Abstract

We develop novel designs enabling slow-light propagation with vanishing group-velocity dispersion (“frozen light”) and slow-light with large delay-bandwidth product, in periodic nanowires. Our design is based on symmetry-breaking of periodic nanowire waveguides and we demonstrate its vailidy through two- and three-dimensional simulations. The slow-light is associated with a stationary inflection point which appears through coupling between forward and backward waveguide modes. The mode coupling also leads to evanescent modes, which enable efficient light coupling to the slow mode.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16, 1300–1320 (2008).
    [CrossRef] [PubMed]
  2. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106–3 (2009).
    [CrossRef]
  3. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, and M. Notomi, “Ultrahigh-q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18, 15859–15869 (2010).
    [CrossRef] [PubMed]
  4. M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15, 219–226 (2007).
    [CrossRef] [PubMed]
  5. T. F. Krauss, “Why do we need slow light?” Nature Photon. 2, 448–450 (2008).
    [CrossRef]
  6. T. Baba, “Slow light in photonic crystals,” Nature Photon. 2, 465–473 (2008).
    [CrossRef]
  7. J. B. Khurgin and R. S. Tucker, Slow Light: Science and ApplicationsTailor and FrancisNew York2009
  8. R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14, 1658–1672 (2006).
    [CrossRef] [PubMed]
  9. J. Ma and M. L. Povinelli, “Effect of periodicity on optical forces between a one-dimensional periodic photonic crystal waveguide and an underlying substrate,” Appl. Phys. Lett. 97, 151102 (2010).
    [CrossRef]
  10. A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
    [CrossRef]
  11. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006).
    [CrossRef] [PubMed]
  12. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
    [CrossRef] [PubMed]
  13. T. P. White, L. C. Botten, C. M. de Sterke, K. B. Dossou, and R. C. McPhedran, “Efficient slow-light coupling in a photonic crystal waveguide without transition region,” Opt. Lett. 33, 2644–2646 (2008).
    [CrossRef] [PubMed]
  14. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34, 1072–1074 (2009).
    [CrossRef] [PubMed]
  15. S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
    [CrossRef]
  16. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
    [CrossRef]
  17. C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
    [CrossRef]
  18. L. O’Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photon. J. 2, 404–414 (2010).
    [CrossRef]
  19. A. Sukhorukov, A. Lavrinenko, D. Chigrin, D. Pelinovsky, and Y. Kivshar, “Slow-light dispersion in coupled periodic waveguides,” J. Opt. Soc. Am. B 25, C65–C74 (2008).
    [CrossRef]
  20. C. Bao, J. Hou, H. Wu, X. Zhou, E. Cassan, X. Gao, and D. Zhang, “Low dispersion slow light in slot waveguide grating,” IEEE Photon. Technol. Lett. 23, 1700–1702 (2011).
    [CrossRef]
  21. S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927–2939 (2003).
    [CrossRef] [PubMed]
  22. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
    [CrossRef] [PubMed]
