Abstract

We present power conversion efficiency (PCE) and luminous efficiency (LE) performance levels of high photometric quality white LEDs integrated with quantum dots (QDs) achieving an averaged color rendering index of ≥90 (with R9 at least 70), a luminous efficacy of optical radiation of ≥380 lm/Wopt a correlated color temperature of ≤4000 K, and a chromaticity difference dC <0.0054. We computationally find that the device LE levels of 100, 150, and 200 lm/Welect can be achieved with QD quantum efficiency of 43%, 61%, and 80% in film, respectively, using state-of-the-art blue LED chips (81.3% PCE). Furthermore, our computational analyses suggest that QD-LEDs can be both photometrically and electrically more efficient than phosphor based LEDs when state-of-the-art QDs are used.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Energy Savings Estimates of Light Emitting Diodes in Niche Lighting Applications, Building Technologies Program, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (2011).
  2. J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
    [CrossRef]
  3. S. Nizamoglu, T. Erdem, X. W. Sun, and H. V. Demir, “Warm-white light-emitting diodes integrated with colloidal quantum dots for high luminous efficacy and color rendering,” Opt. Lett. 35(20), 3372–3374 (2010), http://www.opticsinfobase.org/abstract.cfm?uri=ol-35-20-3372 .
    [CrossRef] [PubMed]
  4. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes,” J. Disp. Technol. 3(2), 160–175 (2007).
    [CrossRef]
  5. DEMA Electronic AG, http://www.zenigata.de (accessed on August 17, 2011).
  6. Cree Inc, http://www.cree.com/press/enlarge.asp?i=1174480795673 (accessed on August 17, 2011).
  7. OSRAM Opto Semiconductors GmbH, http://www.osram-os.com/osram_os/EN/Press/Press_Releases/Solid_State_Lighting/2011/From_the_OSRAM_laboratory_-_efficiency_record_for_warm_white.html (accessed on August 17, 2011).
  8. O. Graydon, “The new oil?” Nat. Photonics 5(1), 1 (2011).
    [CrossRef]
  9. T. Erdem and H. V. Demir, “Semiconductor nanocrystals as rare-earth alternatives,” Nat. Photonics 5(3), 126 (2011).
    [CrossRef]
  10. T. Erdem, S. Nizamoglu, X. W. Sun, and H. V. Demir, “A photometric investigation of ultra-efficient LEDs with high color rendering index and high luminous efficacy employing nanocrystal quantum dot luminophores,” Opt. Express 18(1), 340–347 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-1-340 .
    [CrossRef] [PubMed]
  11. K. Sanderson, “Quantum dots go large,” Nature 459(7248), 760–761 (2009).
    [CrossRef] [PubMed]
  12. E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. (Deerfield Beach Fla.) 22(28), 3076–3080 (2010).
    [CrossRef] [PubMed]
  13. E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, and C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett. 96(3), 031108 (2010).
    [CrossRef]
  14. M.-A. Tsai, H.-W. Wang, P. Yu, H.-C. Kuo, and S.-H. Lin, “High extraction efficiency of GaN-based vertical-injection light-emitting diodes using distinctive indium–tin-oxide nanorod by glancing-angle deposition,” Jpn. J. Appl. Phys. 50(5), 052102 (2011).
    [CrossRef]
  15. Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D Appl. Phys. 43(35), 354002 (2010).
    [CrossRef]
  16. K. J. Nordell, E. M. Boatman, and G. C. Lisensky, “A safer, easier, faster synthesis for CdSe quantum dot nanocrystals,” J. Chem. Educ. 82(11), 1697–1699 (2005).
    [CrossRef]
  17. D. S. Ginger and N. C. Greenham, “Charge injection and transport in films of CdSe nanocrystals,” J. Appl. Phys. 87(3), 1361–1368 (2000).
    [CrossRef]

2011 (3)

O. Graydon, “The new oil?” Nat. Photonics 5(1), 1 (2011).
[CrossRef]

T. Erdem and H. V. Demir, “Semiconductor nanocrystals as rare-earth alternatives,” Nat. Photonics 5(3), 126 (2011).
[CrossRef]

