Abstract

We report measurements of the fluorescence decay times of CdSe/ZnS core-shell quantum dots at the air-dielectric interface for several dielectrics with different refractive indices. The results are in agreement with a simple theory that accounts for the impact of the refractive index on the density of states and magnitude of the vacuum field, as well as for the local-field correction inside the quantum dot. The results suggest that, by embedding the quantum dots into a high-index dielectric material, one can reduce the spontaneous decay time to sub-nanosecond scale while preserving high quantum efficiency.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Ch. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
    [CrossRef] [PubMed]
  2. Ph. Grangier, B. Sanders, and J. Vuckovic, eds., special issue “Focus on single photons on demand,” New J. Phys. 6(1), 85 (2004).
  3. S. G. Lukishova, L. J. Bissell, C. R. Stroud, and R. W. Boyd, “Room-temperature single photon sources with definite circular and linear polarizations,” Opt. Spectrosc. 108(3), 417–424 (2010).
    [CrossRef]
  4. A. Efros, “Fine structure and polarization properties of band-edge excitons in semiconductor nanocrystals,” Nanocrystal Quantum Dots (CRC Press, 2010), Chap. 1.
  5. X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature 459(7247), 686–689 (2009).
    [CrossRef] [PubMed]
  6. J. Hollingsworth and V. Klimov, “Soft chemical synthesis and manipulation of semiconductor nanocrystals,” Nanocrystal Quantum Dots (CRC Press, 2010), Chap. 1
  7. Z. Jacob, I. Smolyaninov, and E. E. Narimanov, “Single photon gun: radiative decay engineering with metamaterials,” International Quantum Electronics Conference, Baltimore, MD, May 31–June 5, 2009, post-deadline paper IPDB2.
  8. Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
    [CrossRef]
  9. S. M. Barnett, B. Huttner, R. Loudon, and R. Matloob, “Decay of exited atoms in absorbing dielectrics,” J. Phys. B 29(16), 3763–3781 (1996).
    [CrossRef]
  10. A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007).
    [CrossRef]
  11. M. D. Leistikow, J. Johansen, A. J. Kettelarij, P. Lodahl, and W. L. Vos, “Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states,” Phys. Rev. B 79(4), 045301 (2009).
    [CrossRef]
  12. Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C 114(16), 7269–7273 (2010).
    [CrossRef]
  13. J.-Y. Zhang, X.-Y. Wang, and M. Xiao, “Modification of spontaneous emission from CdSe/CdS quantum dots in the presence of a semiconductor interface,” Opt. Lett. 27(14), 1253–1255 (2002).
    [CrossRef] [PubMed]
  14. X. Brokmann, L. Coolen, M. Dahan, and J. P. Hermier, “Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission,” Phys. Rev. Lett. 93(10), 107403 (2004).
    [CrossRef] [PubMed]
  15. K. Liu, T. A. Schmedake, K. Daneshvar, and R. Tsu, “Interaction of CdSe/ZnS quantum dots: among themselves and with matrices,” Microelectron. J. 38(6-7), 700–705 (2007).
    [CrossRef]
  16. E. Yablonovitch, T. J. Gmitter, and R. Bhat, “Inhibited and enhanced spontaneous emission from optically thin AlGaAs/GaAs double heterostructures,” Phys. Rev. Lett. 61(22), 2546–2549 (1988).
    [CrossRef] [PubMed]
  17. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
    [CrossRef]
  18. C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106(31), 7619–7622 (2002).
    [CrossRef]
  19. Ch. B. Walsh and E. I. Franses, “Ultrathin PMMA films spin-coated from toluene solutions,” Thin Solid Films 429(1-2), 71–76 (2003).
    [CrossRef]
  20. W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” J. Opt. Soc. Am. 67(12), 1607 (1977).
    [CrossRef]
  21. W. Lukosz and R. E. Kunz, “Fluorescence lifetime of magnetic and electric dipoles near a dielectric interface,” Opt. Commun. 20(2), 195–199 (1977).
    [CrossRef]

2010 (3)

S. G. Lukishova, L. J. Bissell, C. R. Stroud, and R. W. Boyd, “Room-temperature single photon sources with definite circular and linear polarizations,” Opt. Spectrosc. 108(3), 417–424 (2010).
[CrossRef]