  23. A. Figotin and I. Vitebskiy, “Slow light in photonic crystals,” Waves Random Complex Media 16, 293–382 (2006).
    [CrossRef]
  24. A. Figotin and I. Vitebskiy, “Electromagnetic unidirectionality in magnetic photonic crystals,” Phys. Rev. B 67, 165210 (2003).
    [CrossRef]
  25. A. Figotin and I. Vitebskiy, “Oblique frozen modes in periodic layered media,” Phys. Rev. E 68, 036609 (2003).
    [CrossRef]
  26. J. Ballato, A. Ballato, A. Figotin, and I. Vitebskiy, “Frozen light in periodic stacks of anisotropic layers,” Phys. Rev. E 71, 036612–12 (2005).
    [CrossRef]
  27. M. Spasenovic, T. P. White, S. Ha, A. A. Sukhorukov, T. Kampfrath, Y. S. Kivshar, C. M. de Sterke, T. F. Krauss, and L. Kuipers, “Experimental observation of evanescent modes at the interface to slow-light photonic crystal waveguides,” Opt. Lett. 36, 1170–1172 (2011).
    [CrossRef] [PubMed]
  28. S. Ha, M. Spasenovic, A. A. Sukhorukov, T. P. White, C. M. de Sterke, L. K. Kuipers, T. F. Krauss, and Y. S. Kivshar, “Slow-light and evanescent modes at interfaces in photonic crystal waveguides: optimal extraction from experimental near-field measurements,” J. Opt. Soc. Am. B 28, 955–963 (2011).
    [CrossRef]
  29. S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608 (2002).
    [CrossRef]
  30. A. Hosseini, X. C. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98, 031107 (2011).
    [CrossRef]
  31. C. M. de Sterke, K. B. Dossou, T. P. White, L. C. Botten, and R. C. McPhedran, “Efficient coupling into slow light photonic crystal waveguide without transition region: role of evanescent modes,” Opt. Express 17, 17338–17343 (2009).
    [CrossRef]
  32. B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale mode selector in silicon waveguide for on chip nanofocusing applications,” Nano Lett. 9, 3381–3386 (2009).
    [CrossRef] [PubMed]
  33. A. Figotin and I. Vitebsky, “Nonreciprocal magnetic photonic crystals,” Phys. Rev. E 63, 066609 (2001).
    [CrossRef]
  34. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [CrossRef] [PubMed]
  35. A. A. Sukhorukov, S. Ha, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Dispersion extraction with near-field measurements in periodic waveguides,” Opt. Express 17, 3716–3721 (2009).
    [CrossRef] [PubMed]
  36. S. Ha, A. A. Sukhorukov, K. B. Dossou, L. C. Botten, C. M. de Sterke, and Y. S. Kivshar, “Bloch-mode extraction from near-field data in periodic waveguides,” Opt. Lett. 34, 3776–3778 (2009).
    [CrossRef] [PubMed]
  37. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [CrossRef]
  38. F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon. 1, 65–71 (2007).
    [CrossRef]
  39. D. Tan, K. Ikeda, P. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett. 96, 061101 (2010).
    [CrossRef]
  40. N. Gutman, L. C. Botten, A. A. Sukhorukov, and C. M. de Sterke, “Slow and frozen light in optical waveguides with multiple gratings: Degenerate band edges and stationary inflection points,” submitted to Phys. Rev. A.
  41. N. Gutman, L. C. Botten, A. A. Sukhorukov, and C. M. de Sterke, “Degenerate band edges in optical fiber with multiple grating: efficient coupling to slow light,” Opt. Lett. 36, 3257–3259 (2011).
    [CrossRef] [PubMed]

