Abstract

An automated chorio-scleral interface (CSI) detection algorithm based on polarization sensitive optical coherence tomography (PS-OCT) is presented. This algorithm employs a two-step scheme based on the phase retardation variation detected by PS-OCT. In the first step, a rough CSI segmentation is implemented to distinguish the choroid and sclera by using depth-oriented second derivative of the phase retardation. Second, the CSI is further finely defined as the intersection of lines fitted to the phase retardation in the choroid and sclera. This algorithm challenges the current back-scattering intensity based CSI segmentation approaches that are not fully based on anatomical and morphological evidence, and provides a rational segmentation method for the morphological investigation of the choroid. Applications of this algorithm are demonstrated on in vivo posterior images acquired by a PS-OCT system with 1-μm probe.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Linsenmeier and L. Padnick-Silver, “Metabolic dependence of photoreceptors on the choroid in the normal and detached retina,” Invest. Ophth. Vis. Sci. 41, 3117–3123 (2000).
  2. D.-Y. Yu and S. J. Cringle, “Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease,” Prog. Retin. Eye Res. 20, 175–208 (2001).
    [CrossRef] [PubMed]
  3. L. M. Parver, C. Auker, and D. O. Carpenter, “Choroidal blood flow as a heat dissipating mechanism in the macula,” Am. J. Ophthalmol. 89, 641–646 (1980). .
    [PubMed]
  4. J. W. Kiel and W. A. van Heuven, “Ocular perfusion pressure and choroidal blood flow in the rabbit.” Invest. Ophth. Vis. Sci. 36, 579–585 (1995).
  5. K. Polak, A. Luksch, F. Berisha, G. Fuchsjaeger-Mayrl, S. Dallinger, and L. Schmetterer, “Altered nitric oxide system in patients with Open-Angle glaucoma,” Arch. Ophthalmol. 125, 494–498 (2007).
    [CrossRef] [PubMed]
  6. T. Kubota, J. B. Jonas, and G. O. Naumann, “Decreased choroidal thickness in eyes with secondary angle closure glaucoma. an aetiological factor for deep retinal changes in glaucoma?” Br. J. Ophthalmol. 77, 430–432 (1993).
    [CrossRef] [PubMed]
  7. C. W. Spraul, G. E. Lang, and H. E. Grossniklaus, “Morphometric analysis of the choroid, bruch’s membrane, and retinal pigment epithelium in eyes with age-related macular degeneration.” Invest. Ophth. Vis. Sci. 37, 2724–2735 (1996).
  8. F. John V, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7, 626–634 (2003).
    [CrossRef]
  9. M. Destro and C. A. Puliafito, “Indocyanine green videoangiography of choroidal neovascularization,” Ophthalmology 96, 846–853 (1989). .
    [PubMed]
  10. D. R. Guyer, L. A. Yannuzzi, J. S. Slakter, J. A. Sorenson, M. Hope-Ross, and D. R. Orlock, “Digital indocyanine-green videoangiography of occult choroidal neovascularization,” Ophthalmology 101, 1727–1735; discussion 1735–1737 (1994). .
    [PubMed]
  11. D. Coleman, R. H. Silverman, A. Chabi, M. J. Rondeau, K. Shung, J. Cannata, and H. Lincoff, “High-resolution ultrasonic imaging of the posterior segment,” Ophthalmology 111, 1344–1351 (2004).
    [CrossRef] [PubMed]
  12. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  13. A. Fercher, W. Drexler, C. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
    [CrossRef]
  14. M. Hee, J. Izatt, E. Swanson, D. Huang, J. Schuman, C. Lin, C. Puliafito, and J. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
    [CrossRef] [PubMed]
  15. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Archives of Ophthalmology 112, 1584–1589 (1994). .
    [PubMed]
  16. J. G. Fujimoto, W. Drexler, J. S. Schuman, and C. K. Hitzenberger, “Optical coherence tomography (OCT) in ophthalmology: Introduction,” Opt. Express 17, 3978–3979 (2009).
    [CrossRef] [PubMed]
  17. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz oct for ultrawide-field retinal imaging with a 1050nm fourier domain mode-locked laser,” Opt. Express 19, 3044–3062 (2011).
    [CrossRef] [PubMed]
  18. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
    [CrossRef]
  19. A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
    [CrossRef]
  20. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
    [CrossRef] [PubMed]
  21. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003).
    [CrossRef] [PubMed]
  22. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
    [CrossRef] [PubMed]
  23. R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146, 496–500 (2008).
    [CrossRef] [PubMed]
  24. T. Fujiwara, Y. Imamura, R. Margolis, J. S. Slakter, and R. F. Spaide, “Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes,” Am. J. Ophthalmol. 148, 445–450 (2009).
    [CrossRef] [PubMed]
  25. B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050Mm versus 800Mm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt. 12, 041211 (2007).
    [CrossRef]
  26. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007).
    [CrossRef] [PubMed]
  27. D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophth. Vis. Sci. 49, 4545–4552 (2008).
    [CrossRef]
  28. V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophth. Vis. Sci. 49, 5103–5110 (2008).
    [CrossRef]
  29. Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, “Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography,” Invest. Ophth. Vis. Sci. 50, 405–413 (2009).
    [CrossRef]
  30. D. Cabrera DeBuc, “A review of algorithms for segmentation of retinal image data using optical coherence tomography,” in “Image Segmentation,” (InTech, 2011).
  31. M. R. Hee, “Optical coherence tomography of the eye,” Ph.D. thesis, Massachusetts Institute of Technology (1997).
  32. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in sdoct images congruent with expert manual segmentation,” Opt. Express 18, 19413–19428 (2010).
    [CrossRef] [PubMed]
  33. I. Ghorbel, F. Rossant, I. Bloch, S. Tick, and M. Paques, “Automated segmentation of macular layers in oct images and quantitative evaluation of performances,” Pattern Recogn. 44, 1590–1603 (2011).
    [CrossRef]
  34. V. Kajić, M. Esmaeelpour, B. Považay, D. Marshall, P. L. Rosin, and W. Drexler, “Automated choroidal segmentation of 1060 nm oct in healthy and pathologic eyes using a statistical model,” Biomed. Opt. Express 3, 86–103 (2012).
    [CrossRef]
  35. J. de Boer, T. Milner, and J. Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett. 24, 300–302 (1999).
    [CrossRef]
  36. M. Hee, D. Huang, E. Swanson, and J. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B: Opt. Phys. 9, 903–908 (1992).
    [CrossRef]
  37. S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7, 350–358 (2002).
    [CrossRef] [PubMed]
  38. G. Yao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24, 537–539 (1999).
    [CrossRef]
  39. E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13, 10217–10229 (2005).
    [CrossRef] [PubMed]
  40. M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008).
    [CrossRef] [PubMed]
  41. E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherencetomography,” Opt. Express 16, 16410–16422 (2008).
    [CrossRef] [PubMed]
  42. M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophth. Vis. Sci. 47, 5487–5494 (2006).
    [CrossRef]
  43. M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno, “Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-sourceoptical coherence tomography with1-μm probe,” Opt. Express 17, 12385–12396 (2009).
    [CrossRef] [PubMed]
  44. M. Yamanari, S. Makita, Y. Lim, and Y Yasuno, “Full-range polarization-sensitiveswept-source optical coher-encetomography by simultaneous transversaland spectral modulation,” Opt. Express 18, 13964–13980 (2010).
    [CrossRef] [PubMed]
  45. M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive fourier domain optical coherence tomography using b-scan-oriented polarization modulation method,” Opt. Express 14, 6502–6515 (2006).
    [CrossRef] [PubMed]
  46. M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892–5906 (2008).
    [CrossRef] [PubMed]
  47. S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express 18, 854–876 (2010).
    [CrossRef] [PubMed]
  48. Y. Lim, M. Yamanari, S. Fukuda, Y. Kaji, T. Kiuchi, M. Miura, T. Oshika, and Y. Yasuno, “Birefringence measurement of cornea and anterior segment by office-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 2, 2392–2402 (2011).
    [CrossRef] [PubMed]
  49. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006).
    [CrossRef] [PubMed]
  50. M. Baroni, P. Fortunato, and A. L. Torre, “Towards quantitative analysis of retinal features in optical coherence tomography,” Med. Eng. Phys. 29, 432–441 (2007).
    [CrossRef]
  51. Q. Yang, C. A. Reisman, Z. Wang, Y. Fukuma, M. Hangai, N. Yoshimura, A. Tomidokoro, M. Araie, A. S. Raza, D. C. Hood, and K. Chan, “Automated layer segmentation of macular OCT images using dual-scale gradient information,” Opt. Express 18, 21293–21307 (2010).
    [CrossRef] [PubMed]
  52. Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061705 (2010).
    [CrossRef]
  53. R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol. 147, 811–815 (2009).
    [CrossRef] [PubMed]
  54. V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using cirrus hd optical coherence tomography,” Am. J. Ophthalmol. 150, 325–329.e1 (2010).
    [CrossRef] [PubMed]
  55. G. Maguluri, M. Mujat, B. H. Park, K. H. Kim, W. Sun, N. V. Iftimia, R. D. Ferguson, D. X. Hammer, T. C. Chen, and J. F. de Boer, “Three dimensional tracking for volumetric spectral-domain optical coherence tomography,” Opt. Express 15, 16808–16817 (2007).
    [CrossRef] [PubMed]
  56. M. Pircher, E. Götzinger, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “In vivo investigation of human cone photoreceptors with slo/oct in combination with 3d motion correction on a cellular level,” Opt. Express 18, 13935–13944 (2010).
    [CrossRef] [PubMed]
  57. L. Duan, S. Makita, M. Yamanari, Y. Lim, and Y. Yasuno, “Monte-carlo-based phase retardation estimator for polarization sensitive optical coherence tomography,” Opt. Express 19, 16330–16345 (2011).
    [CrossRef] [PubMed]