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
[CrossRef]

Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C 114(16), 7269–7273 (2010).
[CrossRef]

2009 (2)

M. D. Leistikow, J. Johansen, A. J. Kettelarij, P. Lodahl, and W. L. Vos, “Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states,” Phys. Rev. B 79(4), 045301 (2009).
[CrossRef]

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature 459(7247), 686–689 (2009).
[CrossRef] [PubMed]

2007 (2)

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007).
[CrossRef]

K. Liu, T. A. Schmedake, K. Daneshvar, and R. Tsu, “Interaction of CdSe/ZnS quantum dots: among themselves and with matrices,” Microelectron. J. 38(6-7), 700–705 (2007).
[CrossRef]

2004 (2)

X. Brokmann, L. Coolen, M. Dahan, and J. P. Hermier, “Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission,” Phys. Rev. Lett. 93(10), 107403 (2004).
[CrossRef] [PubMed]

Ph. Grangier, B. Sanders, and J. Vuckovic, eds., special issue “Focus on single photons on demand,” New J. Phys. 6(1), 85 (2004).

2003 (1)

Ch. B. Walsh and E. I. Franses, “Ultrathin PMMA films spin-coated from toluene solutions,” Thin Solid Films 429(1-2), 71–76 (2003).
[CrossRef]

2002 (2)

C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106(31), 7619–7622 (2002).
[CrossRef]

J.-Y. Zhang, X.-Y. Wang, and M. Xiao, “Modification of spontaneous emission from CdSe/CdS quantum dots in the presence of a semiconductor interface,” Opt. Lett. 27(14), 1253–1255 (2002).
[CrossRef] [PubMed]

2001 (1)

Ch. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[CrossRef] [PubMed]

1997 (1)

O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[CrossRef]

1996 (1)

S. M. Barnett, B. Huttner, R. Loudon, and R. Matloob, “Decay of exited atoms in absorbing dielectrics,” J. Phys. B 29(16), 3763–3781 (1996).
[CrossRef]

1988 (1)

E. Yablonovitch, T. J. Gmitter, and R. Bhat, “Inhibited and enhanced spontaneous emission from optically thin AlGaAs/GaAs double heterostructures,” Phys. Rev. Lett. 61(22), 2546–2549 (1988).
[CrossRef] [PubMed]

1977 (2)

W. Lukosz and R. E. Kunz, “Fluorescence lifetime of magnetic and electric dipoles near a dielectric interface,” Opt. Commun. 20(2), 195–199 (1977).
[CrossRef]

W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” J. Opt. Soc. Am. 67(12), 1607 (1977).
[CrossRef]

Barnett, S. M.

S. M. Barnett, B. Huttner, R. Loudon, and R. Matloob, “Decay of exited atoms in absorbing dielectrics,” J. Phys. B 29(16), 3763–3781 (1996).
[CrossRef]

Bawendi, M. G.

C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106(31), 7619–7622 (2002).
[CrossRef]

O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[CrossRef]

Bhat, R.

E. Yablonovitch, T. J. Gmitter, and R. Bhat, “Inhibited and enhanced spontaneous emission from optically thin AlGaAs/GaAs double heterostructures,” Phys. Rev. Lett. 61(22), 2546–2549 (1988).
[CrossRef] [PubMed]

Bissell, L. J.

S. G. Lukishova, L. J. Bissell, C. R. Stroud, and R. W. Boyd, “Room-temperature single photon sources with definite circular and linear polarizations,” Opt. Spectrosc. 108(3), 417–424 (2010).
[CrossRef]

Boltasseva, A.

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
[CrossRef]

Boyd, R. W.

S. G. Lukishova, L. J. Bissell, C. R. Stroud, and R. W. Boyd, “Room-temperature single photon sources with definite circular and linear polarizations,” Opt. Spectrosc. 108(3), 417–424 (2010).
[CrossRef]

Brokmann, X.

X. Brokmann, L. Coolen, M. Dahan, and J. P. Hermier, “Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission,” Phys. Rev. Lett. 93(10), 107403 (2004).
[CrossRef] [PubMed]

Brongersma, M. L.

Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C 114(16), 7269–7273 (2010).
[CrossRef]

Coolen, L.

