Abstract

A diode-pumped, ultrafast Yb:KYW laser system utilizing chirped-pulse amplification in a dual-slab regenerative amplifier with spectral shaping of seeding pulse from a master oscillator has been developed. A train of compressed pulses with pulse length of 181 fs, repetition rate up to 200 kHz, and average power exceeding 8 W after compression and pulse picker was achieved.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Dausinger, F. Lichtner, and H. Lubatschowski, Femtosecond Technology for Technical and Medical Applications (Springer, 2004).
  2. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [CrossRef]
  3. H. H. Liu, J. Nees, and G. Mourou, “Directly diode-pumped Yb:KY(WO(4))(2) regenerative amplifiers,” Opt. Lett. 27(9), 722–724 (2002).
    [CrossRef] [PubMed]
  4. S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High-power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
    [CrossRef]
  5. A. Beyertt, D. Nickel, and A. Giesen, “Femtosecond thin-disk Yb:KYW regenerative amplifier,” Appl. Phys. B 80(6), 655–661 (2005).
    [CrossRef]
  6. M. Larionov, F. Butze, D. Nickel, and A. Giesen, “High-repetition-rate regenerative thin-disk amplifier with 116 microJ pulse energy and 250 fs pulse duration,” Opt. Lett. 32(5), 494–496 (2007).
    [CrossRef] [PubMed]
  7. P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400W Yb:YAG innoslab fs-amplifier,” Opt. Express 17(15), 12230–12245 (2009).
    [CrossRef] [PubMed]
  8. U. Buenting, H. Sayinc, D. Wandt, U. Morgner, and D. Kracht, “Regenerative thin disk amplifier with combined gain spectra producing 500 µJ sub 200 fs pulses,” Opt. Express 17(10), 8046–8050 (2009).
    [CrossRef] [PubMed]
  9. A. Buettner, U. Buenting, D. Wandt, J. Neumann, and D. Kracht, “Ultrafast double-slab regenerative amplifier with combined gain spectra and intracavity dispersion compensation,” Opt. Express 18(21), 21973–21980 (2010).
    [CrossRef] [PubMed]
  10. N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er, Yb doped tungstates,” Appl. Phys. B 64(4), 409–413 (1997).
    [CrossRef]
  11. C. P. J. Barty, G. Korn, F. Raksi, C. Rose-Petruck, J. Squier, A.-C. Tien, K. R. Wilson, V. V. Yakovlev, and K. Yamakawa, “Regenerative pulse shaping and amplification of ultrabroadband optical pulses,” Opt. Lett. 21(3), 219–221 (1996).
    [CrossRef] [PubMed]
  12. P. Raybaut, F. Balembois, F. Druon, and P. Georges, “Numerical and experimental study of gain narrowing in ytterbium-based regenerative amplifiers,” IEEE J. Quantum Electron. 41(3), 415–425 (2005).
    [CrossRef]
  13. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
    [CrossRef]
  14. X. Lu, C. Li, Y. Leng, C. Wang, C. Zhang, X. Liang, R. Li, and Z. Xu, “Berefringent plate design for broadband spectral shaping in a Ti: sapphire regenerative amplifier,” Chin. Opt. Lett. 5(8), 493–496 (2007).
  15. G. H. Kim, U. Kang, D. Heo, V. E. Yashin, A. V. Kulik, E. G. Sall, and S. A. Chizhov, “A compact femtosecond generator based on an Yb:KYW crystal with direct laser-diode pumping,” J. Opt. Technol. 77(4), 225–229 (2010).
    [CrossRef]
  16. International standard ISO 11670:2003: Lasers and laser-related equipment — Test methods for laser beam parameters — Beam positional stability.
  17. G. Raciukaitis, M. Grishin, R. Danielius, J. Pocius, and L. Giniūnas, “High repetition rate ps- and fs- DPSS lasers for micromachining,” in ICALEO 2006 Proceedings on CD-ROM (Laser Institute of America, 2006).

2010

2009

2008

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

2007

2005

P. Raybaut, F. Balembois, F. Druon, and P. Georges, “Numerical and experimental study of gain narrowing in ytterbium-based regenerative amplifiers,” IEEE J. Quantum Electron. 41(3), 415–425 (2005).
[CrossRef]

A. Beyertt, D. Nickel, and A. Giesen, “Femtosecond thin-disk Yb:KYW regenerative amplifier,” Appl. Phys. B 80(6), 655–661 (2005).
[CrossRef]

2002

1998

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High-power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[CrossRef]

1997

N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er, Yb doped tungstates,” Appl. Phys. B 64(4), 409–413 (1997).
[CrossRef]

1996

1985

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

Backus, S.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High-power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[CrossRef]

Balembois, F.

P. Raybaut, F. Balembois, F. Druon, and P. Georges, “Numerical and experimental study of gain narrowing in ytterbium-based regenerative amplifiers,” IEEE J. Quantum Electron. 41(3), 415–425 (2005).
[CrossRef]

Barty, C. P. J.

Beyertt, A.

A. Beyertt, D. Nickel, and A. Giesen, “Femtosecond thin-disk Yb:KYW regenerative amplifier,” Appl. Phys. B 80(6), 655–661 (2005).
[CrossRef]

Buenting, U.

Buettner, A.

Butze, F.

Chizhov, S. A.

Diening, A.

N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er, Yb doped tungstates,” Appl. Phys. B 64(4), 409–413 (1997).
[CrossRef]

Druon, F.

P. Raybaut, F. Balembois, F. Druon, and P. Georges, “Numerical and experimental study of gain narrowing in ytterbium-based regenerative amplifiers,” IEEE J. Quantum Electron. 41(3), 415–425 (2005).
[CrossRef]

Durfee, C. G.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High-power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[CrossRef]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Georges, P.