2012 (1)

2011 (4)

2010 (6)

2009 (5)

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, “Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography,” Invest. Ophth. Vis. Sci. 50, 405–413 (2009).
[CrossRef]

J. G. Fujimoto, W. Drexler, J. S. Schuman, and C. K. Hitzenberger, “Optical coherence tomography (OCT) in ophthalmology: Introduction,” Opt. Express 17, 3978–3979 (2009).
[CrossRef] [PubMed]

T. Fujiwara, Y. Imamura, R. Margolis, J. S. Slakter, and R. F. Spaide, “Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes,” Am. J. Ophthalmol. 148, 445–450 (2009).
[CrossRef] [PubMed]

M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno, “Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-sourceoptical coherence tomography with1-μm probe,” Opt. Express 17, 12385–12396 (2009).
[CrossRef] [PubMed]

R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol. 147, 811–815 (2009).
[CrossRef] [PubMed]

2008 (6)

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892–5906 (2008).
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherencetomography,” Opt. Express 16, 16410–16422 (2008).
[CrossRef] [PubMed]

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophth. Vis. Sci. 49, 4545–4552 (2008).
[CrossRef]

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophth. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef]

R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146, 496–500 (2008).
[CrossRef] [PubMed]

2007 (5)

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050Mm versus 800Mm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt. 12, 041211 (2007).
[CrossRef]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007).
[CrossRef] [PubMed]

K. Polak, A. Luksch, F. Berisha, G. Fuchsjaeger-Mayrl, S. Dallinger, and L. Schmetterer, “Altered nitric oxide system in patients with Open-Angle glaucoma,” Arch. Ophthalmol. 125, 494–498 (2007).
[CrossRef] [PubMed]

G. Maguluri, M. Mujat, B. H. Park, K. H. Kim, W. Sun, N. V. Iftimia, R. D. Ferguson, D. X. Hammer, T. C. Chen, and J. F. de Boer, “Three dimensional tracking for volumetric spectral-domain optical coherence tomography,” Opt. Express 15, 16808–16817 (2007).
[CrossRef] [PubMed]

M. Baroni, P. Fortunato, and A. L. Torre, “Towards quantitative analysis of retinal features in optical coherence tomography,” Med. Eng. Phys. 29, 432–441 (2007).
[CrossRef]

2006 (3)

2005 (1)

2004 (1)

D. Coleman, R. H. Silverman, A. Chabi, M. J. Rondeau, K. Shung, J. Cannata, and H. Lincoff, “High-resolution ultrasonic imaging of the posterior segment,” Ophthalmology 111, 1344–1351 (2004).
[CrossRef] [PubMed]

2003 (5)

2002 (1)

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7, 350–358 (2002).
[CrossRef] [PubMed]

2001 (1)

D.-Y. Yu and S. J. Cringle, “Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease,” Prog. Retin. Eye Res. 20, 175–208 (2001).
[CrossRef] [PubMed]

2000 (1)

R. A. Linsenmeier and L. Padnick-Silver, “Metabolic dependence of photoreceptors on the choroid in the normal and detached retina,” Invest. Ophth. Vis. Sci. 41, 3117–3123 (2000).

1999 (3)

1996 (1)

C. W. Spraul, G. E. Lang, and H. E. Grossniklaus, “Morphometric analysis of the choroid, bruch’s membrane, and retinal pigment epithelium in eyes with age-related macular degeneration.” Invest. Ophth. Vis. Sci. 37, 2724–2735 (1996).

1995 (3)

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

M. Hee, J. Izatt, E. Swanson, D. Huang, J. Schuman, C. Lin, C. Puliafito, and J. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
[CrossRef] [PubMed]

J. W. Kiel and W. A. van Heuven, “Ocular perfusion pressure and choroidal blood flow in the rabbit.” Invest. Ophth. Vis. Sci. 36, 579–585 (1995).