M.-A. Tsai, H.-W. Wang, P. Yu, H.-C. Kuo, and S.-H. Lin, “High extraction efficiency of GaN-based vertical-injection light-emitting diodes using distinctive indium–tin-oxide nanorod by glancing-angle deposition,” Jpn. J. Appl. Phys. 50(5), 052102 (2011).
[CrossRef]

2010 (5)

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D Appl. Phys. 43(35), 354002 (2010).
[CrossRef]

T. Erdem, S. Nizamoglu, X. W. Sun, and H. V. Demir, “A photometric investigation of ultra-efficient LEDs with high color rendering index and high luminous efficacy employing nanocrystal quantum dot luminophores,” Opt. Express 18(1), 340–347 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-1-340 .
[CrossRef] [PubMed]

S. Nizamoglu, T. Erdem, X. W. Sun, and H. V. Demir, “Warm-white light-emitting diodes integrated with colloidal quantum dots for high luminous efficacy and color rendering,” Opt. Lett. 35(20), 3372–3374 (2010), http://www.opticsinfobase.org/abstract.cfm?uri=ol-35-20-3372 .
[CrossRef] [PubMed]

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. (Deerfield Beach Fla.) 22(28), 3076–3080 (2010).
[CrossRef] [PubMed]

E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, and C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett. 96(3), 031108 (2010).
[CrossRef]

2009 (1)

K. Sanderson, “Quantum dots go large,” Nature 459(7248), 760–761 (2009).
[CrossRef] [PubMed]

2007 (2)

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes,” J. Disp. Technol. 3(2), 160–175 (2007).
[CrossRef]

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

2005 (1)

K. J. Nordell, E. M. Boatman, and G. C. Lisensky, “A safer, easier, faster synthesis for CdSe quantum dot nanocrystals,” J. Chem. Educ. 82(11), 1697–1699 (2005).
[CrossRef]

2000 (1)

D. S. Ginger and N. C. Greenham, “Charge injection and transport in films of CdSe nanocrystals,” J. Appl. Phys. 87(3), 1361–1368 (2000).
[CrossRef]

Boatman, E. M.

K. J. Nordell, E. M. Boatman, and G. C. Lisensky, “A safer, easier, faster synthesis for CdSe quantum dot nanocrystals,” J. Chem. Educ. 82(11), 1697–1699 (2005).
[CrossRef]

Coltrin, M. F.

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Craford, M. G.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes,” J. Disp. Technol. 3(2), 160–175 (2007).
[CrossRef]

Crawford, M. H.

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Demir, H. V.

Erdem, T.

Fischer, A. J.

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Fleury, B.

E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, and C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett. 96(3), 031108 (2010).
[CrossRef]

Ginger, D. S.

D. S. Ginger and N. C. Greenham, “Charge injection and transport in films of CdSe nanocrystals,” J. Appl. Phys. 87(3), 1361–1368 (2000).
[CrossRef]

Graydon, O.

O. Graydon, “The new oil?” Nat. Photonics 5(1), 1 (2011).
[CrossRef]

Greenham, N. C.

D. S. Ginger and N. C. Greenham, “Charge injection and transport in films of CdSe nanocrystals,” J. Appl. Phys. 87(3), 1361–1368 (2000).
[CrossRef]

Harbers, G.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes,” J. Disp. Technol. 3(2), 160–175 (2007).
[CrossRef]

Hu, E.

E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, and C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett. 96(3), 031108 (2010).
[CrossRef]

Ichikawa, M.

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D Appl. Phys. 43(35), 354002 (2010).
[CrossRef]

Iza, M.

E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, and C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett. 96(3), 031108 (2010).
[CrossRef]

Jang, E.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. (Deerfield Beach Fla.) 22(28), 3076–3080 (2010).
[CrossRef] [PubMed]

Jang, H.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. (Deerfield Beach Fla.) 22(28), 3076–3080 (2010).
[CrossRef] [PubMed]

Jun, S.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. (Deerfield Beach Fla.) 22(28), 3076–3080 (2010).
[CrossRef] [PubMed]

Kim, B.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. (Deerfield Beach Fla.) 22(28), 3076–3080 (2010).
[CrossRef] [PubMed]

Kim, Y.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. (Deerfield Beach Fla.) 22(28), 3076–3080 (2010).
[CrossRef] [PubMed]

Krames, M. R.

