Abstract

We demonstrate a high-accuracy distributed fiber-optic temperature sensor using superconducting nanowire single-photon detectors and single-photon counting techniques. Our demonstration uses inexpensive single-mode fiber at standard telecommunications wavelengths as the sensing fiber, which enables extremely low-loss experiments and compatibility with existing fiber networks. We show that the uncertainty of the temperature measurement decreases with longer integration periods, but is ultimately limited by the calibration uncertainty. Temperature uncertainty on the order of 3 K is possible with spatial resolution of the order of 1 cm and integration period as small as 60 seconds. Also, we show that the measurement is subject to systematic uncertainties, such as polarization fading, which can be reduced with a polarization diversity receiver.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multi-mode fiber using swept wavelength interferometry,” in Optical Fiber Sensors, Technical Digest (CD) (Optical Society of America, 2006) paper ThE42.
  2. J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
    [CrossRef]
  3. L. Thévenaz, “Review and progress in distributed fiber sensing,” in Optical Fiber Sensors, Technical Digest (CD) (Optical Society of America, 2006) paper ThC1.
  4. P. E. Sanders, “Fiber-optic sensors: playing both sides of the energy equation,” Opt. Photon. News 22(1), 36–42 (2011).
    [CrossRef]
  5. A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J. 8(7), 1375–1380 (2008).
    [CrossRef]
  6. G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
    [CrossRef]
  7. M. G. Tanner, S. D. Dyer, B. Baek, R. H. Hadfield, and S. W. Nam, “High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99(20), 201110 (2011).
    [CrossRef]
  8. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
    [CrossRef]
  9. R. Feced, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “Advances in high resolution distributed temperature sensing using the time-correlated single photon counting technique,” IEE Proc., Optoelectron. 144(3), 183–188 (1997).
    [CrossRef]
  10. R. Stierlin, J. Ricka, B. Zysset, R. Bättig, H. P. Weber, T. Binkert, and W. J. Borer, “Distributed fiber-optic temperature sensor using single photon counting detection,” Appl. Opt. 26(8), 1368–1370 (1987).
    [CrossRef] [PubMed]
  11. Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
    [CrossRef]
  12. M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
    [CrossRef]
  13. S. Miki, M. Fujiwara, M. Sasaki, B. Baek, A. J. Miller, R. H. Hadfield, S. W. Nam, and Z. Wang, “Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates,” Appl. Phys. Lett. 92(6), 061116 (2008).
    [CrossRef]
  14. J. R. Taylor, An Introduction to Error Analysis (University Science Books, 1997), Chap. 3.
  15. X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, “Measurement of co- and cross-polarized Raman spectra in silica fiber for small detunings,” Opt. Express 13(6), 2236–2244 (2005).
    [CrossRef] [PubMed]
  16. I. Mandelbaum, M. Bolshtyansky, T. F. Heinz, and A. R. Hight Walker, “Method for measuring the Raman gain tensor in optical fibers,” J. Opt. Soc. Am. B 23(4), 621–627 (2006).
    [CrossRef]
  17. V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express 16(14), 10750–10761 (2008).
    [CrossRef] [PubMed]

2011 (2)

P. E. Sanders, “Fiber-optic sensors: playing both sides of the energy equation,” Opt. Photon. News 22(1), 36–42 (2011).
[CrossRef]

M. G. Tanner, S. D. Dyer, B. Baek, R. H. Hadfield, and S. W. Nam, “High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99(20), 201110 (2011).
[CrossRef]

2010 (1)

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

2009 (1)

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[CrossRef]

2008 (3)

A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J. 8(7), 1375–1380 (2008).
[CrossRef]

S. Miki, M. Fujiwara, M. Sasaki, B. Baek, A. J. Miller, R. H. Hadfield, S. W. Nam, and Z. Wang, “Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates,” Appl. Phys. Lett. 92(6), 061116 (2008).
[CrossRef]

V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express 16(14), 10750–10761 (2008).
[CrossRef] [PubMed]

2007 (2)

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
[CrossRef]

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[CrossRef]

2006 (1)

2005 (1)

1997 (1)

R. Feced, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “Advances in high resolution distributed temperature sensing using the time-correlated single photon counting technique,” IEE Proc., Optoelectron. 144(3), 183–188 (1997).
[CrossRef]

1987 (1)

1985 (1)

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[CrossRef]

Agrawal, G. P.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
[CrossRef]

Anant, V.