1994 (2)

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Archives of Ophthalmology 112, 1584–1589 (1994). .
[PubMed]

D. R. Guyer, L. A. Yannuzzi, J. S. Slakter, J. A. Sorenson, M. Hope-Ross, and D. R. Orlock, “Digital indocyanine-green videoangiography of occult choroidal neovascularization,” Ophthalmology 101, 1727–1735; discussion 1735–1737 (1994). .
[PubMed]

1993 (1)

T. Kubota, J. B. Jonas, and G. O. Naumann, “Decreased choroidal thickness in eyes with secondary angle closure glaucoma. an aetiological factor for deep retinal changes in glaucoma?” Br. J. Ophthalmol. 77, 430–432 (1993).
[CrossRef] [PubMed]

1992 (1)

M. Hee, D. Huang, E. Swanson, and J. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B: Opt. Phys. 9, 903–908 (1992).
[CrossRef]

1991 (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1989 (1)

M. Destro and C. A. Puliafito, “Indocyanine green videoangiography of choroidal neovascularization,” Ophthalmology 96, 846–853 (1989). .
[PubMed]

1980 (1)

L. M. Parver, C. Auker, and D. O. Carpenter, “Choroidal blood flow as a heat dissipating mechanism in the macula,” Am. J. Ophthalmol. 89, 641–646 (1980). .
[PubMed]

Adler, D. C.

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophth. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef]

Ahlers, C.

Akiba, M.

Araie, M.

Auker, C.

L. M. Parver, C. Auker, and D. O. Carpenter, “Choroidal blood flow as a heat dissipating mechanism in the macula,” Am. J. Ophthalmol. 89, 641–646 (1980). .
[PubMed]

Baroni, M.

M. Baroni, P. Fortunato, and A. L. Torre, “Towards quantitative analysis of retinal features in optical coherence tomography,” Med. Eng. Phys. 29, 432–441 (2007).
[CrossRef]

Baumann, B.

Berisha, F.

K. Polak, A. Luksch, F. Berisha, G. Fuchsjaeger-Mayrl, S. Dallinger, and L. Schmetterer, “Altered nitric oxide system in patients with Open-Angle glaucoma,” Arch. Ophthalmol. 125, 494–498 (2007).
[CrossRef] [PubMed]

Biedermann, B. R.

Blinder, S.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050Mm versus 800Mm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt. 12, 041211 (2007).
[CrossRef]

Bloch, I.

I. Ghorbel, F. Rossant, I. Bloch, S. Tick, and M. Paques, “Automated segmentation of macular layers in oct images and quantitative evaluation of performances,” Pattern Recogn. 44, 1590–1603 (2011).
[CrossRef]

Boppart, S. A.

Bouma, B. E.

Burnes, D. L.

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophth. Vis. Sci. 49, 4545–4552 (2008).
[CrossRef]

Cabrera DeBuc, D.

D. Cabrera DeBuc, “A review of algorithms for segmentation of retinal image data using optical coherence tomography,” in “Image Segmentation,” (InTech, 2011).

Cannata, J.

D. Coleman, R. H. Silverman, A. Chabi, M. J. Rondeau, K. Shung, J. Cannata, and H. Lincoff, “High-resolution ultrasonic imaging of the posterior segment,” Ophthalmology 111, 1344–1351 (2004).
[CrossRef] [PubMed]

Carpenter, D. O.

L. M. Parver, C. Auker, and D. O. Carpenter, “Choroidal blood flow as a heat dissipating mechanism in the macula,” Am. J. Ophthalmol. 89, 641–646 (1980). .
[PubMed]

Cense, B.

Chabi, A.

D. Coleman, R. H. Silverman, A. Chabi, M. J. Rondeau, K. Shung, J. Cannata, and H. Lincoff, “High-resolution ultrasonic imaging of the posterior segment,” Ophthalmology 111, 1344–1351 (2004).
[CrossRef] [PubMed]

Chan, K.

Chang, S.

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophth. Vis. Sci. 49, 4545–4552 (2008).
[CrossRef]

Chang, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, T. C.

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophth. Vis. Sci. 49, 4545–4552 (2008).
[CrossRef]

G. Maguluri, M. Mujat, B. H. Park, K. H. Kim, W. Sun, N. V. Iftimia, R. D. Ferguson, D. X. Hammer, T. C. Chen, and J. F. de Boer, “Three dimensional tracking for volumetric spectral-domain optical coherence tomography,” Opt. Express 15, 16808–16817 (2007).
[CrossRef] [PubMed]

Chen, Y.

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophth. Vis. Sci. 49, 4545–4552 (2008).
[CrossRef]

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophth. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef]

Chiu, S. J.

Choma, M.

Coleman, D.

D. Coleman, R. H. Silverman, A. Chabi, M. J. Rondeau, K. Shung, J. Cannata, and H. Lincoff, “High-resolution ultrasonic imaging of the posterior segment,” Ophthalmology 111, 1344–1351 (2004).
[CrossRef] [PubMed]

Cringle, S. J.

D.-Y. Yu and S. J. Cringle, “Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease,” Prog. Retin. Eye Res. 20, 175–208 (2001).
[CrossRef] [PubMed]

Dallinger, S.

K. Polak, A. Luksch, F. Berisha, G. Fuchsjaeger-Mayrl, S. Dallinger, and L. Schmetterer, “Altered nitric oxide system in patients with Open-Angle glaucoma,” Arch. Ophthalmol. 125, 494–498 (2007).
[CrossRef] [PubMed]

de Boer, J.

de Boer, J. F.

de Bruin, D. M.

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophth. Vis. Sci. 49, 4545–4552 (2008).
[CrossRef]

Destro, M.

M. Destro and C. A. Puliafito, “Indocyanine green videoangiography of choroidal neovascularization,” Ophthalmology 96, 846–853 (1989). .
[PubMed]

Drexler, W.

V. Kajić, M. Esmaeelpour, B. Považay, D. Marshall, P. L. Rosin, and W. Drexler, “Automated choroidal segmentation of 1060 nm oct in healthy and pathologic eyes using a statistical model,” Biomed. Opt. Express 3, 86–103 (2012).
[CrossRef]

J. G. Fujimoto, W. Drexler, J. S. Schuman, and C. K. Hitzenberger, “Optical coherence tomography (OCT) in ophthalmology: Introduction,” Opt. Express 17, 3978–3979 (2009).
[CrossRef] [PubMed]

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050Mm versus 800Mm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt. 12, 041211 (2007).
[CrossRef]

A. Fercher, W. Drexler, C. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[CrossRef]

Duan, L.

Duker, J. S.

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophth. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef]

V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using cirrus hd optical coherence tomography,” Am. J. Ophthalmol. 150, 325–329.e1 (2010).
[CrossRef] [PubMed]

Eigenwillig, C. M.

El-Zaiat, S.

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Esmaeelpour, M.

Esmaili, D. D.

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophth. Vis. Sci. 49, 4545–4552 (2008).
[CrossRef]

Falkner-Radler, C.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050Mm versus 800Mm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt. 12, 041211 (2007).
[CrossRef]

Farsiu, S.

Fercher, A.

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[CrossRef] [PubMed]

A. Fercher, W. Drexler, C. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Ferguson, R. D.

Findl, O.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophth. Vis. Sci. 47, 5487–5494 (2006).
[CrossRef]

Flotte, T.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fortunato, P.