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes,” J. Disp. Technol. 3(2), 160–175 (2007).
[CrossRef]

Kuo, H.-C.

M.-A. Tsai, H.-W. Wang, P. Yu, H.-C. Kuo, and S.-H. Lin, “High extraction efficiency of GaN-based vertical-injection light-emitting diodes using distinctive indium–tin-oxide nanorod by glancing-angle deposition,” Jpn. J. Appl. Phys. 50(5), 052102 (2011).
[CrossRef]

Lim, J.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. (Deerfield Beach Fla.) 22(28), 3076–3080 (2010).
[CrossRef] [PubMed]

Lin, S.-H.

M.-A. Tsai, H.-W. Wang, P. Yu, H.-C. Kuo, and S.-H. Lin, “High extraction efficiency of GaN-based vertical-injection light-emitting diodes using distinctive indium–tin-oxide nanorod by glancing-angle deposition,” Jpn. J. Appl. Phys. 50(5), 052102 (2011).
[CrossRef]

Lisensky, G. C.

K. J. Nordell, E. M. Boatman, and G. C. Lisensky, “A safer, easier, faster synthesis for CdSe quantum dot nanocrystals,” J. Chem. Educ. 82(11), 1697–1699 (2005).
[CrossRef]

Matioli, E.

E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, and C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett. 96(3), 031108 (2010).
[CrossRef]

Mueller, G. O.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes,” J. Disp. Technol. 3(2), 160–175 (2007).
[CrossRef]

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Mueller-Mach, R.

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes,” J. Disp. Technol. 3(2), 160–175 (2007).
[CrossRef]

Mukai, T.

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D Appl. Phys. 43(35), 354002 (2010).
[CrossRef]

Narukawa, Y.

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D Appl. Phys. 43(35), 354002 (2010).
[CrossRef]

Nizamoglu, S.

Nordell, K. J.

K. J. Nordell, E. M. Boatman, and G. C. Lisensky, “A safer, easier, faster synthesis for CdSe quantum dot nanocrystals,” J. Chem. Educ. 82(11), 1697–1699 (2005).
[CrossRef]

Ohno, Y.

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Pfaff, N.

E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, and C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett. 96(3), 031108 (2010).
[CrossRef]

Phillips, J. M.

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Rangel, E.

E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, and C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett. 96(3), 031108 (2010).
[CrossRef]

Rohwer, L. E. S.

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Sanderson, K.

K. Sanderson, “Quantum dots go large,” Nature 459(7248), 760–761 (2009).
[CrossRef] [PubMed]

Sanga, D.

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D Appl. Phys. 43(35), 354002 (2010).
[CrossRef]

Sano, M.

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D Appl. Phys. 43(35), 354002 (2010).
[CrossRef]

Shchekin, O. B.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes,” J. Disp. Technol. 3(2), 160–175 (2007).
[CrossRef]

Simmons, J. A.

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Speck, J.

E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, and C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett. 96(3), 031108 (2010).
[CrossRef]

Sun, X. W.

Tsai, M.-A.

M.-A. Tsai, H.-W. Wang, P. Yu, H.-C. Kuo, and S.-H. Lin, “High extraction efficiency of GaN-based vertical-injection light-emitting diodes using distinctive indium–tin-oxide nanorod by glancing-angle deposition,” Jpn. J. Appl. Phys. 50(5), 052102 (2011).
[CrossRef]

Tsao, J. Y.

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Wang, H.-W.

M.-A. Tsai, H.-W. Wang, P. Yu, H.-C. Kuo, and S.-H. Lin, “High extraction efficiency of GaN-based vertical-injection light-emitting diodes using distinctive indium–tin-oxide nanorod by glancing-angle deposition,” Jpn. J. Appl. Phys. 50(5), 052102 (2011).
[CrossRef]

Weisbuch, C.

E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, and C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett. 96(3), 031108 (2010).
[CrossRef]

Yu, P.