Baek, B.

M. G. Tanner, S. D. Dyer, B. Baek, R. H. Hadfield, and S. W. Nam, “High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99(20), 201110 (2011).
[CrossRef]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

S. Miki, M. Fujiwara, M. Sasaki, B. Baek, A. J. Miller, R. H. Hadfield, S. W. Nam, and Z. Wang, “Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates,” Appl. Phys. Lett. 92(6), 061116 (2008).
[CrossRef]

Bättig, R.

Berggren, K. K.

Bibby, G. W.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[CrossRef]

Binkert, T.

Bolognini, G.

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[CrossRef]

Bolshtyansky, M.

Borer, W. J.

Chen, J.

Dakin, J. P.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[CrossRef]

Dauler, E. A.

Di Pasquale, F.

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[CrossRef]

Dickerson, B. D.

A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J. 8(7), 1375–1380 (2008).
[CrossRef]

Dorenbos, S. N.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

Dyer, S. D.

M. G. Tanner, S. D. Dyer, B. Baek, R. H. Hadfield, and S. W. Nam, “High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99(20), 201110 (2011).
[CrossRef]

Farhadiroushan, M.

R. Feced, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “Advances in high resolution distributed temperature sensing using the time-correlated single photon counting technique,” IEE Proc., Optoelectron. 144(3), 183–188 (1997).
[CrossRef]

Feced, R.

R. Feced, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “Advances in high resolution distributed temperature sensing using the time-correlated single photon counting technique,” IEE Proc., Optoelectron. 144(3), 183–188 (1997).
[CrossRef]

Froggatt, M. E.

A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J. 8(7), 1375–1380 (2008).
[CrossRef]

Fujiwara, M.

S. Miki, M. Fujiwara, M. Sasaki, B. Baek, A. J. Miller, R. H. Hadfield, S. W. Nam, and Z. Wang, “Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates,” Appl. Phys. Lett. 92(6), 061116 (2008).
[CrossRef]

Gifford, D. K.

A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J. 8(7), 1375–1380 (2008).
[CrossRef]

Hadfield, R. H.

M. G. Tanner, S. D. Dyer, B. Baek, R. H. Hadfield, and S. W. Nam, “High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99(20), 201110 (2011).
[CrossRef]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[CrossRef]

S. Miki, M. Fujiwara, M. Sasaki, B. Baek, A. J. Miller, R. H. Hadfield, S. W. Nam, and Z. Wang, “Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates,” Appl. Phys. Lett. 92(6), 061116 (2008).
[CrossRef]

Handerek, V. A.

R. Feced, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “Advances in high resolution distributed temperature sensing using the time-correlated single photon counting technique,” IEE Proc., Optoelectron. 144(3), 183–188 (1997).
[CrossRef]

Heinz, T. F.

Hight Walker, A. R.

Kerman, A. J.

Klapwijk, T. M.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

Kreger, S. T.

A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J. 8(7), 1375–1380 (2008).
[CrossRef]

Kumar, P.

Lee, K. F.

Li, X.

Lin, Q.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
[CrossRef]

Mandelbaum, I.

Miki, S.

S. Miki, M. Fujiwara, M. Sasaki, B. Baek, A. J. Miller, R. H. Hadfield, S. W. Nam, and Z. Wang, “Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates,” Appl. Phys. Lett. 92(6), 061116 (2008).
[CrossRef]

Miller, A. J.

