Abstract

The maximum reach in a WDM-PON using a broadband light source (BLS) seeded optical source has been experimentally evaluated by taking into account both effects of dispersion-induced pulse broadening and excess intensity noise (EIN) increase. In order to investigate the impact of BLS seed source power on the dispersion-limited performance, the system’s performance has been measured and compared as a function of the spectrum-sliced BLS seed power into a reflective semiconductor optical amplifier (RSOA). From the results, we confirmed that the maximum reach in a RSOA based WDM-PON was mainly degraded by the dispersion-induced EIN increase. Therefore, by mitigating the effect of dispersion-induced EIN increase with a high seed power into a RSOA, the maximum reach in the WDM-PON using a BLS seeded RSOA source could be achieved to be ~60 km of single-mode fiber at the spectrum-sliced BLS seed power of >-10 dBm and a 1.25 Gb/s signal without using any dispersion-compensating techniques.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C.-H. Lee and S.-G. Mun, “WDM-PON based on wavelength-locked Fabry-Perot LDs,” J. Opt. Soc. Korea 12(4), 326–336 (2008).
    [CrossRef]
  2. B. W. Kim, “RSOA-based wavelength-reuse gigabit WDM-PON,” J. Opt. Soc. Korea 12(4), 337–345 (2008).
    [CrossRef]
  3. A. D. McCoy, P. Horak, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “Noise suppression of incoherent light using a gain-saturated SOA: implications for spectrum-sliced WDM systems,” J. Lightwave Technol. 23(8), 2399–2409 (2005).
    [CrossRef]
  4. G. J. Pendock and D. D. Sampson, “Transmission performance of high bit rate spectrum-sliced WDM systems,” J. Lightwave Technol. 14(10), 2141–2148 (1996).
    [CrossRef]
  5. H. Kim, S. Kim, S. Hwang, and Y. Oh, “Impact of dispersion, PMD, and PDL on the performance of spectrum-sliced incoherent light sources using gain-saturated semiconductor optical amplifiers,” J. Lightwave Technol. 24(2), 775–785 (2006).
    [CrossRef]
  6. C. H. Kim, J. H. Lee, D. K. Jung, Y.-G. Han, and S. B. Lee, “Performance comparison of directly-modulated, wavelength-locked Fabry-Perot laser diode and EAM-modulated spectrum-sliced ASE source for 1.25 Gb/s WDM-PON,” presented at OFC2007/NFOEC Mar. 2007, JWA82.
  7. R. P. Davey, P. Healey, I. Hope, P. Watkinson, D. B. Payne, O. Marmur, J. Ruhmann, and Y. Zuiderveld, “DWDM reach extension of a GPON to 135 km,” J. Lightwave Technol. 24(1), 29–31 (2006).
    [CrossRef]
  8. I. T. Monroy, R. Kjaer, B. Palsdottir, A. M. J. Koonen, and P. Jeppesen, “10 Gb/s bidirectional single fibre long reach PON link with distributed Raman amplification,” presented at Eur. Conf. Optical Communication (ECOC2006) Sep. 2006, We3.P.166.
  9. H. H. Lee, K. C. Reichmann, P. P. Iannone, X. Zhou, and B. Palsdottir, “A hybrid-amplified PON with 75-nm downstream band-with, 60 km reach, 1:64 split and multiple video services,” presented at OFC2007/NFOEC Mar. 2007, OWL2.
  10. C. H. Kim, J. H. Lee, and K. Lee, “Analysis of maximum reach in WDM PON architecture based on distributed Raman amplification and pump recycling technique,” Opt. Express 15(22), 14942–14947 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-22-14942 .
    [CrossRef] [PubMed]
  11. K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
    [CrossRef]
  12. K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
    [CrossRef]

2008 (2)

2007 (1)

2006 (2)

2005 (1)

2004 (1)

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[CrossRef]

2001 (1)

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
[CrossRef]

1996 (1)

G. J. Pendock and D. D. Sampson, “Transmission performance of high bit rate spectrum-sliced WDM systems,” J. Lightwave Technol. 14(10), 2141–2148 (1996).
[CrossRef]

Choi, H. Y.

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[CrossRef]

Chung, Y. C.

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[CrossRef]

Davey, R. P.

Han, K. H.

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[CrossRef]

Healey, P.

Hope, I.

Horak, P.

Hwang, S.

Ibsen, M.

Kim, B. W.

Kim, C. H.

Kim, H.

Kim, S.

Lee, C.-H.

Lee, J. H.

Lee, K.

Lim, K. W.

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[CrossRef]

Marmur, O.

McCoy, A. D.

Mun, S.-G.

Oh, Y.

Payne, D. B.

Pendock, G. J.

G. J. Pendock and D. D. Sampson, “Transmission performance of high bit rate spectrum-sliced WDM systems,” J. Lightwave Technol. 14(10), 2141–2148 (1996).
[CrossRef]

Richardson, D. J.

Ruhmann, J.

Sampson, D. D.

G. J. Pendock and D. D. Sampson, “Transmission performance of high bit rate spectrum-sliced WDM systems,” J. Lightwave Technol. 14(10), 2141–2148 (1996).
[CrossRef]

Sato, K.

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
[CrossRef]

Son, E. S.

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[CrossRef]

Thomsen, B. C.

Toba, H.

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
[CrossRef]

Watkinson, P.

Zuiderveld, Y.

IEEE J. Sel. Top. Quantum Electron. (1)

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Soc. Korea (2)

Opt. Express (1)

Other (3)

C. H. Kim, J. H. Lee, D. K. Jung, Y.-G. Han, and S. B. Lee, “Performance comparison of directly-modulated, wavelength-locked Fabry-Perot laser diode and EAM-modulated spectrum-sliced ASE source for 1.25 Gb/s WDM-PON,” presented at OFC2007/NFOEC Mar. 2007, JWA82.

I. T. Monroy, R. Kjaer, B. Palsdottir, A. M. J. Koonen, and P. Jeppesen, “10 Gb/s bidirectional single fibre long reach PON link with distributed Raman amplification,” presented at Eur. Conf. Optical Communication (ECOC2006) Sep. 2006, We3.P.166.

H. H. Lee, K. C. Reichmann, P. P. Iannone, X. Zhou, and B. Palsdottir, “A hybrid-amplified PON with 75-nm downstream band-with, 60 km reach, 1:64 split and multiple video services,” presented at OFC2007/NFOEC Mar. 2007, OWL2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Apparatus used for the performance measurement of a RSOA based WDM-PON system. Acronyms are receiver, Rx; and bit-error-rate test sets, BERTs.

Fig. 2
Fig. 2

Optical spectrum of a BLS seeded RSOA output measured at the receiver after passing through a second AWG .

Fig. 3
Fig. 3

Calculated and measured dispersion-induced power penalties as a function of SMF transmission length. In this measurement, the spectrum-sliced BLS seeded power was set to be −15 dBm.

Fig. 4
Fig. 4

(a) Back-to-back BER curves and (b) power penalties as a function of SMF transmission distance, which were measured with five different levels of spectrum-sliced BLS seed power.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P DISPERSION =10log(15.1595 B 2 L 2 [0.18 B o 2 D 2 ]),

Metrics