M.-A. Tsai, H.-W. Wang, P. Yu, H.-C. Kuo, and S.-H. Lin, “High extraction efficiency of GaN-based vertical-injection light-emitting diodes using distinctive indium–tin-oxide nanorod by glancing-angle deposition,” Jpn. J. Appl. Phys. 50(5), 052102 (2011).
[CrossRef]

Zhou, L.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes,” J. Disp. Technol. 3(2), 160–175 (2007).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. (Deerfield Beach Fla.) 22(28), 3076–3080 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, and C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett. 96(3), 031108 (2010).
[CrossRef]

J. Appl. Phys. (1)

D. S. Ginger and N. C. Greenham, “Charge injection and transport in films of CdSe nanocrystals,” J. Appl. Phys. 87(3), 1361–1368 (2000).
[CrossRef]

J. Chem. Educ. (1)

K. J. Nordell, E. M. Boatman, and G. C. Lisensky, “A safer, easier, faster synthesis for CdSe quantum dot nanocrystals,” J. Chem. Educ. 82(11), 1697–1699 (2005).
[CrossRef]

J. Disp. Technol. (1)

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes,” J. Disp. Technol. 3(2), 160–175 (2007).
[CrossRef]

J. Phys. D Appl. Phys. (1)

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D Appl. Phys. 43(35), 354002 (2010).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M.-A. Tsai, H.-W. Wang, P. Yu, H.-C. Kuo, and S.-H. Lin, “High extraction efficiency of GaN-based vertical-injection light-emitting diodes using distinctive indium–tin-oxide nanorod by glancing-angle deposition,” Jpn. J. Appl. Phys. 50(5), 052102 (2011).
[CrossRef]

Laser Photon. Rev. (1)

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Nat. Photonics (2)

O. Graydon, “The new oil?” Nat. Photonics 5(1), 1 (2011).
[CrossRef]

T. Erdem and H. V. Demir, “Semiconductor nanocrystals as rare-earth alternatives,” Nat. Photonics 5(3), 126 (2011).
[CrossRef]

Nature (1)

K. Sanderson, “Quantum dots go large,” Nature 459(7248), 760–761 (2009).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Other (4)

DEMA Electronic AG, http://www.zenigata.de (accessed on August 17, 2011).

Cree Inc, http://www.cree.com/press/enlarge.asp?i=1174480795673 (accessed on August 17, 2011).

OSRAM Opto Semiconductors GmbH, http://www.osram-os.com/osram_os/EN/Press/Press_Releases/Solid_State_Lighting/2011/From_the_OSRAM_laboratory_-_efficiency_record_for_warm_white.html (accessed on August 17, 2011).

Energy Savings Estimates of Light Emitting Diodes in Niche Lighting Applications, Building Technologies Program, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Illustration of layered (A) and blend (B) architectures.

Fig. 2
Fig. 2

Fraction of the blue photons transferred to the green QDs (bg), to the yellow QDs (by), to the red QDs (br), and being extracted (be); fraction of the green photons self-absorbed (gg), transferred to the yellow QDs (gy), to the red QDs (gr), and being extracted (ge); fraction of the yellow photons self-absorbed (yy), transferred to the red QDs (yr), and being extracted (ye); and fraction of the red photons self-absorbed (rr) and being extracted (re) in A and B at η = 100%.

Fig. 3
Fig. 3

Fraction of the blue photons transferred to the green QDs (bg), to the yellow QDs (by), to the red QDs (br), and being extracted (be); fraction of the green photons self-absorbed (gg), transferred to the yellow QDs (gy), to the red QDs (gr), and being extracted (ge); fraction of the yellow photons self-absorbed (yy), transferred to the red QDs (yr), and being extracted (ye); and fraction of the red photons self-absorbed (rr) and being extracted (re) in A and B at η = 50%.

Fig. 4
Fig. 4

The luminous efficiency as a function of the variation in quantum efficiency for architectures A and B. In this analysis, ηQD of two of the QD luminophors is fixed at 100%, 80%, 50%, and 20%; ηQD of the remaining QD luminophor is changed between 20% and 100%. The points shown in the figure correspond to the luminous efficiency of QD color component whose efficiency spans this range.

Fig. 5
Fig. 5

Illustration of optical mechanisms using system box model for architecture A.