S. Miki, M. Fujiwara, M. Sasaki, B. Baek, A. J. Miller, R. H. Hadfield, S. W. Nam, and Z. Wang, “Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates,” Appl. Phys. Lett. 92(6), 061116 (2008).
[CrossRef]

Nam, S.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

Nam, S. W.

M. G. Tanner, S. D. Dyer, B. Baek, R. H. Hadfield, and S. W. Nam, “High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99(20), 201110 (2011).
[CrossRef]

S. Miki, M. Fujiwara, M. Sasaki, B. Baek, A. J. Miller, R. H. Hadfield, S. W. Nam, and Z. Wang, “Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates,” Appl. Phys. Lett. 92(6), 061116 (2008).
[CrossRef]

Natarajan, C. M.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

O’Connor, J. A.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

Park, J.

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[CrossRef]

Park, N.

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[CrossRef]

Pottapenjara, V. K.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

Pratt, D. J.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[CrossRef]

Ricka, J.

Rogers, A. J.

R. Feced, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “Advances in high resolution distributed temperature sensing using the time-correlated single photon counting technique,” IEE Proc., Optoelectron. 144(3), 183–188 (1997).
[CrossRef]

Rosfjord, K. M.

Ross, J. N.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[CrossRef]

Sanders, P. E.

P. E. Sanders, “Fiber-optic sensors: playing both sides of the energy equation,” Opt. Photon. News 22(1), 36–42 (2011).
[CrossRef]

Sang, A. K.

A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J. 8(7), 1375–1380 (2008).
[CrossRef]

Sasaki, M.

S. Miki, M. Fujiwara, M. Sasaki, B. Baek, A. J. Miller, R. H. Hadfield, S. W. Nam, and Z. Wang, “Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates,” Appl. Phys. Lett. 92(6), 061116 (2008).
[CrossRef]

Soto, M. A.

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[CrossRef]

Stierlin, R.

Tanner, M. G.

M. G. Tanner, S. D. Dyer, B. Baek, R. H. Hadfield, and S. W. Nam, “High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99(20), 201110 (2011).
[CrossRef]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

Ureña, E. B.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

Voss, P. L.

Wang, Z.

S. Miki, M. Fujiwara, M. Sasaki, B. Baek, A. J. Miller, R. H. Hadfield, S. W. Nam, and Z. Wang, “Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates,” Appl. Phys. Lett. 92(6), 061116 (2008).
[CrossRef]

Warburton, R. J.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

Weber, H. P.

Yaman, F.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
[CrossRef]

Yang, J. K. W.

Zijlstra, T.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

Zwiller, V.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

Zysset, B.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

S. Miki, M. Fujiwara, M. Sasaki, B. Baek, A. J. Miller, R. H. Hadfield, S. W. Nam, and Z. Wang, “Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates,” Appl. Phys. Lett. 92(6), 061116 (2008).
[CrossRef]

M. G. Tanner, S. D. Dyer, B. Baek, R. H. Hadfield, and S. W. Nam, “High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99(20), 201110 (2011).
[CrossRef]

Electron. Lett. (1)

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[CrossRef]

IEE Proc., Optoelectron. (1)

R. Feced, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “Advances in high resolution distributed temperature sensing using the time-correlated single photon counting technique,” IEE Proc., Optoelectron. 144(3), 183–188 (1997).
[CrossRef]

IEEE Sens. J. (1)

A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J. 8(7), 1375–1380 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[CrossRef]

Nat. Photonics (1)

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[CrossRef]

Opt. Express (2)

Opt. Photon. News (1)

P. E. Sanders, “Fiber-optic sensors: playing both sides of the energy equation,” Opt. Photon. News 22(1), 36–42 (2011).
[CrossRef]

Phys. Rev. A (1)

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
[CrossRef]

Other (3)

J. R. Taylor, An Introduction to Error Analysis (University Science Books, 1997), Chap. 3.

S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multi-mode fiber using swept wavelength interferometry,” in Optical Fiber Sensors, Technical Digest (CD) (Optical Society of America, 2006) paper ThE42.