M. Baroni, P. Fortunato, and A. L. Torre, “Towards quantitative analysis of retinal features in optical coherence tomography,” Med. Eng. Phys. 29, 432–441 (2007).
[CrossRef]

Fuchsjaeger-Mayrl, G.

K. Polak, A. Luksch, F. Berisha, G. Fuchsjaeger-Mayrl, S. Dallinger, and L. Schmetterer, “Altered nitric oxide system in patients with Open-Angle glaucoma,” Arch. Ophthalmol. 125, 494–498 (2007).
[CrossRef] [PubMed]

Fujimoto, J.

M. Hee, J. Izatt, E. Swanson, D. Huang, J. Schuman, C. Lin, C. Puliafito, and J. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
[CrossRef] [PubMed]

M. Hee, D. Huang, E. Swanson, and J. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B: Opt. Phys. 9, 903–908 (1992).
[CrossRef]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

J. G. Fujimoto, W. Drexler, J. S. Schuman, and C. K. Hitzenberger, “Optical coherence tomography (OCT) in ophthalmology: Introduction,” Opt. Express 17, 3978–3979 (2009).
[CrossRef] [PubMed]

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophth. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[CrossRef]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Archives of Ophthalmology 112, 1584–1589 (1994). .
[PubMed]

V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using cirrus hd optical coherence tomography,” Am. J. Ophthalmol. 150, 325–329.e1 (2010).
[CrossRef] [PubMed]

Fujiwara, T.

T. Fujiwara, Y. Imamura, R. Margolis, J. S. Slakter, and R. F. Spaide, “Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes,” Am. J. Ophthalmol. 148, 445–450 (2009).
[CrossRef] [PubMed]

Fukuda, S.

Y. Lim, M. Yamanari, S. Fukuda, Y. Kaji, T. Kiuchi, M. Miura, T. Oshika, and Y. Yasuno, “Birefringence measurement of cornea and anterior segment by office-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 2, 2392–2402 (2011).
[CrossRef] [PubMed]

Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061705 (2010).
[CrossRef]

Fukuma, Y.

Geitzenauer, W.

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherencetomography,” Opt. Express 16, 16410–16422 (2008).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophth. Vis. Sci. 47, 5487–5494 (2006).
[CrossRef]

Ghorbel, I.

I. Ghorbel, F. Rossant, I. Bloch, S. Tick, and M. Paques, “Automated segmentation of macular layers in oct images and quantitative evaluation of performances,” Pattern Recogn. 44, 1590–1603 (2011).
[CrossRef]

Glittenberg, C.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050Mm versus 800Mm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt. 12, 041211 (2007).
[CrossRef]

Gorczynska, I.

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophth. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef]

Götzinger, E.

Gregory, K.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Grossniklaus, H. E.

C. W. Spraul, G. E. Lang, and H. E. Grossniklaus, “Morphometric analysis of the choroid, bruch’s membrane, and retinal pigment epithelium in eyes with age-related macular degeneration.” Invest. Ophth. Vis. Sci. 37, 2724–2735 (1996).

Guyer, D. R.

D. R. Guyer, L. A. Yannuzzi, J. S. Slakter, J. A. Sorenson, M. Hope-Ross, and D. R. Orlock, “Digital indocyanine-green videoangiography of occult choroidal neovascularization,” Ophthalmology 101, 1727–1735; discussion 1735–1737 (1994). .
[PubMed]

Hammer, D. X.

Hangai, M.

Hee, M.

M. Hee, J. Izatt, E. Swanson, D. Huang, J. Schuman, C. Lin, C. Puliafito, and J. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
[CrossRef] [PubMed]

M. Hee, D. Huang, E. Swanson, and J. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B: Opt. Phys. 9, 903–908 (1992).
[CrossRef]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Archives of Ophthalmology 112, 1584–1589 (1994). .
[PubMed]

M. R. Hee, “Optical coherence tomography of the eye,” Ph.D. thesis, Massachusetts Institute of Technology (1997).

Hermann, B.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050Mm versus 800Mm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt. 12, 041211 (2007).
[CrossRef]

Hitzenberger, C.

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[CrossRef] [PubMed]

A. Fercher, W. Drexler, C. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Hitzenberger, C. K.

Hofer, B.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050Mm versus 800Mm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt. 12, 041211 (2007).
[CrossRef]

Hong, Y.

Hood, D. C.

Hope-Ross, M.

D. R. Guyer, L. A. Yannuzzi, J. S. Slakter, J. A. Sorenson, M. Hope-Ross, and D. R. Orlock, “Digital indocyanine-green videoangiography of occult choroidal neovascularization,” Ophthalmology 101, 1727–1735; discussion 1735–1737 (1994). .
[PubMed]

Huang, D.

M. Hee, J. Izatt, E. Swanson, D. Huang, J. Schuman, C. Lin, C. Puliafito, and J. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Archives of Ophthalmology 112, 1584–1589 (1994). .
[PubMed]

M. Hee, D. Huang, E. Swanson, and J. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B: Opt. Phys. 9, 903–908 (1992).
[CrossRef]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Huber, R.

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz oct for ultrawide-field retinal imaging with a 1050nm fourier domain mode-locked laser,” Opt. Express 19, 3044–3062 (2011).
[CrossRef] [PubMed]

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophth. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef]

Iftimia, N. V.

Imamura, Y.

T. Fujiwara, Y. Imamura, R. Margolis, J. S. Slakter, and R. F. Spaide, “Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes,” Am. J. Ophthalmol. 148, 445–450 (2009).
[CrossRef] [PubMed]

Ippen, E. P.

Iwasaki, T.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, “Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography,” Invest. Ophth. Vis. Sci. 50, 405–413 (2009).
[CrossRef]

Izatt, J.

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003).
[CrossRef] [PubMed]

M. Hee, J. Izatt, E. Swanson, D. Huang, J. Schuman, C. Lin, C. Puliafito, and J. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
[CrossRef] [PubMed]

Izatt, J. A.

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in sdoct images congruent with expert manual segmentation,” Opt. Express 18, 19413–19428 (2010).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Archives of Ophthalmology 112, 1584–1589 (1994). .
[PubMed]

Jiao, S.

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7, 350–358 (2002).
[CrossRef] [PubMed]

John V, F.

F. John V, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7, 626–634 (2003).
[CrossRef]

Jonas, J. B.

T. Kubota, J. B. Jonas, and G. O. Naumann, “Decreased choroidal thickness in eyes with secondary angle closure glaucoma. an aetiological factor for deep retinal changes in glaucoma?” Br. J. Ophthalmol. 77, 430–432 (1993).
[CrossRef] [PubMed]

Kaji, Y.

Kajic, V.

Kamp, G.

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Kärtner, F. X.

Kawana, K.

Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061705 (2010).
[CrossRef]

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, “Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography,” Invest. Ophth. Vis. Sci. 50, 405–413 (2009).
[CrossRef]

Kiel, J. W.

J. W. Kiel and W. A. van Heuven, “Ocular perfusion pressure and choroidal blood flow in the rabbit.” Invest. Ophth. Vis. Sci. 36, 579–585 (1995).

Kim, K. H.

Kiuchi, T.

Klein, T.