P. Raybaut, F. Balembois, F. Druon, and P. Georges, “Numerical and experimental study of gain narrowing in ytterbium-based regenerative amplifiers,” IEEE J. Quantum Electron. 41(3), 415–425 (2005).
[CrossRef]

Giesen, A.

Heo, D.

Heumann, E.

N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er, Yb doped tungstates,” Appl. Phys. B 64(4), 409–413 (1997).
[CrossRef]

Hoffmann, H. D.

Huber, G.

N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er, Yb doped tungstates,” Appl. Phys. B 64(4), 409–413 (1997).
[CrossRef]

Jensen, T.

N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er, Yb doped tungstates,” Appl. Phys. B 64(4), 409–413 (1997).
[CrossRef]

Kang, U.

Kapteyn, H. C.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High-power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[CrossRef]

Kim, G. H.

Korn, G.

Kracht, D.

Kuleshov, N. V.

N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er, Yb doped tungstates,” Appl. Phys. B 64(4), 409–413 (1997).
[CrossRef]

Kulik, A. V.

Lagatsky, A. A.

N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er, Yb doped tungstates,” Appl. Phys. B 64(4), 409–413 (1997).
[CrossRef]

Larionov, M.

Leng, Y.

Li, C.

Li, R.

Liang, X.

Liu, H. H.

Lu, X.

Mans, T.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Mikhailov, V. P.

N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er, Yb doped tungstates,” Appl. Phys. B 64(4), 409–413 (1997).
[CrossRef]

Morgner, U.

Mourou, G.

H. H. Liu, J. Nees, and G. Mourou, “Directly diode-pumped Yb:KY(WO(4))(2) regenerative amplifiers,” Opt. Lett. 27(9), 722–724 (2002).
[CrossRef] [PubMed]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

Murnane, M. M.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High-power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[CrossRef]

Nees, J.

Neumann, J.

Nickel, D.

Poprawe, R.

Raksi, F.

Raybaut, P.

P. Raybaut, F. Balembois, F. Druon, and P. Georges, “Numerical and experimental study of gain narrowing in ytterbium-based regenerative amplifiers,” IEEE J. Quantum Electron. 41(3), 415–425 (2005).
[CrossRef]

Rose-Petruck, C.

Rotarius, G.

Russbueldt, P.

Sall, E. G.

Sayinc, H.

Shcherbitsky, V. G.

N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er, Yb doped tungstates,” Appl. Phys. B 64(4), 409–413 (1997).
[CrossRef]

Squier, J.

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

Tien, A.-C.

Wandt, D.

Wang, C.

Weitenberg, J.

Wilson, K. R.

Xu, Z.

Yakovlev, V. V.

Yamakawa, K.

Yashin, V. E.

Zhang, C.

Appl. Phys. B

A. Beyertt, D. Nickel, and A. Giesen, “Femtosecond thin-disk Yb:KYW regenerative amplifier,” Appl. Phys. B 80(6), 655–661 (2005).
[CrossRef]

N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er, Yb doped tungstates,” Appl. Phys. B 64(4), 409–413 (1997).
[CrossRef]

Chin. Opt. Lett.

IEEE J. Quantum Electron.

P. Raybaut, F. Balembois, F. Druon, and P. Georges, “Numerical and experimental study of gain narrowing in ytterbium-based regenerative amplifiers,” IEEE J. Quantum Electron. 41(3), 415–425 (2005).
[CrossRef]

J. Opt. Technol.

Nat. Photonics

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Opt. Commun.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

Opt. Express

Opt. Lett.

Rev. Sci. Instrum.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High-power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[CrossRef]

Other

F. Dausinger, F. Lichtner, and H. Lubatschowski, Femtosecond Technology for Technical and Medical Applications (Springer, 2004).

International standard ISO 11670:2003: Lasers and laser-related equipment — Test methods for laser beam parameters — Beam positional stability.

G. Raciukaitis, M. Grishin, R. Danielius, J. Pocius, and L. Giniūnas, “High repetition rate ps- and fs- DPSS lasers for micromachining,” in ICALEO 2006 Proceedings on CD-ROM (Laser Institute of America, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic layout of the femtosecond laser system. FM is a high reflective flat mirror; CM1 is a curved mirror with ROC = 400 mm; CM2 is a curved mirror with ROC = 600 mm; DM is a flat dichroic mirror; FL is a focusing lens; CL is a collimating lens; C1 and C2 are Yb:KYW crystals; TFP is a thin film polarizer.

Fig. 2
Fig. 2

(a, c) Intensity autocorrelation traces (black-experimental data, red-fitting) with spatial beam patterns in the inset and (b, d) optical spectra of pulses from master oscillator with Ng-cut crystal (a, b) and Np-cut crystal (c, d).

Fig. 3
Fig. 3

CW output power of laser as a function of incident pump power on crystals in CW mode operation for each single- and dual-slab configuration.

Fig. 4
Fig. 4

(a) Average output power of compressed pulses as a function of time gate of Pockels cell for different incident pump power of 60 W and 67 W, and (b) average output power as a function of incident pump power at time gate of 400 ns with and without spectral shaping, respectively. Repetition rate is 200 kHz.

Fig. 5
Fig. 5

(a, b) Spectra and (c, d) intensity autocorrelation traces (black-experimental data, red-fitting) of output pulses at incident pump power of 67 W and repetition rate of 200 kHz without spectral shaping (a, c) and with spectral shaping (b, d). Insets show the output beam profile (b) and autocorrelation trace in the range of 5 ps (d).

Tables (2)

Tables Icon

Table 1 Parameters of the Oscillators Based on the Ng-cut and Np-cut Crystals

Tables Icon

Table 2 Parameters of Stretcher and Compressor with Different Diffraction Gratings

Metrics