L. Thévenaz, “Review and progress in distributed fiber sensing,” in Optical Fiber Sensors, Technical Digest (CD) (Optical Society of America, 2006) paper ThC1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Diagram of our high-spatial-resolution fiber-optic temperature sensor system. EDFA: erbium-doped fiber amplifier, SNSPD: superconducting nanowire single-photon detector, TIA: time interval analyzer. The pulsed laser is a femtosecond fiber laser with a 36 MHz clock rate. The pump filters are 1 nm linewidth at a wavelength of 1533.47 nm. The pump reject filters are identical to the pump filters, but are connected so that they filter out the pump wavelength. The(C + L)/S bandsplitter separates the S-band wavelengths (1460 nm −1490 nm) from the C-band wavelengths (1530 nm −1565 nm) and L-band wavelengths (1570 nm −1610 nm). The C/L bandsplitter separates the L-band wavelengths from the C-band wavelengths.

Fig. 2
Fig. 2

Diagram of our layout for demonstration of a two-dimensional distributed fiber temperature sensor. Our sensing fiber is taped in a regular meander pattern to a cardboard box with 4 cm spacing between each horizontal run of the meander.

Fig. 3
Fig. 3

Temperature of a two-dimensional fiber meander. The crossings of the mesh are actual data points, while the color scale represents the interpolation of temperatures between actual data points. For this measurement, one section of the two-dimensional meander was illuminated with a heat lamp, and two sections of the meander were covered with ice trays that had been immersed in liquid nitrogen to cool them below the freezing point of water.

Fig. 4
Fig. 4

Measured temperature of the fiber Raman sensor compared with the corresponding temperature determined with a thermocouple. Data are from an experiment in which both the fiber and the thermocouple were immersed in a hot water bath, and measurements were taken every 60 seconds as the water bath slowly cooled over a 1 hour period. Each fiber sensor measurement shown is determined from a 1-minute integration period. The error bars show the uncertainty calculated from Eq. (6).

Fig. 5
Fig. 5

Diagram of the Raman sensor measurement system with polarization diversity receivers (PDRs) included on the S-band and L-band receiver channels. EDFA: erbium doped fiber amplifier; PC: polarization controller; PBS: polarizing beam splitter; SNSPD: superconducting nanowire single-photon detector.

Fig. 6
Fig. 6

Plots of measured histogram data obtained with a polarization diversity receiver, showing the raw histogram data for the “H” and “V” polarizations, as well as the weighted sum of the two polarizations. Note that the weighted sum data are much more smooth (less fluctuations created by fiber bends) than the raw histograms for the two polarizations. (a) Histograms from the S-band channel (1460 – 1490 nm). (b) Histograms from the L-band channel (1570 – 1610 nm).

Fig. 7
Fig. 7

Plot of measured temperature versus position in the sensing fiber. The sample was the two-dimensional fiber meander described above. For this particular measurement, the entire system was held at room temperature. Measurement was performed both with and without a polarization diversity receiver (PDR).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I u = η u Δ ν u P 0 L| g R,u |N( Ω up ) D c + B u ,
N={ 1 exp( | Ω up | k B T )1 when Ω up >0 1 exp( | Ω up | k B T )1 +1when Ω up <0.
I s (x) B s I a (x) B a =Cexp( | Ω sp | k B T(x) ),
Ν u [m]= I u [m] t int η u Δ ν u P 0 L bin | g R,u |N[m] D c t int ,
T[m]= | Ω sp | k B [ ln( Ν s [ m ] Ν Bs )ln[ C( Ν as [ m ] Ν Bas ) ] ] .
Δ T meas T meas k T meas Ω sp ( 1 Ν s )+( 1 Ν as )+ ( ΔC C ) 2 ,

Metrics