Fig. 6
Fig. 6

Illustration of optical mechanisms using system boxes for Arev.

Fig. 7
Fig. 7

Illustration of optical mechanisms using system boxes for B.

Tables (4)

Tables Icon

Table 1 Maximum, Minimum, Average and Standard Deviation of PCE (Taking Unity PCE of the Blue LED) and LE (Taking a PCE of 81.3% for the Blue LED) for the Photometrically Efficient Spectra

Tables Icon

Table 2 Maximum, minimum, average and standard deviation of LE (with PCE of the blue LED taken as 81.3%) in lm/Welect for the photometrically efficient spectra with QD’s η = 80%, 50% and 20% for two different architectures: A and B. The effect of self-absorption (SA) is also investigated for architecture A.

Tables Icon

Table 3 Maximum, minimum, average and standard deviation of PCE (with PCE of the blue LED taken as 100%) in percentages for the photometrically efficient spectra with QD’s η = 80%, 50% and 20% for two different architectures. The effect of self-absorption (SA) is also investigated for architecture A.

Tables Icon

Table 4 Average of the spectral parameters belonging to the spectra whose PCE is larger than the average PCE of the photometrically efficient spectra in A and B while varying quantum efficiencies. λi: peak emission wavelength, Δλi: full-width at half-maximum, ai: weight of the color component i. i is either blue (b), green (g), yellow (y) or red (r).

Equations (93)

Equations on this page are rendered with MathJax. Learn more.