Koizumi, H.

R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146, 496–500 (2008).
[CrossRef] [PubMed]

Kubota, T.

T. Kubota, J. B. Jonas, and G. O. Naumann, “Decreased choroidal thickness in eyes with secondary angle closure glaucoma. an aetiological factor for deep retinal changes in glaucoma?” Br. J. Ophthalmol. 77, 430–432 (1993).
[CrossRef] [PubMed]

Lang, G. E.

C. W. Spraul, G. E. Lang, and H. E. Grossniklaus, “Morphometric analysis of the choroid, bruch’s membrane, and retinal pigment epithelium in eyes with age-related macular degeneration.” Invest. Ophth. Vis. Sci. 37, 2724–2735 (1996).

Lasser, T.

A. Fercher, W. Drexler, C. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Leitgeb, R.

Leitgeb, R. A.

Leydolt, C.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophth. Vis. Sci. 47, 5487–5494 (2006).
[CrossRef]

Li, X. D.

Li, X. T.

Lim, Y.

Lin, C.

M. Hee, J. Izatt, E. Swanson, D. Huang, J. Schuman, C. Lin, C. Puliafito, and J. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
[CrossRef] [PubMed]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Lin, C. P.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Archives of Ophthalmology 112, 1584–1589 (1994). .
[PubMed]

Lincoff, H.

D. Coleman, R. H. Silverman, A. Chabi, M. J. Rondeau, K. Shung, J. Cannata, and H. Lincoff, “High-resolution ultrasonic imaging of the posterior segment,” Ophthalmology 111, 1344–1351 (2004).
[CrossRef] [PubMed]

Linsenmeier, R. A.

R. A. Linsenmeier and L. Padnick-Silver, “Metabolic dependence of photoreceptors on the choroid in the normal and detached retina,” Invest. Ophth. Vis. Sci. 41, 3117–3123 (2000).

Loewenstein, J.

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophth. Vis. Sci. 49, 4545–4552 (2008).
[CrossRef]

Luksch, A.

K. Polak, A. Luksch, F. Berisha, G. Fuchsjaeger-Mayrl, S. Dallinger, and L. Schmetterer, “Altered nitric oxide system in patients with Open-Angle glaucoma,” Arch. Ophthalmol. 125, 494–498 (2007).
[CrossRef] [PubMed]

Madjarova, V. D.

Maguluri, G.

Makita, S.

L. Duan, S. Makita, M. Yamanari, Y. Lim, and Y. Yasuno, “Monte-carlo-based phase retardation estimator for polarization sensitive optical coherence tomography,” Opt. Express 19, 16330–16345 (2011).
[CrossRef] [PubMed]

Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061705 (2010).
[CrossRef]

S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express 18, 854–876 (2010).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, Y. Lim, and Y Yasuno, “Full-range polarization-sensitiveswept-source optical coher-encetomography by simultaneous transversaland spectral modulation,” Opt. Express 18, 13964–13980 (2010).
[CrossRef] [PubMed]

M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno, “Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-sourceoptical coherence tomography with1-μm probe,” Opt. Express 17, 12385–12396 (2009).
[CrossRef] [PubMed]

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, “Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography,” Invest. Ophth. Vis. Sci. 50, 405–413 (2009).
[CrossRef]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892–5906 (2008).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive fourier domain optical coherence tomography using b-scan-oriented polarization modulation method,” Opt. Express 14, 6502–6515 (2006).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006).
[CrossRef] [PubMed]

Manjunath, V.

V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using cirrus hd optical coherence tomography,” Am. J. Ophthalmol. 150, 325–329.e1 (2010).
[CrossRef] [PubMed]

Margolis, R.

R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol. 147, 811–815 (2009).
[CrossRef] [PubMed]

T. Fujiwara, Y. Imamura, R. Margolis, J. S. Slakter, and R. F. Spaide, “Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes,” Am. J. Ophthalmol. 148, 445–450 (2009).
[CrossRef] [PubMed]

Marshall, D.

Michels, S.

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherencetomography,” Opt. Express 16, 16410–16422 (2008).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophth. Vis. Sci. 47, 5487–5494 (2006).
[CrossRef]

Milner, T.

Miura, M.

Y. Lim, M. Yamanari, S. Fukuda, Y. Kaji, T. Kiuchi, M. Miura, T. Oshika, and Y. Yasuno, “Birefringence measurement of cornea and anterior segment by office-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 2, 2392–2402 (2011).
[CrossRef] [PubMed]

Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061705 (2010).
[CrossRef]

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, “Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography,” Invest. Ophth. Vis. Sci. 50, 405–413 (2009).
[CrossRef]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007).
[CrossRef] [PubMed]

Morgan, J. E.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050Mm versus 800Mm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt. 12, 041211 (2007).
[CrossRef]

Morgner, U.

Mujat, M.

Naumann, G. O.

T. Kubota, J. B. Jonas, and G. O. Naumann, “Decreased choroidal thickness in eyes with secondary angle closure glaucoma. an aetiological factor for deep retinal changes in glaucoma?” Br. J. Ophthalmol. 77, 430–432 (1993).
[CrossRef] [PubMed]

Nelson, J.

Nicholas, P.

Okamoto, F.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, “Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography,” Invest. Ophth. Vis. Sci. 50, 405–413 (2009).
[CrossRef]

Orlock, D. R.

D. R. Guyer, L. A. Yannuzzi, J. S. Slakter, J. A. Sorenson, M. Hope-Ross, and D. R. Orlock, “Digital indocyanine-green videoangiography of occult choroidal neovascularization,” Ophthalmology 101, 1727–1735; discussion 1735–1737 (1994). .
[PubMed]

Oshika, T.

Y. Lim, M. Yamanari, S. Fukuda, Y. Kaji, T. Kiuchi, M. Miura, T. Oshika, and Y. Yasuno, “Birefringence measurement of cornea and anterior segment by office-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 2, 2392–2402 (2011).
[CrossRef] [PubMed]

Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061705 (2010).
[CrossRef]

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, “Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography,” Invest. Ophth. Vis. Sci. 50, 405–413 (2009).
[CrossRef]

Padnick-Silver, L.

R. A. Linsenmeier and L. Padnick-Silver, “Metabolic dependence of photoreceptors on the choroid in the normal and detached retina,” Invest. Ophth. Vis. Sci. 41, 3117–3123 (2000).

Paques, M.

I. Ghorbel, F. Rossant, I. Bloch, S. Tick, and M. Paques, “Automated segmentation of macular layers in oct images and quantitative evaluation of performances,” Pattern Recogn. 44, 1590–1603 (2011).
[CrossRef]

Park, B. H.

Parver, L. M.

L. M. Parver, C. Auker, and D. O. Carpenter, “Choroidal blood flow as a heat dissipating mechanism in the macula,” Am. J. Ophthalmol. 89, 641–646 (1980). .
[PubMed]

Pierce, M. C.

Pircher, M.

Pitris, C.

Polak, K.

