushima, and S. Nakahara, “New techniques for wave-field rendering of polygon-based high-definition CGHs,” Proc. SPIE 7957, 79571A (2011).
[CrossRef]

K. Yamamoto, T. Mishina, R. Oi, T. Senoh, and T. Kurita, “Real-time color holography system for live scene using 4K2K video system,” Proc. SPIE 7619, 761906, 761906-10 (2010).
[CrossRef]

K. Yamaguchi and Y. Sakamoto, “Computer-generated holograms considering background reflection on various object shapes with reflectance distributions,” Proc. SPIE 7619, 761909 (2010).
[CrossRef]

Other (2)

J. F. Blinn, “Models of light reflection for computer synthesized pictures,” ACM SIGGRAPH Computer Graphics 11(2), 192–198 (1977).
[CrossRef]

G. J. Ward, “Measuring and modeling anisotropic reflection,” ACM SIGGRAPH Computer Graphics 26(2), 265–272 (1992).
[CrossRef]

Supplementary Material (3)

» Media 1: MOV (5135 KB)     
» Media 2: MOV (2872 KB)     
» Media 3: MOV (3561 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Zone plate technique for calculating a hologram.

Fig. 2
Fig. 2

Light reflection on an object surface for the Phong reflection model.

Fig. 3
Fig. 3

Phong reflection model: (a) diffuse reflection light, (b) specular reflection light, and (c) ambient reflection light.

Fig. 4
Fig. 4

Definition of the view vector for generating an object point using a zone plate.

Fig. 5
Fig. 5

Two-dimensional modulation of the zone plate for the hologram calculation with shading.

Fig. 6
Fig. 6

Schematic of the optical system used for the experiments: a transmission-type SLM is depicted for simplicity, although a reflection-type SLM was used in the experiment.

Fig. 7
Fig. 7

Object depth data used in the experiments.

Fig. 8
Fig. 8

Photographs of the shaded reconstructed images generated by the three holograms calculated using one of the three reflection light components in the Phong reflection model: (a) diffuse reflection light, (b) specular reflection light (n = 5.0), and (c) ambient reflection light. (The lighting parameters for all three cases were l = (0, 0, 1), Il = 1.0, and Ia = 1.0.)

Fig. 9
Fig. 9

Photograph of the shaded reconstructed image generated by the hologram calculated using all three reflection light components in the Phong reflection model. (The material parameters were kd = 0.25, ks = 0.6, n = 5.0, and ka = 0.01; the lighting parameters were l = (0, 0, 1), Il = 1.0, and Ia = 1.0.)

Fig. 10
Fig. 10

Photographs of the shaded reconstructed images captured from the (a) left and (b) right sides (Media 1). (The material parameters were kd = 0.25, ks = 0.6, n = 10.0, and ka = 0.01; the lighting parameters were l = (0, 0, 1), Il = 1.0, and Ia = 1.0.)

Fig. 11
Fig. 11

Photographs of the shaded reconstructed images generated by the holograms calculated with illumination from the (a) upper left l = (−1, 1, 1) and (b) right l = (1, 0, 1) (Media 2). (The material parameters were kd = 0.25, ks = 0.6, n = 10.0, and ka = 0.01; the lighting parameters were Il = 1.0, and Ia = 1.0.)

Fig. 12
Fig. 12

Photographs of the shaded reconstructed images generated by the holograms calculated with different diffuse reflection constants: (a) kd = 0.1 and (b) kd = 1.0. (The other material parameters were ks = 0.6, ka = 0.01, and n = 10.0; the lighting parameters were l = (0, 0, 1), Il = 1.0, and Ia = 1.0.)

Fig. 14
Fig. 14

Photographs of the shaded reconstructed images generated by the holograms calculated with different shininess constants: (a) n = 1.0, (b) n = 5.0, and (c) n = 10.0 (Media 3). (The other material parameters were kd = 0.25, ks = 0.6, and ka = 0.01; the lighting parameters were l = (0, 0, 1), Il = 1.0, and Ia = 1.0.)

Fig. 13
Fig. 13

Photographs of the shaded reconstructed images generated by the holograms calculated with different specular reflection constants: (a) ks = 0.1 and (b) ks = 1.0. (The other material parameters were kd = 0.25, ka = 0.01, and n = 10.0; the lighting parameters were l = (0, 0, 1), Il = 1.0, and Ia = 1.0.)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I d = k d I l cosθ= k d I l | nl |,
I s = k s I l cos n α= k s I l | rv | n ,
I a = k a I 0 ,
I= k d I l | nl |+ k s I l | rv | n + k a I 0 .
v= ( x,y,z ) / ( x 2 + y 2 + z 2 ) 1/2 .
m( x,y,z )= k d I l | nl |+ k s I l | rv | n + k a I 0 ,
g ( x,y,z )=m( x,y,z )g( x,y,z ).

Metrics