LER=683lm/ w opt v(λ)s(λ)dλ s(λ)dλ
LE=683lm/ W opt V(λ)s(λ)dλ P elect
λ abs = λ em 8.3045 1.0308
P opt,LED =γ S b1 g LED (λ, λ b ,Δ λ b )dλ
γ= P opt,LED S b1 g LED (λ, λ b ,Δ λ b )dλ
S b,final =γ S b
S y,final =γ S g
S r,final =γ S y
S r,final =γ S r
s( λ )= S b,final g( λ, λ b ,Δ λ b )+ S g,final g( λ, λ g ,Δ λ g ) + S y,final g( λ, λ y ,Δ λ y )+ S r,final g( λ, λ r ,Δ λ r )
PCE= s( λ )dλ P elect
LE=PCE×LER
c 4 1(1 c 2 ) α y ( λ g ) α y ( λ b )
c 5 1(1 c 3 ) α r ( λ g ) α r ( λ b )
c 6 1(1 c 3 ) α r ( λ y ) α r ( λ b )
E= k(1 c ' )+(1k)(1 c a " ) (1 c t ) 2 (1 c b " ) 1k c ' η(1k) c a " η(1k)(1 c a " ) (1 c t ) 2 c b " η
T= (1k)(1 c a " ) c t [1+(1 c t )] 1k c ' η(1k) c a " η(1k)(1 c a " ) (1 c t ) 2 c b " η
L= (1η)[k c ' +(1k)(1 c a " ) (1 c t ) 2 c b " +(1k) c a " ] 1k c ' η(1k) c a " η(1k)(1 c a " ) (1 c t ) 2 c b " η
c mja '' = 0 z m d mj ( z )(1 e α m ( λ m )( z m z) )dz
c mja '' = 0 z m d mj ( z )(1 e α m ( λ m )z )dz
c mjb '' =1 e α m ( λ m ) z m
d m0 (z)= κ m0 e α m ( λ b )z
d yg ( z )= κ yg { [ e α y ( λ g )( z y z ) +( 1 c 4 ) ( 1 c 5 ) 2 e α y ( λ g )z ] e α y ( λ g )( z y z ) +( 1 c 4 ) ( 1 c 5 ) 2 e α y ( λ g )z }
d rg ( z )= κ rg { [ e α r ( λ g )( z r z ) +(1 c 5 ) e α r ( λ g )z ] e α r ( λ g )( z r z ) +(1 c 5 ) e α r ( λ g )z }
d ry ( z )= κ ry { [ e α r ( λ y )( z r z ) +(1 c 6 ) e α r ( λ y )z ] e α r ( λ y )( z r z ) +(1 c 6 ) e α r ( λ y )z }
c tg = c 4 +(1 c 4 ) (1 c 5 ) 2 c 4 +(1 c 4 ) c 5 +(1 c 4 )(1 c 5 ) c 5
c ty = c 6 + c 6 (1 c 6 )
c tr =0
s g0 = s b1 c 1 (1 c 2 )(1 c 3 ) η g
s gn = s g0 E g0
s y0 = s b1 (1 c 3 ) c 2 η y
s yg0 = s g0 T g0 c 4 +(1 c 4 ) (1 c 5 ) 2 c 4 c 4 +(1 c 4 ) (1 c 5 ) 2 c 4 + c 5 (1 c 4 )+ c 5 (1 c 4 )(1 c 5 ) η y
s yn = s y0 E y0 + s yg0 E yg
s r0 = s b1 c 3 ) η r
s rg0 = s g0 T g0 c 5 +(1 c 4 )+ c 5 (1 c 4 )(1 c 5 ) c 4 +(1 c 4 ) (1 c 5 ) 2 c 4 + c 5 (1 c 4 )+ c 5 (1 c 4 )(1 c 5 ) η y
s ry0 = s y0 T yg η r
s ryg0 = s yg0 T yg η r
s rn = s r0 E r0 + s rg0 E rg + s ry0 E ry + s ryg0 E ry
s bn = s b1 (1 c 1 )(1 c 2 )(1 c 3 )
E= ( 1 c t )[ k( 1c' )+( 1k )( 1 c a '' )(1 c b '') ] 1kc'η(1k) c a ''η(1k)(1 c a '') c b ''η
T= c t [ k( 1c' )+( 1k )( 1 c a '' )(1 c b '') ] 1kc'η(1k) c a ''η(1k)(1 c a '') c b ''η
L= ( 1η )[ kc'+( 1k )( 1 c a '') c b ''+(1k ) c a '' ] 1kc'η(1k) c a ''η(1k)(1 c a '') c b ''η
d mj (z)= κ mj e α m ( λ j )z
S g0 = S b1 c 1 η g
S gn = S g0 E g0
S y0 = S b1 (1 c 1 ) c 2 η y
S yg0 = S g0 T g0 c 4 c 4 +(1 c 4 ) c 5 η y
S yn = S y0 E y0 + S yg0 E yg
S r0 = S b1 (1 c 1 )(1 c 2 ) c 3 η r
S rg0 = S g0 T g0 c 5 (1 c 4 ) c 4 +(1 c 4 ) c 5 η r
S ry0 = S y0 T yo η r
S ryg0 = S yg0 T yg η r
S rn = S r0 E r0 + S rg0 E rg + S ry0 E ry + S ryg0 E ry
S bn = S b1 (1 c 1 )(1 c 2 )(1 c 3 )
E= k( 1c' )(1c ' t )+( 1k )( 1 c a '' )(1 c ta '')(1 c b '')(1 c tb '') 1η[kc'+( 1k ) c a ''+(1k)( 1 c a '' )(1 c ta '') c b '']
T= k( 1c' )c ' t +( 1k )(1 c a '') c ta ''+( 1k )(1 c a '')(1 c ta '')(1 c b '') c tb '' 1η[kc'+( 1k ) c a ''+(1k)( 1 c a '' )(1 c ta '') c b '']