K. Polak, A. Luksch, F. Berisha, G. Fuchsjaeger-Mayrl, S. Dallinger, and L. Schmetterer, “Altered nitric oxide system in patients with Open-Angle glaucoma,” Arch. Ophthalmol. 125, 494–498 (2007).
[CrossRef] [PubMed]

Považay, B.

V. Kajić, M. Esmaeelpour, B. Považay, D. Marshall, P. L. Rosin, and W. Drexler, “Automated choroidal segmentation of 1060 nm oct in healthy and pathologic eyes using a statistical model,” Biomed. Opt. Express 3, 86–103 (2012).
[CrossRef]

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050Mm versus 800Mm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt. 12, 041211 (2007).
[CrossRef]

Pozonni, M. C.

R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146, 496–500 (2008).
[CrossRef] [PubMed]

Puliafito, C.

M. Hee, J. Izatt, E. Swanson, D. Huang, J. Schuman, C. Lin, C. Puliafito, and J. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
[CrossRef] [PubMed]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Puliafito, C. A.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Archives of Ophthalmology 112, 1584–1589 (1994). .
[PubMed]

M. Destro and C. A. Puliafito, “Indocyanine green videoangiography of choroidal neovascularization,” Ophthalmology 96, 846–853 (1989). .
[PubMed]

Raza, A. S.

Reisman, C. A.

Rondeau, M. J.

D. Coleman, R. H. Silverman, A. Chabi, M. J. Rondeau, K. Shung, J. Cannata, and H. Lincoff, “High-resolution ultrasonic imaging of the posterior segment,” Ophthalmology 111, 1344–1351 (2004).
[CrossRef] [PubMed]

Rosin, P. L.

Rossant, F.

I. Ghorbel, F. Rossant, I. Bloch, S. Tick, and M. Paques, “Automated segmentation of macular layers in oct images and quantitative evaluation of performances,” Pattern Recogn. 44, 1590–1603 (2011).
[CrossRef]

Sakai, S.

Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061705 (2010).
[CrossRef]

Sarunic, M.

Sato, M.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, “Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography,” Invest. Ophth. Vis. Sci. 50, 405–413 (2009).
[CrossRef]

Sattmann, H.

M. Pircher, E. Götzinger, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “In vivo investigation of human cone photoreceptors with slo/oct in combination with 3d motion correction on a cellular level,” Opt. Express 18, 13935–13944 (2010).
[CrossRef] [PubMed]

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050Mm versus 800Mm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt. 12, 041211 (2007).
[CrossRef]

Schmetterer, L.

K. Polak, A. Luksch, F. Berisha, G. Fuchsjaeger-Mayrl, S. Dallinger, and L. Schmetterer, “Altered nitric oxide system in patients with Open-Angle glaucoma,” Arch. Ophthalmol. 125, 494–498 (2007).
[CrossRef] [PubMed]

Schmidt-Erfurth, U.

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherencetomography,” Opt. Express 16, 16410–16422 (2008).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophth. Vis. Sci. 47, 5487–5494 (2006).
[CrossRef]

Schuman, J.

M. Hee, J. Izatt, E. Swanson, D. Huang, J. Schuman, C. Lin, C. Puliafito, and J. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
[CrossRef] [PubMed]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Schuman, J. S.

J. G. Fujimoto, W. Drexler, J. S. Schuman, and C. K. Hitzenberger, “Optical coherence tomography (OCT) in ophthalmology: Introduction,” Opt. Express 17, 3978–3979 (2009).
[CrossRef] [PubMed]

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophth. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Archives of Ophthalmology 112, 1584–1589 (1994). .
[PubMed]

Shung, K.

D. Coleman, R. H. Silverman, A. Chabi, M. J. Rondeau, K. Shung, J. Cannata, and H. Lincoff, “High-resolution ultrasonic imaging of the posterior segment,” Ophthalmology 111, 1344–1351 (2004).
[CrossRef] [PubMed]

Silverman, R. H.

D. Coleman, R. H. Silverman, A. Chabi, M. J. Rondeau, K. Shung, J. Cannata, and H. Lincoff, “High-resolution ultrasonic imaging of the posterior segment,” Ophthalmology 111, 1344–1351 (2004).
[CrossRef] [PubMed]

Slakter, J. S.

T. Fujiwara, Y. Imamura, R. Margolis, J. S. Slakter, and R. F. Spaide, “Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes,” Am. J. Ophthalmol. 148, 445–450 (2009).
[CrossRef] [PubMed]

D. R. Guyer, L. A. Yannuzzi, J. S. Slakter, J. A. Sorenson, M. Hope-Ross, and D. R. Orlock, “Digital indocyanine-green videoangiography of occult choroidal neovascularization,” Ophthalmology 101, 1727–1735; discussion 1735–1737 (1994). .
[PubMed]

Sorenson, J. A.

D. R. Guyer, L. A. Yannuzzi, J. S. Slakter, J. A. Sorenson, M. Hope-Ross, and D. R. Orlock, “Digital indocyanine-green videoangiography of occult choroidal neovascularization,” Ophthalmology 101, 1727–1735; discussion 1735–1737 (1994). .
[PubMed]

Spaide, R. F.

T. Fujiwara, Y. Imamura, R. Margolis, J. S. Slakter, and R. F. Spaide, “Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes,” Am. J. Ophthalmol. 148, 445–450 (2009).
[CrossRef] [PubMed]

R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol. 147, 811–815 (2009).
[CrossRef] [PubMed]

R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146, 496–500 (2008).
[CrossRef] [PubMed]

Spraul, C. W.

C. W. Spraul, G. E. Lang, and H. E. Grossniklaus, “Morphometric analysis of the choroid, bruch’s membrane, and retinal pigment epithelium in eyes with age-related macular degeneration.” Invest. Ophth. Vis. Sci. 37, 2724–2735 (1996).

Srinivasan, V. J.

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophth. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef]

Stinson, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Sun, W.

Swanson, E.

M. Hee, J. Izatt, E. Swanson, D. Huang, J. Schuman, C. Lin, C. Puliafito, and J. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
[CrossRef] [PubMed]

M. Hee, D. Huang, E. Swanson, and J. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B: Opt. Phys. 9, 903–908 (1992).
[CrossRef]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Archives of Ophthalmology 112, 1584–1589 (1994). .
[PubMed]

Taha, M.

V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using cirrus hd optical coherence tomography,” Am. J. Ophthalmol. 150, 325–329.e1 (2010).
[CrossRef] [PubMed]

Tearney, G. J.

Tick, S.

I. Ghorbel, F. Rossant, I. Bloch, S. Tick, and M. Paques, “Automated segmentation of macular layers in oct images and quantitative evaluation of performances,” Pattern Recogn. 44, 1590–1603 (2011).
[CrossRef]

Tomidokoro, A.

Torre, A. L.

M. Baroni, P. Fortunato, and A. L. Torre, “Towards quantitative analysis of retinal features in optical coherence tomography,” Med. Eng. Phys. 29, 432–441 (2007).
[CrossRef]

Toth, C. A.

Unterhuber, A.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050Mm versus 800Mm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt. 12, 041211 (2007).
[CrossRef]

van Heuven, W. A.