2011 (5)

2010 (7)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

D. Tan, K. Ikeda, P. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett. 96, 061101 (2010).
[CrossRef]

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, and M. Notomi, “Ultrahigh-q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18, 15859–15869 (2010).
[CrossRef] [PubMed]

J. Ma and M. L. Povinelli, “Effect of periodicity on optical forces between a one-dimensional periodic photonic crystal waveguide and an underlying substrate,” Appl. Phys. Lett. 97, 151102 (2010).
[CrossRef]

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

L. O’Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photon. J. 2, 404–414 (2010).
[CrossRef]

2009 (7)

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[CrossRef]

Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34, 1072–1074 (2009).
[CrossRef] [PubMed]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106–3 (2009).
[CrossRef]

A. A. Sukhorukov, S. Ha, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Dispersion extraction with near-field measurements in periodic waveguides,” Opt. Express 17, 3716–3721 (2009).
[CrossRef] [PubMed]

S. Ha, A. A. Sukhorukov, K. B. Dossou, L. C. Botten, C. M. de Sterke, and Y. S. Kivshar, “Bloch-mode extraction from near-field data in periodic waveguides,” Opt. Lett. 34, 3776–3778 (2009).
[CrossRef] [PubMed]

C. M. de Sterke, K. B. Dossou, T. P. White, L. C. Botten, and R. C. McPhedran, “Efficient coupling into slow light photonic crystal waveguide without transition region: role of evanescent modes,” Opt. Express 17, 17338–17343 (2009).
[CrossRef]

B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale mode selector in silicon waveguide for on chip nanofocusing applications,” Nano Lett. 9, 3381–3386 (2009).
[CrossRef] [PubMed]

2008 (6)

2007 (2)

2006 (3)

2005 (1)

J. Ballato, A. Ballato, A. Figotin, and I. Vitebskiy, “Frozen light in periodic stacks of anisotropic layers,” Phys. Rev. E 71, 036612–12 (2005).
[CrossRef]

2004 (1)

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

2003 (3)

A. Figotin and I. Vitebskiy, “Electromagnetic unidirectionality in magnetic photonic crystals,” Phys. Rev. B 67, 165210 (2003).
[CrossRef]

A. Figotin and I. Vitebskiy, “Oblique frozen modes in periodic layered media,” Phys. Rev. E 68, 036609 (2003).
[CrossRef]

S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927–2939 (2003).
[CrossRef] [PubMed]

2002 (1)

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608 (2002).
[CrossRef]

2001 (3)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

A. Figotin and I. Vitebsky, “Nonreciprocal magnetic photonic crystals,” Phys. Rev. E 63, 066609 (2001).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[CrossRef] [PubMed]

Asakawa, K.

Baba, T.

Ballato, A.

J. Ballato, A. Ballato, A. Figotin, and I. Vitebskiy, “Frozen light in periodic stacks of anisotropic layers,” Phys. Rev. E 71, 036612–12 (2005).
[CrossRef]

Ballato, J.

J. Ballato, A. Ballato, A. Figotin, and I. Vitebskiy, “Frozen light in periodic stacks of anisotropic layers,” Phys. Rev. E 71, 036612–12 (2005).
[CrossRef]

Bao, C.

C. Bao, J. Hou, H. Wu, X. Zhou, E. Cassan, X. Gao, and D. Zhang, “Low dispersion slow light in slot waveguide grating,” IEEE Photon. Technol. Lett. 23, 1700–1702 (2011).
[CrossRef]

Beggs, D. M.

L. O’Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photon. J. 2, 404–414 (2010).
[CrossRef]

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Bienstman, P.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608 (2002).
[CrossRef]

Borel, P. I.

Botten, L. C.

Cassan, E.

C. Bao, J. Hou, H. Wu, X. Zhou, E. Cassan, X. Gao, and D. Zhang, “Low dispersion slow light in slot waveguide grating,” IEEE Photon. Technol. Lett. 23, 1700–1702 (2011).
[CrossRef]

Chen, R. T.

A. Hosseini, X. C. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98, 031107 (2011).
[CrossRef]

Chigrin, D.

Corcoran, B.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[CrossRef]

de Sterke, C. M.

N. Gutman, L. C. Botten, A. A. Sukhorukov, and C. M. de Sterke, “Degenerate band edges in optical fiber with multiple grating: efficient coupling to slow light,” Opt. Lett. 36, 3257–3259 (2011).
[CrossRef] [PubMed]

M. Spasenovic, T. P. White, S. Ha, A. A. Sukhorukov, T. Kampfrath, Y. S. Kivshar, C. M. de Sterke, T. F. Krauss, and L. Kuipers, “Experimental observation of evanescent modes at the interface to slow-light photonic crystal waveguides,” Opt. Lett. 36, 1170–1172 (2011).
[CrossRef] [PubMed]

S. Ha, M. Spasenovic, A. A. Sukhorukov, T. P. White, C. M. de Sterke, L. K. Kuipers, T. F. Krauss, and Y. S. Kivshar, “Slow-light and evanescent modes at interfaces in photonic crystal waveguides: optimal extraction from experimental near-field measurements,” J. Opt. Soc. Am. B 28, 955–963 (2011).
[CrossRef]

