Abstract

We present the first experimental technique to encrypt a movie under a joint transform correlator architecture. We also extend the method to multiplex several movies in a single package. We use a Mach-Zehnder interferometer to encrypt experimentally each movie. One arm of the interferometer is the joint transform correlator and the other arm is the reference wave. We include the complete description of the procedure along with experimental results supporting the proposal.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Mosso, J. F. Barrera, M. Tebaldi, N. Bolognini, and R. Torroba, “All-optical encrypted movie,” Opt. Express 19(6), 5706–5712 (2011), http://www.opticsinfobase.org/spotlight/summary.cfm?uri=oe-19-6-5706 .
    [PubMed]
  2. F. Mosso, M. Tebaldi, J. F. Barrera, N. Bolognini, and R. Torroba, “Pure optical dynamical color encryption,” Opt. Express 19(15), 13779–13786 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-13779 .
    [CrossRef] [PubMed]
  3. H. E. Hwang, H. T. Chang, and W. N. Lie, “Multiple-image encryption and multiplexing using a modified Gerchberg-Saxton algorithm and phase modulation in Fresnel-transform domain,” Opt. Lett. 34(24), 3917–3919 (2009).
    [CrossRef] [PubMed]
  4. H. T. Chang, H. E. Hwang, and C. L. Lee, “Position multiplexing multiple-image encryption using cascaded phase-only masks in Fresnel transform domain,” Opt. Commun. 284(18), 4146–4151 (2011).
    [CrossRef]
  5. E. Rueda, C. Ríos, J. F. Barrera, R. Henao, and R. Torroba, “Experimental multiplexing approach via code key rotations under a joint transform correlator scheme,” Opt. Commun. 284(10-11), 2500–2504 (2011).
    [CrossRef]
  6. R. Henao, E. Rueda, J. F. Barrera, and R. Torroba, “Noise-free recovery of optodigital encrypted and multiplexed images,” Opt. Lett. 35(3), 333–335 (2010).
    [CrossRef] [PubMed]

2011

H. T. Chang, H. E. Hwang, and C. L. Lee, “Position multiplexing multiple-image encryption using cascaded phase-only masks in Fresnel transform domain,” Opt. Commun. 284(18), 4146–4151 (2011).
[CrossRef]

E. Rueda, C. Ríos, J. F. Barrera, R. Henao, and R. Torroba, “Experimental multiplexing approach via code key rotations under a joint transform correlator scheme,” Opt. Commun. 284(10-11), 2500–2504 (2011).
[CrossRef]

F. Mosso, J. F. Barrera, M. Tebaldi, N. Bolognini, and R. Torroba, “All-optical encrypted movie,” Opt. Express 19(6), 5706–5712 (2011), http://www.opticsinfobase.org/spotlight/summary.cfm?uri=oe-19-6-5706 .
[PubMed]

F. Mosso, M. Tebaldi, J. F. Barrera, N. Bolognini, and R. Torroba, “Pure optical dynamical color encryption,” Opt. Express 19(15), 13779–13786 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-13779 .
[CrossRef] [PubMed]

2010

2009

Barrera, J. F.

Bolognini, N.

Chang, H. T.

H. T. Chang, H. E. Hwang, and C. L. Lee, “Position multiplexing multiple-image encryption using cascaded phase-only masks in Fresnel transform domain,” Opt. Commun. 284(18), 4146–4151 (2011).
[CrossRef]

H. E. Hwang, H. T. Chang, and W. N. Lie, “Multiple-image encryption and multiplexing using a modified Gerchberg-Saxton algorithm and phase modulation in Fresnel-transform domain,” Opt. Lett. 34(24), 3917–3919 (2009).
[CrossRef] [PubMed]

Henao, R.

E. Rueda, C. Ríos, J. F. Barrera, R. Henao, and R. Torroba, “Experimental multiplexing approach via code key rotations under a joint transform correlator scheme,” Opt. Commun. 284(10-11), 2500–2504 (2011).
[CrossRef]

R. Henao, E. Rueda, J. F. Barrera, and R. Torroba, “Noise-free recovery of optodigital encrypted and multiplexed images,” Opt. Lett. 35(3), 333–335 (2010).
[CrossRef] [PubMed]

Hwang, H. E.