J. W. Kiel and W. A. van Heuven, “Ocular perfusion pressure and choroidal blood flow in the rabbit.” Invest. Ophth. Vis. Sci. 36, 579–585 (1995).

Wang, L. V.

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7, 350–358 (2002).
[CrossRef] [PubMed]

G. Yao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24, 537–539 (1999).
[CrossRef]

Wang, Z.

Wieser, W.

Yamanari, M.

Y. Lim, M. Yamanari, S. Fukuda, Y. Kaji, T. Kiuchi, M. Miura, T. Oshika, and Y. Yasuno, “Birefringence measurement of cornea and anterior segment by office-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 2, 2392–2402 (2011).
[CrossRef] [PubMed]

L. Duan, S. Makita, M. Yamanari, Y. Lim, and Y. Yasuno, “Monte-carlo-based phase retardation estimator for polarization sensitive optical coherence tomography,” Opt. Express 19, 16330–16345 (2011).
[CrossRef] [PubMed]

Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061705 (2010).
[CrossRef]

S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express 18, 854–876 (2010).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, Y. Lim, and Y Yasuno, “Full-range polarization-sensitiveswept-source optical coher-encetomography by simultaneous transversaland spectral modulation,” Opt. Express 18, 13964–13980 (2010).
[CrossRef] [PubMed]

M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno, “Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-sourceoptical coherence tomography with1-μm probe,” Opt. Express 17, 12385–12396 (2009).
[CrossRef] [PubMed]

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, “Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography,” Invest. Ophth. Vis. Sci. 50, 405–413 (2009).
[CrossRef]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892–5906 (2008).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive fourier domain optical coherence tomography using b-scan-oriented polarization modulation method,” Opt. Express 14, 6502–6515 (2006).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006).
[CrossRef] [PubMed]

Yang, C.

Yang, Q.

Yannuzzi, L. A.

D. R. Guyer, L. A. Yannuzzi, J. S. Slakter, J. A. Sorenson, M. Hope-Ross, and D. R. Orlock, “Digital indocyanine-green videoangiography of occult choroidal neovascularization,” Ophthalmology 101, 1727–1735; discussion 1735–1737 (1994). .
[PubMed]

Yao, G.

Yasuno, Y

Yasuno, Y.

Y. Lim, M. Yamanari, S. Fukuda, Y. Kaji, T. Kiuchi, M. Miura, T. Oshika, and Y. Yasuno, “Birefringence measurement of cornea and anterior segment by office-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 2, 2392–2402 (2011).
[CrossRef] [PubMed]

L. Duan, S. Makita, M. Yamanari, Y. Lim, and Y. Yasuno, “Monte-carlo-based phase retardation estimator for polarization sensitive optical coherence tomography,” Opt. Express 19, 16330–16345 (2011).
[CrossRef] [PubMed]

S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express 18, 854–876 (2010).
[CrossRef] [PubMed]

Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061705 (2010).
[CrossRef]

M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno, “Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-sourceoptical coherence tomography with1-μm probe,” Opt. Express 17, 12385–12396 (2009).
[CrossRef] [PubMed]

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, “Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography,” Invest. Ophth. Vis. Sci. 50, 405–413 (2009).
[CrossRef]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892–5906 (2008).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive fourier domain optical coherence tomography using b-scan-oriented polarization modulation method,” Opt. Express 14, 6502–6515 (2006).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006).
[CrossRef] [PubMed]

Yatagai, T.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, “Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography,” Invest. Ophth. Vis. Sci. 50, 405–413 (2009).
[CrossRef]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive fourier domain optical coherence tomography using b-scan-oriented polarization modulation method,” Opt. Express 14, 6502–6515 (2006).
[CrossRef] [PubMed]

Yoshimura, N.

Yu, D.-Y.

D.-Y. Yu and S. J. Cringle, “Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease,” Prog. Retin. Eye Res. 20, 175–208 (2001).
[CrossRef] [PubMed]

Zeiler, F.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050Mm versus 800Mm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt. 12, 041211 (2007).
[CrossRef]

Am. J. Ophthalmol. (5)

L. M. Parver, C. Auker, and D. O. Carpenter, “Choroidal blood flow as a heat dissipating mechanism in the macula,” Am. J. Ophthalmol. 89, 641–646 (1980). .
[PubMed]

R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146, 496–500 (2008).
[CrossRef] [PubMed]

T. Fujiwara, Y. Imamura, R. Margolis, J. S. Slakter, and R. F. Spaide, “Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes,” Am. J. Ophthalmol. 148, 445–450 (2009).
[CrossRef] [PubMed]

R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol. 147, 811–815 (2009).
[CrossRef] [PubMed]

V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using cirrus hd optical coherence tomography,” Am. J. Ophthalmol. 150, 325–329.e1 (2010).
[CrossRef] [PubMed]

Arch. Ophthalmol. (2)

K. Polak, A. Luksch, F. Berisha, G. Fuchsjaeger-Mayrl, S. Dallinger, and L. Schmetterer, “Altered nitric oxide system in patients with Open-Angle glaucoma,” Arch. Ophthalmol. 125, 494–498 (2007).
[CrossRef] [PubMed]

M. Hee, J. Izatt, E. Swanson, D. Huang, J. Schuman, C. Lin, C. Puliafito, and J. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
[CrossRef] [PubMed]

Archives of Ophthalmology (1)

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Archives of Ophthalmology 112, 1584–1589 (1994). .
[PubMed]

Biomed. Opt. Express (2)

Br. J. Ophthalmol. (1)

T. Kubota, J. B. Jonas, and G. O. Naumann, “Decreased choroidal thickness in eyes with secondary angle closure glaucoma. an aetiological factor for deep retinal changes in glaucoma?” Br. J. Ophthalmol. 77, 430–432 (1993).
[CrossRef] [PubMed]

Curr. Opin. Chem. Biol. (1)

F. John V, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7, 626–634 (2003).
[CrossRef]

Invest. Ophth. Vis. Sci. (7)

J. W. Kiel and W. A. van Heuven, “Ocular perfusion pressure and choroidal blood flow in the rabbit.” Invest. Ophth. Vis. Sci. 36, 579–585 (1995).

R. A. Linsenmeier and L. Padnick-Silver, “Metabolic dependence of photoreceptors on the choroid in the normal and detached retina,” Invest. Ophth. Vis. Sci. 41, 3117–3123 (2000).

C. W. Spraul, G. E. Lang, and H. E. Grossniklaus, “Morphometric analysis of the choroid, bruch’s membrane, and retinal pigment epithelium in eyes with age-related macular degeneration.” Invest. Ophth. Vis. Sci. 37, 2724–2735 (1996).