C. M. de Sterke, K. B. Dossou, T. P. White, L. C. Botten, and R. C. McPhedran, “Efficient coupling into slow light photonic crystal waveguide without transition region: role of evanescent modes,” Opt. Express 17, 17338–17343 (2009).
[CrossRef]

S. Ha, A. A. Sukhorukov, K. B. Dossou, L. C. Botten, C. M. de Sterke, and Y. S. Kivshar, “Bloch-mode extraction from near-field data in periodic waveguides,” Opt. Lett. 34, 3776–3778 (2009).
[CrossRef] [PubMed]

T. P. White, L. C. Botten, C. M. de Sterke, K. B. Dossou, and R. C. McPhedran, “Efficient slow-light coupling in a photonic crystal waveguide without transition region,” Opt. Lett. 33, 2644–2646 (2008).
[CrossRef] [PubMed]

N. Gutman, L. C. Botten, A. A. Sukhorukov, and C. M. de Sterke, “Slow and frozen light in optical waveguides with multiple gratings: Degenerate band edges and stationary inflection points,” submitted to Phys. Rev. A.

Deotare, P. B.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106–3 (2009).
[CrossRef]

Desiatov, B.

B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale mode selector in silicon waveguide for on chip nanofocusing applications,” Nano Lett. 9, 3381–3386 (2009).
[CrossRef] [PubMed]

Dossou, K. B.

Ebnali-Heidari, M.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

Eggleton, B. J.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[CrossRef]

Eich, M.

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

Engelen, R. J. P.

Fage-Pedersen, J.

Fainman, Y.

D. Tan, K. Ikeda, P. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett. 96, 061101 (2010).
[CrossRef]

Figotin, A.

A. Figotin and I. Vitebskiy, “Slow light in photonic crystals,” Waves Random Complex Media 16, 293–382 (2006).
[CrossRef]

J. Ballato, A. Ballato, A. Figotin, and I. Vitebskiy, “Frozen light in periodic stacks of anisotropic layers,” Phys. Rev. E 71, 036612–12 (2005).
[CrossRef]

A. Figotin and I. Vitebskiy, “Electromagnetic unidirectionality in magnetic photonic crystals,” Phys. Rev. B 67, 165210 (2003).
[CrossRef]

A. Figotin and I. Vitebskiy, “Oblique frozen modes in periodic layered media,” Phys. Rev. E 68, 036609 (2003).
[CrossRef]

A. Figotin and I. Vitebsky, “Nonreciprocal magnetic photonic crystals,” Phys. Rev. E 63, 066609 (2001).
[CrossRef]

Foster, M. A.

Frandsen, L. H.

Frank, I. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106–3 (2009).
[CrossRef]

Gaeta, A. L.

Gao, X.

C. Bao, J. Hou, H. Wu, X. Zhou, E. Cassan, X. Gao, and D. Zhang, “Low dispersion slow light in slot waveguide grating,” IEEE Photon. Technol. Lett. 23, 1700–1702 (2011).
[CrossRef]

Gomez-Iglesias, A.

Goykhman, I.

B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale mode selector in silicon waveguide for on chip nanofocusing applications,” Nano Lett. 9, 3381–3386 (2009).
[CrossRef] [PubMed]

Grillet, C.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[CrossRef]

Gutman, N.

N. Gutman, L. C. Botten, A. A. Sukhorukov, and C. M. de Sterke, “Degenerate band edges in optical fiber with multiple grating: efficient coupling to slow light,” Opt. Lett. 36, 3257–3259 (2011).
[CrossRef] [PubMed]

N. Gutman, L. C. Botten, A. A. Sukhorukov, and C. M. de Sterke, “Slow and frozen light in optical waveguides with multiple gratings: Degenerate band edges and stationary inflection points,” submitted to Phys. Rev. A.

Ha, S.

Hamachi, Y.

Hosseini, A.

A. Hosseini, X. C. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98, 031107 (2011).
[CrossRef]

Hou, J.