H. T. Chang, H. E. Hwang, and C. L. Lee, “Position multiplexing multiple-image encryption using cascaded phase-only masks in Fresnel transform domain,” Opt. Commun. 284(18), 4146–4151 (2011).
[CrossRef]

H. E. Hwang, H. T. Chang, and W. N. Lie, “Multiple-image encryption and multiplexing using a modified Gerchberg-Saxton algorithm and phase modulation in Fresnel-transform domain,” Opt. Lett. 34(24), 3917–3919 (2009).
[CrossRef] [PubMed]

Lee, C. L.

H. T. Chang, H. E. Hwang, and C. L. Lee, “Position multiplexing multiple-image encryption using cascaded phase-only masks in Fresnel transform domain,” Opt. Commun. 284(18), 4146–4151 (2011).
[CrossRef]

Lie, W. N.

Mosso, F.

Ríos, C.

E. Rueda, C. Ríos, J. F. Barrera, R. Henao, and R. Torroba, “Experimental multiplexing approach via code key rotations under a joint transform correlator scheme,” Opt. Commun. 284(10-11), 2500–2504 (2011).
[CrossRef]

Rueda, E.

E. Rueda, C. Ríos, J. F. Barrera, R. Henao, and R. Torroba, “Experimental multiplexing approach via code key rotations under a joint transform correlator scheme,” Opt. Commun. 284(10-11), 2500–2504 (2011).
[CrossRef]

R. Henao, E. Rueda, J. F. Barrera, and R. Torroba, “Noise-free recovery of optodigital encrypted and multiplexed images,” Opt. Lett. 35(3), 333–335 (2010).
[CrossRef] [PubMed]

Tebaldi, M.

Torroba, R.

Supplementary Material (4)

» Media 1: AVI (2489 KB)     
» Media 2: AVI (2489 KB)     
» Media 3: AVI (6525 KB)     
» Media 4: AVI (6525 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical setup for the encrypting procedure (BS: cubic beam splitter, SLM: spatial light modulator, O: input plane, M: mirror, L: lens of focal distance f, E: CCD camera plane).

Fig. 2
Fig. 2

System to decrypt all frames ( V( u,v ) : encrypted movie; K( u,v ) : hologram of the FT of the key).

Fig. 3
Fig. 3

(a) One of the actual input frames as projected in the SLM, (b) all decrypted frames with the right security key and (c) all recovered frames using a wrong key.

Fig. 4
Fig. 4

(a) Encrypted movie, (b) fully decrypted optical movie with the right security key (Media 1) and (c) non-decrypted optical movie with a wrong key (Media 2).

Fig. 5
Fig. 5

Experimental multiplexing results for three encrypted movies with two different keys. (a) Decryption using the first key showing two different movies and the non-decrypted movie (Media 3). (b) Decryption of the remaining movie with the second key and the two non-decrypted movies (Media 4).

Fig. 6
Fig. 6

(a) Output plane for Media 3 and (b) output plane for Media 4.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

u 0 ( x 0 , y 0 )=[ f l ( x 0 , y 0 ) m l ( x 0 , y 0 ) ]δ( x 0 ( a ), y 0 ) +k( x 0 , y 0 )δ( x 0 a, y 0 )
JPS( u,v )= | F l ( u,v ) | 2 + | K( u,v ) | 2 + F l * ( u,v )K( u,v )exp( 4πiau ) + F l ( u,v ) K * ( u,v )exp( 4πiau )
E l ( u,v )= F l ( u,v ) K * ( u,v )exp[ 4πi( x l u+ y l v ) ]
V( u,v )= l=1 n F l ( u,v ) K * ( u,v )exp[ 4πi( x l u+ y l v ) ]
G( u,v )=K( u,v )
D( x,y )= l=1 n f l ( x 0 , y 0 ) m l ( x 0 , y 0 )δ( x x l ,y y l )
M( u,v )= j=1 q l=1 n F l,j ( u,v ) K j * ( u,v )exp[ 4πi( x l,j u+ y l,j v ) ]
D k ( x,y )= l=1 n f l,k ( x,y ) m l ( x 0 , y 0 )δ( x x l,k ,y y l,k )

Metrics