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophth. Vis. Sci. 49, 4545–4552 (2008).
[CrossRef]

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophth. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef]

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, “Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography,” Invest. Ophth. Vis. Sci. 50, 405–413 (2009).
[CrossRef]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophth. Vis. Sci. 47, 5487–5494 (2006).
[CrossRef]

J. Biomed. Opt. (4)

Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061705 (2010).
[CrossRef]

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7, 350–358 (2002).
[CrossRef] [PubMed]

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050Mm versus 800Mm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt. 12, 041211 (2007).
[CrossRef]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B: Opt. Phys. (1)

M. Hee, D. Huang, E. Swanson, and J. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B: Opt. Phys. 9, 903–908 (1992).
[CrossRef]

Med. Eng. Phys. (1)

M. Baroni, P. Fortunato, and A. L. Torre, “Towards quantitative analysis of retinal features in optical coherence tomography,” Med. Eng. Phys. 29, 432–441 (2007).
[CrossRef]

Ophthalmology (3)

M. Destro and C. A. Puliafito, “Indocyanine green videoangiography of choroidal neovascularization,” Ophthalmology 96, 846–853 (1989). .
[PubMed]

D. R. Guyer, L. A. Yannuzzi, J. S. Slakter, J. A. Sorenson, M. Hope-Ross, and D. R. Orlock, “Digital indocyanine-green videoangiography of occult choroidal neovascularization,” Ophthalmology 101, 1727–1735; discussion 1735–1737 (1994). .
[PubMed]

D. Coleman, R. H. Silverman, A. Chabi, M. J. Rondeau, K. Shung, J. Cannata, and H. Lincoff, “High-resolution ultrasonic imaging of the posterior segment,” Ophthalmology 111, 1344–1351 (2004).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Opt. Express (18)

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13, 10217–10229 (2005).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive fourier domain optical coherence tomography using b-scan-oriented polarization modulation method,” Opt. Express 14, 6502–6515 (2006).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007).
[CrossRef] [PubMed]

G. Maguluri, M. Mujat, B. H. Park, K. H. Kim, W. Sun, N. V. Iftimia, R. D. Ferguson, D. X. Hammer, T. C. Chen, and J. F. de Boer, “Three dimensional tracking for volumetric spectral-domain optical coherence tomography,” Opt. Express 15, 16808–16817 (2007).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892–5906 (2008).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherencetomography,” Opt. Express 16, 16410–16422 (2008).
[CrossRef] [PubMed]

J. G. Fujimoto, W. Drexler, J. S. Schuman, and C. K. Hitzenberger, “Optical coherence tomography (OCT) in ophthalmology: Introduction,” Opt. Express 17, 3978–3979 (2009).
[CrossRef] [PubMed]

M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno, “Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-sourceoptical coherence tomography with1-μm probe,” Opt. Express 17, 12385–12396 (2009).
[CrossRef] [PubMed]

S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express 18, 854–876 (2010).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “In vivo investigation of human cone photoreceptors with slo/oct in combination with 3d motion correction on a cellular level,” Opt. Express 18, 13935–13944 (2010).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, Y. Lim, and Y Yasuno, “Full-range polarization-sensitiveswept-source optical coher-encetomography by simultaneous transversaland spectral modulation,” Opt. Express 18, 13964–13980 (2010).
[CrossRef] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in sdoct images congruent with expert manual segmentation,” Opt. Express 18, 19413–19428 (2010).
[CrossRef] [PubMed]

Q. Yang, C. A. Reisman, Z. Wang, Y. Fukuma, M. Hangai, N. Yoshimura, A. Tomidokoro, M. Araie, A. S. Raza, D. C. Hood, and K. Chan, “Automated layer segmentation of macular OCT images using dual-scale gradient information,” Opt. Express 18, 21293–21307 (2010).
[CrossRef] [PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz oct for ultrawide-field retinal imaging with a 1050nm fourier domain mode-locked laser,” Opt. Express 19, 3044–3062 (2011).
[CrossRef] [PubMed]

L. Duan, S. Makita, M. Yamanari, Y. Lim, and Y. Yasuno, “Monte-carlo-based phase retardation estimator for polarization sensitive optical coherence tomography,” Opt. Express 19, 16330–16345 (2011).
[CrossRef] [PubMed]

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[CrossRef] [PubMed]

Opt. Lett. (4)

Pattern Recogn. (1)

I. Ghorbel, F. Rossant, I. Bloch, S. Tick, and M. Paques, “Automated segmentation of macular layers in oct images and quantitative evaluation of performances,” Pattern Recogn. 44, 1590–1603 (2011).
[CrossRef]

Prog. Retin. Eye Res. (1)

D.-Y. Yu and S. J. Cringle, “Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease,” Prog. Retin. Eye Res. 20, 175–208 (2001).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

A. Fercher, W. Drexler, C. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Science (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other (2)

D. Cabrera DeBuc, “A review of algorithms for segmentation of retinal image data using optical coherence tomography,” in “Image Segmentation,” (InTech, 2011).

M. R. Hee, “Optical coherence tomography of the eye,” Ph.D. thesis, Massachusetts Institute of Technology (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The efficiency of the Jones matrix averaging of 16 B-scans. (a) and (b) are the intensity image and phase retardation image extracted from single B-scan in PS-OCT, respectively. (c) and (d) are the intensity image and phase retardation image extracted from the average of 16 Jones matrix B-scans, respectively.

Fig. 2
Fig. 2

Illustration of rough segmentation flow. (a) Speckle reduced phase retardation image. (b) Distribution of second derivative in the B-scan image. (c) The node cost distribution of potential CSI are masked on the intensity OCT image. The yellow line shows the segmented RPE/choroid interface. (d) Rough segmentation result is shown in red.

Fig. 3
Fig. 3

Illustration of the slope fitting model in phase retardation. The black curve shows the phase retardation A-line signal marked with a white dashed line in Fig. 2(a) The blue and red dashed lines are the linear regression lines of phase retardation in the choroid and sclera, respectively. The CSI is determined by the intersection of these two lines.

Fig. 4
Fig. 4

The CSI obtained by fitting the phase retardation model shown in Fig. 3(a). The red curve shows the intersections of the linear regression lines in each A-scan, (b) The CSI smoothed by a median filter.

Fig. 5
Fig. 5

An example of intensity based segmentation error correction. The red and yellow lines denote the phase retardation based segmentation of the CSI and the intensity based correction result.

Fig. 6
Fig. 6

PS-OCT images of the macular region. (a) Intensity image, (b) Phase retardation image. The white line in (b) shows the CSI segmentation by phase retardation based segmentation.

Fig. 7
Fig. 7

A phase retardation based segmentation result is shown in intensity image (a) and phase retardation image (b). The yellow and black ellipses marked several unsmooth segments in the CSI.

Fig. 8
Fig. 8

An example of segmentation in an eye with low birefringence in some scleral region. The red and white lines show the segmentation result in intensity image (a) and phase retardation image (b), respectively.

Fig. 9
Fig. 9

Intensity (a) and phase retardation (b) B-scans acquired from an eye with poor visualization of the posterior choroidal region. The CSI segmentation results, a red line in (a) and a white line in (b), cannot represent the real CSI.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

c ( i , j ) = { 2 for d ( i , j ) < 0.5 1 d ( i , j ) for d ( i , j ) 0.5 .
cost ( i , j ) = { c ( i , j ) i = 0 , 0 j < M min j 1 n j + 1 cost ( i 1 , n ) + | n j | + 1 c ( i , j ) 0 < i < N , 0 j < M other cases ,

Metrics