C. Bao, J. Hou, H. Wu, X. Zhou, E. Cassan, X. Gao, and D. Zhang, “Low dispersion slow light in slot waveguide grating,” IEEE Photon. Technol. Lett. 23, 1700–1702 (2011).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608 (2002).
[CrossRef]

Ikeda, K.

D. Tan, K. Ikeda, P. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett. 96, 061101 (2010).
[CrossRef]

Ikeda, N.

Jiang, W.

A. Hosseini, X. C. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98, 031107 (2011).
[CrossRef]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608 (2002).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[CrossRef] [PubMed]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608 (2002).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[CrossRef] [PubMed]

Kampfrath, T.

M. Spasenovic, T. P. White, S. Ha, A. A. Sukhorukov, T. Kampfrath, Y. S. Kivshar, C. M. de Sterke, T. F. Krauss, and L. Kuipers, “Experimental observation of evanescent modes at the interface to slow-light photonic crystal waveguides,” Opt. Lett. 36, 1170–1172 (2011).
[CrossRef] [PubMed]

L. O’Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photon. J. 2, 404–414 (2010).
[CrossRef]

Kawasaki, K.

Khan, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106–3 (2009).
[CrossRef]

Kivshar, Y.

Kivshar, Y. S.

Korterik, J. P.

Krauss, T. F.

S. Ha, M. Spasenovic, A. A. Sukhorukov, T. P. White, C. M. de Sterke, L. K. Kuipers, T. F. Krauss, and Y. S. Kivshar, “Slow-light and evanescent modes at interfaces in photonic crystal waveguides: optimal extraction from experimental near-field measurements,” J. Opt. Soc. Am. B 28, 955–963 (2011).
[CrossRef]

M. Spasenovic, T. P. White, S. Ha, A. A. Sukhorukov, T. Kampfrath, Y. S. Kivshar, C. M. de Sterke, T. F. Krauss, and L. Kuipers, “Experimental observation of evanescent modes at the interface to slow-light photonic crystal waveguides,” Opt. Lett. 36, 1170–1172 (2011).
[CrossRef] [PubMed]

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

L. O’Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photon. J. 2, 404–414 (2010).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[CrossRef]

T. F. Krauss, “Why do we need slow light?” Nature Photon. 2, 448–450 (2008).
[CrossRef]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef] [PubMed]

M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15, 219–226 (2007).
[CrossRef] [PubMed]

Kubo, S.

Kuipers, K.

L. O’Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photon. J. 2, 404–414 (2010).
[CrossRef]

Kuipers, L.

Kuipers, L. K.

Kuramochi, E.

Kwong, D. N.

A. Hosseini, X. C. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98, 031107 (2011).
[CrossRef]

Lavrinenko, A.

Lavrinenko, A. V.

Levy, U.

B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale mode selector in silicon waveguide for on chip nanofocusing applications,” Nano Lett. 9, 3381–3386 (2009).
[CrossRef] [PubMed]

Li, J.

Lidorikis, E.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608 (2002).
[CrossRef]

Lipson, M.

Loncar, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106–3 (2009).
[CrossRef]

Ma, J.

J. Ma and M. L. Povinelli, “Effect of periodicity on optical forces between a one-dimensional periodic photonic crystal waveguide and an underlying substrate,” Appl. Phys. Lett. 97, 151102 (2010).
[CrossRef]

McCutcheon, M. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106–3 (2009).
[CrossRef]

McNab, S. J.

McPhedran, R. C.

Melloni, A.

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

Michaeli, A.

Moll, N.

Monat, C.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[CrossRef]

Moss, D. J.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[CrossRef]

Notomi, M.

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, and M. Notomi, “Ultrahigh-q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18, 15859–15869 (2010).
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

O’Faolain, L.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

L. O’Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photon. J. 2, 404–414 (2010).
[CrossRef]

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[CrossRef]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef] [PubMed]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Pelinovsky, D.

Pelusi, M. D.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

Petrov, A. Y.

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

Povinelli, M. L.