L= (1η)[kc'+( 1k )(1 c a '')(1 c ta '') c b ''+( 1k ) c a ''] 1η[kc'+( 1k ) c a ''+(1k)( 1 c a '' )(1 c ta '') c b '']
c mj = 0 z l f m d m ( z ) (1 e α m ( λ m )( z 1 z ) )dz
c mja '' = 0 z l f m d mj ( z )(1 e α m ( λ m )z )dz
c mjb '' = f m (1 e α m ( λ m ) z l )
d m0 (z)= κ m0 e α m ( λ b )z
d yg0 (z)= k yg0 d g0 (z)[ 0 z l f y e α y ( λ g )(z z i ) d z i + 0 z l f y e α y ( λ g )( z i z) d z i + f y e α y ( λ g )z 0 z l f g e α g ( λ g ) z i d z i + f y e α y ( λ g )z 0 z l f y e α y ( λ g ) z i d z i + f y e α y ( λ g )z 0 z l f r e α r ( λ g ) z i d z i ]
d rg0 (z)= k rg0 d g0 (z)[ 0 z l f r e α r ( λ g )(z z i ) d z i + 0 z l f r e α r ( λ g )( z i z) d z i + f r e α r ( λ g )z 0 z l f g e α g ( λ g ) z i d z i + f r e α r ( λ g )z 0 z l f y e α y ( λ g ) z i d z i + f r e α r ( λ g )z 0 z l f r e α r ( λ g ) z i d z i ]
d ry0 (z)= k ry0 d y0 (z)[ 0 z l f r e α r ( λ y )(z z i ) d z i + 0 z l f r e α r ( λ y )( z i z) d z i + f r e α r ( λ y )z 0 z l f y e α y ( λ y ) z i d z i + f r e α r ( λ y )z 0 z l f r e α r ( λ y ) z i d z i + ]
d ryg0 (z)= k ryg0 d yg0 (z)[ 0 z l f r e α r ( λ y )(z z i ) d z i + 0 z l f r e α r ( λ y )( z i z) d z i + f r e α r ( λ y )z 0 z l f y e α y ( λ y ) z i d z i + f r e α r ( λ y )z 0 z l f r e α r ( λ y ) z i d z i + ]
c tg0 ' = 0 z l d g0 (z) f y (1 e α y ( λ g )z )dz+ 0 z l d g0 (z) f r (1 e α r ( λ g )( z l z) )dz
c tg0a " = 0 z l d g0 (z) f y (1 e α y ( λ g )z )dz+ 0 z l d g0 (z) f r (1 e α r ( λ g )z )dz
c tg0b " = f r (1 e α y ( λ g ) z l )+ f y (1 e α r ( λ y ) z l )
c tyg0 ' = 0 z l d yg0 ( z ) f r (1 e α r ( λ y )( z l z) )dz
c ty0a '' = 0 z l d y0 ( z ) f r (1 e α r ( λ y )z )dz
c ty0b '' = f r ( 1 e α r ( λ y ) z l )
c tyg0 0 z l d yg0 ( z ) f r (1 e α r ( λ y )( z l z) )dz
c tyg0a '' = 0 z l d yg0 ( z ) f r (1 e α r ( λ y )z )dz
c tyg0b '' = f r ( 1 e α r ( λ y ) z l )
t y = k( 1 c ' ) c y ' +( 1k )( 1 c a '' ) c y '' +( 1k )( 1 c a '' )( 1 c ta '' )( 1 c b '' ) c yb '' k( 1 c ' )( c y ' + c r ' )+( 1k )( 1 c a '' )( c y '' + c r '' )+( 1k )( 1 c a '' )( 1 c ta '' )( 1 c b '' )( c yb '' + c rb '' )
t r =1 t y
c y ' = 0 z l d g0 ( z ) f y (1 e α y ( λ g )( z l z) )dz
c y '' = 0 z l d g0 ( z ) f y (1 e α y ( λ g )z )dz
c yb '' = f y (1 e α y ( λ g ) z l )
c y ' = 0 z l d g0 ( z ) f r (1 e α r ( λ g )( z l z) )dz
c r '' = 0 z l d g0 ( z ) f r (1 e α r ( λ g )z )dz
c rb '' = f y (1 e α r ( λ g ) z l )
S g0 = S b1 f g ( 1 e α g ( λ b ) z l ) η g
S y0 = S b1 f y ( 1 e α y ( λ b ) z l ) η y
S r0 = S b1 f r ( 1 e α r ( λ b ) z l ) η r
S gn = S g0 E g0
S yg0 = η y S g0 T g0 t y
S rg0 = η r S g0 T g0 t r
S yn = S y0 E y0 + S yg0 E yg0
S ry0 = S y0 T y0 η r
S ryg0 = S yg0 T yg0 η r
S rn = S r0 E r0 + S rg0 E rg0 + S ry0 E ry0 + S ryg0 E ryg0
S bn = S b1 [ f g e α g ( λ b ) z l + f y e α y ( λ b ) z l + f r e α r ( λ b ) z l ]

Metrics