J. Ma and M. L. Povinelli, “Effect of periodicity on optical forces between a one-dimensional periodic photonic crystal waveguide and an underlying substrate,” Appl. Phys. Lett. 97, 151102 (2010).
[CrossRef]

Powell, D. A.

Pudo, D.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

Roh, Y. G.

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Salib, M.

Schulz, S. A.

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

Sekaric, L.

F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon. 1, 65–71 (2007).
[CrossRef]

Settle, M. D.

Shadrivov, I. V.

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Skorobogatiy, M. A.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608 (2002).
[CrossRef]

Spasenovic, M.

Subbaraman, H.

A. Hosseini, X. C. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98, 031107 (2011).
[CrossRef]

Sugimoto, Y.

Sukhorukov, A.

Sukhorukov, A. A.

Sun, P.

D. Tan, K. Ikeda, P. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett. 96, 061101 (2010).
[CrossRef]

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Tan, D.

D. Tan, K. Ikeda, P. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett. 96, 061101 (2010).
[CrossRef]

Tanabe, T.

Taniyama, H.

Turner, A. C.

van Hulst, N. F.

Vitebskiy, I.

A. Figotin and I. Vitebskiy, “Slow light in photonic crystals,” Waves Random Complex Media 16, 293–382 (2006).
[CrossRef]

J. Ballato, A. Ballato, A. Figotin, and I. Vitebskiy, “Frozen light in periodic stacks of anisotropic layers,” Phys. Rev. E 71, 036612–12 (2005).
[CrossRef]

A. Figotin and I. Vitebskiy, “Oblique frozen modes in periodic layered media,” Phys. Rev. E 68, 036609 (2003).
[CrossRef]

A. Figotin and I. Vitebskiy, “Electromagnetic unidirectionality in magnetic photonic crystals,” Phys. Rev. B 67, 165210 (2003).
[CrossRef]

Vitebsky, I.

A. Figotin and I. Vitebsky, “Nonreciprocal magnetic photonic crystals,” Phys. Rev. E 63, 066609 (2001).
[CrossRef]

Vlasov, Y.

F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon. 1, 65–71 (2007).
[CrossRef]

Vlasov, Y. A.

Watanabe, Y.

White, T. P.

M. Spasenovic, T. P. White, S. Ha, A. A. Sukhorukov, T. Kampfrath, Y. S. Kivshar, C. M. de Sterke, T. F. Krauss, and L. Kuipers, “Experimental observation of evanescent modes at the interface to slow-light photonic crystal waveguides,” Opt. Lett. 36, 1170–1172 (2011).
[CrossRef] [PubMed]

S. Ha, M. Spasenovic, A. A. Sukhorukov, T. P. White, C. M. de Sterke, L. K. Kuipers, T. F. Krauss, and Y. S. Kivshar, “Slow-light and evanescent modes at interfaces in photonic crystal waveguides: optimal extraction from experimental near-field measurements,” J. Opt. Soc. Am. B 28, 955–963 (2011).
[CrossRef]

L. O’Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photon. J. 2, 404–414 (2010).
[CrossRef]

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[CrossRef]

C. M. de Sterke, K. B. Dossou, T. P. White, L. C. Botten, and R. C. McPhedran, “Efficient coupling into slow light photonic crystal waveguide without transition region: role of evanescent modes,” Opt. Express 17, 17338–17343 (2009).
[CrossRef]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef] [PubMed]

T. P. White, L. C. Botten, C. M. de Sterke, K. B. Dossou, and R. C. McPhedran, “Efficient slow-light coupling in a photonic crystal waveguide without transition region,” Opt. Lett. 33, 2644–2646 (2008).
[CrossRef] [PubMed]

Wu, H.

C. Bao, J. Hou, H. Wu, X. Zhou, E. Cassan, X. Gao, and D. Zhang, “Low dispersion slow light in slot waveguide grating,” IEEE Photon. Technol. Lett. 23, 1700–1702 (2011).
[CrossRef]

Xia, F. N.

F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon. 1, 65–71 (2007).
[CrossRef]

Xu, X. C.

A. Hosseini, X. C. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98, 031107 (2011).
[CrossRef]

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Zhang, D.

C. Bao, J. Hou, H. Wu, X. Zhou, E. Cassan, X. Gao, and D. Zhang, “Low dispersion slow light in slot waveguide grating,” IEEE Photon. Technol. Lett. 23, 1700–1702 (2011).
[CrossRef]

Zhou, X.

C. Bao, J. Hou, H. Wu, X. Zhou, E. Cassan, X. Gao, and D. Zhang, “Low dispersion slow light in slot waveguide grating,” IEEE Photon. Technol. Lett. 23, 1700–1702 (2011).
[CrossRef]

Appl. Phys. Lett. (5)

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106–3 (2009).
[CrossRef]

J. Ma and M. L. Povinelli, “Effect of periodicity on optical forces between a one-dimensional periodic photonic crystal waveguide and an underlying substrate,” Appl. Phys. Lett. 97, 151102 (2010).
[CrossRef]

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

A. Hosseini, X. C. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98, 031107 (2011).
[CrossRef]

D. Tan, K. Ikeda, P. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett. 96, 061101 (2010).
[CrossRef]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

IEEE Photon. J. (1)

L. O’Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photon. J. 2, 404–414 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. Bao, J. Hou, H. Wu, X. Zhou, E. Cassan, X. Gao, and D. Zhang, “Low dispersion slow light in slot waveguide grating,” IEEE Photon. Technol. Lett. 23, 1700–1702 (2011).
[CrossRef]

J. Opt. (1)

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nano Lett. (1)

B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale mode selector in silicon waveguide for on chip nanofocusing applications,” Nano Lett. 9, 3381–3386 (2009).
[CrossRef] [PubMed]

Nature Photon. (4)

F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon. 1, 65–71 (2007).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[CrossRef]

T. F. Krauss, “Why do we need slow light?” Nature Photon. 2, 448–450 (2008).
[CrossRef]

T. Baba, “Slow light in photonic crystals,” Nature Photon. 2, 465–473 (2008).
[CrossRef]

Opt. Express (10)

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[CrossRef] [PubMed]

S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927–2939 (2003).
[CrossRef] [PubMed]

R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14, 1658–1672 (2006).
[CrossRef] [PubMed]

L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006).
[CrossRef] [PubMed]

M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15, 219–226 (2007).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16, 1300–1320 (2008).
[CrossRef] [PubMed]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef] [PubMed]

A. A. Sukhorukov, S. Ha, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Dispersion extraction with near-field measurements in periodic waveguides,” Opt. Express 17, 3716–3721 (2009).
[CrossRef] [PubMed]

C. M. de Sterke, K. B. Dossou, T. P. White, L. C. Botten, and R. C. McPhedran, “Efficient coupling into slow light photonic crystal waveguide without transition region: role of evanescent modes,” Opt. Express 17, 17338–17343 (2009).
[CrossRef]

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, and M. Notomi, “Ultrahigh-q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18, 15859–15869 (2010).
[CrossRef] [PubMed]

Opt. Lett. (5)

Phys. Rev. A. (1)

N. Gutman, L. C. Botten, A. A. Sukhorukov, and C. M. de Sterke, “Slow and frozen light in optical waveguides with multiple gratings: Degenerate band edges and stationary inflection points,” submitted to Phys. Rev. A.

Phys. Rev. B (1)

A. Figotin and I. Vitebskiy, “Electromagnetic unidirectionality in magnetic photonic crystals,” Phys. Rev. B 67, 165210 (2003).
[CrossRef]

Phys. Rev. E (4)

A. Figotin and I. Vitebskiy, “Oblique frozen modes in periodic layered media,” Phys. Rev. E 68, 036609 (2003).
[CrossRef]

J. Ballato, A. Ballato, A. Figotin, and I. Vitebskiy, “Frozen light in periodic stacks of anisotropic layers,” Phys. Rev. E 71, 036612–12 (2005).
[CrossRef]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608 (2002).
[CrossRef]

A. Figotin and I. Vitebsky, “Nonreciprocal magnetic photonic crystals,” Phys. Rev. E 63, 066609 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Waves Random Complex Media (1)

A. Figotin and I. Vitebskiy, “Slow light in photonic crystals,” Waves Random Complex Media 16, 293–382 (2006).
[CrossRef]

Other (1)

J. B. Khurgin and R. S. Tucker, Slow Light: Science and ApplicationsTailor and FrancisNew York2009

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the nanowire waveguides considered. (a) Three identical wire waveguides of width w, separated by center-to-center distance g. The outer waveguides have holes of radius r and period a, which are shifted laterally by zA. (b) Rigid structure with similar geometry as in (a): total width w, and two sets of holes with g the distance from the center. (c),(d) 3D realizations of planar geometries shown in (a) and (b), respectively. The wire waveguides thickness is wz. In (c) the structure is supported by a low refractive index material such as silica.

Fig. 2
Fig. 2

Unit cell of a wire waveguide, surrounded by air, and the corresponding band structures. (a) Single mode wire waveguide with infinitesimal periodicity; waveguide width w = 0.8a. At the BZ edge, the band is folded. Dashed line: air light line. (b) Three coupled wire waveguides with infinitesimal periodicity and g = 1.16a showing symmetric (blue) and anti-symmetric (red) modes. (c) Symmetric periodicity with hole radius r = 0.28. (d–f) Asymmetric periodicity, through a lateral shift (d) of zA = 0.1a, (e) of zA = 0.24a, and (i) zA = 0.4. (f–h): The real part of the magnetic field, perpendicular to the waveguides, at different wavenumber along the band with SIP. (f) k = 0.91 ko, (g) k = ko and (h) k = 1.08 ko.

Fig. 3
Fig. 3

(a) Overview of the parameter space of zA and g, for fixed r = 0.22a and w = 0.8a. Blue curve: SIP as shown in (e). Red curve: flat band, as in (f). Other insets show the shape of the dispersion curve in the respective areas. (g) Group index of a slow light band (along the red curve, where D2 = 0 and D3 = 0) versus wavelength for parameters w = a, g = 1.28a, zA = 0.46a, and r = 0.28a. The black line indicates where the group index varies by less than 10%.

Fig. 4
Fig. 4

Field decomposition for frequencies around a SIP for the structure in (a), with r = 0.28, g = 1.16, w = 0.8 and ZA = 0.24 featuring a SIP at 0.28 in frequency. (b) The field at the SIP frequency. (c) The three modes with kko. Blue: propagating mode; green and red: evanescently decaying and growing modes, respectively. Detail of the complex band structure around the SIP showing frequency versus the real and imaginary wavenumber in (d) and (e) respectively. (f) The frequency vs. the group index, calculated from the extracted dispersion. (g) Transmission for a structure with 60 periods.

Fig. 5
Fig. 5

Band structures parameters showing a SIP in the 3D structure. (a)–(b) Three coupled nanowires on Silica, shown in Fig. 1(c). (a) Si on Silica: w = 1, wz = 0.5, g = 1.18, zA = 0.3 and r = 0.1. (b) SiN on Silica: w = 2, wz = 0.8, g = 2.25, zA = 0.28 and r = 0.2. (c) Multimode wire waveguide surrounded by air, Fig. 1(d): w = 2.8, wz = 0.5, g = 1.2, zA = 0.3 and r = 0.28.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ ω D 3 Δ k 3 + D 4 Δ k 4 .
Δ k 1 Δ k .
Δ k 2 = Δ k ( 3 / 2 i / 2 ) ,
Δ k 3 = Δ k ( 3 / 2 + i / 2 ) .
Φ m ( x , y ; ω ) exp ( i k m x ) ,
H z ( x , y ; ω ) = m = 1 6 a m Φ m ( x , y ; ω ) + w ( x , y ; ω )

Metrics