X. Brokmann, L. Coolen, M. Dahan, and J. P. Hermier, “Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission,” Phys. Rev. Lett. 93(10), 107403 (2004).
[CrossRef] [PubMed]

Cragg, G. E.

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature 459(7247), 686–689 (2009).
[CrossRef] [PubMed]

Dabbousi, O.

O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[CrossRef]

Dahan, M.

X. Brokmann, L. Coolen, M. Dahan, and J. P. Hermier, “Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission,” Phys. Rev. Lett. 93(10), 107403 (2004).
[CrossRef] [PubMed]

Dale, Y.

Ch. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[CrossRef] [PubMed]

Daneshvar, K.

K. Liu, T. A. Schmedake, K. Daneshvar, and R. Tsu, “Interaction of CdSe/ZnS quantum dots: among themselves and with matrices,” Microelectron. J. 38(6-7), 700–705 (2007).
[CrossRef]

Efros, A. L.

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature 459(7247), 686–689 (2009).
[CrossRef] [PubMed]

Franses, E. I.

Ch. B. Walsh and E. I. Franses, “Ultrathin PMMA films spin-coated from toluene solutions,” Thin Solid Films 429(1-2), 71–76 (2003).
[CrossRef]

Gmitter, T. J.

E. Yablonovitch, T. J. Gmitter, and R. Bhat, “Inhibited and enhanced spontaneous emission from optically thin AlGaAs/GaAs double heterostructures,” Phys. Rev. Lett. 61(22), 2546–2549 (1988).
[CrossRef] [PubMed]

Grangier, Ph.

Ph. Grangier, B. Sanders, and J. Vuckovic, eds., special issue “Focus on single photons on demand,” New J. Phys. 6(1), 85 (2004).

Hahn, M. A.

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature 459(7247), 686–689 (2009).
[CrossRef] [PubMed]

Heine, J. R.

O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[CrossRef]

Hermier, J. P.

X. Brokmann, L. Coolen, M. Dahan, and J. P. Hermier, “Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission,” Phys. Rev. Lett. 93(10), 107403 (2004).
[CrossRef] [PubMed]

Huttner, B.

S. M. Barnett, B. Huttner, R. Loudon, and R. Matloob, “Decay of exited atoms in absorbing dielectrics,” J. Phys. B 29(16), 3763–3781 (1996).
[CrossRef]

Jacob, Z.

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
[CrossRef]

Jensen, K. F.

O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[CrossRef]

Johansen, J.

M. D. Leistikow, J. Johansen, A. J. Kettelarij, P. Lodahl, and W. L. Vos, “Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states,” Phys. Rev. B 79(4), 045301 (2009).
[CrossRef]

Jun, Y. C.

Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C 114(16), 7269–7273 (2010).
[CrossRef]

Kahen, K.

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature 459(7247), 686–689 (2009).
[CrossRef] [PubMed]

Kettelarij, A. J.

M. D. Leistikow, J. Johansen, A. J. Kettelarij, P. Lodahl, and W. L. Vos, “Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states,” Phys. Rev. B 79(4), 045301 (2009).
[CrossRef]

Kim, J. Y.

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
[CrossRef]

Krauss, T. D.

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature 459(7247), 686–689 (2009).
[CrossRef] [PubMed]

Kunz, R. E.

W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” J. Opt. Soc. Am. 67(12), 1607 (1977).
[CrossRef]

W. Lukosz and R. E. Kunz, “Fluorescence lifetime of magnetic and electric dipoles near a dielectric interface,” Opt. Commun. 20(2), 195–199 (1977).
[CrossRef]

Leatherdale, C. A.

C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106(31), 7619–7622 (2002).
[CrossRef]

Leistikow, M. D.

M. D. Leistikow, J. Johansen, A. J. Kettelarij, P. Lodahl, and W. L. Vos, “Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states,” Phys. Rev. B 79(4), 045301 (2009).
[CrossRef]

Liu, K.

K. Liu, T. A. Schmedake, K. Daneshvar, and R. Tsu, “Interaction of CdSe/ZnS quantum dots: among themselves and with matrices,” Microelectron. J. 38(6-7), 700–705 (2007).
[CrossRef]

Lodahl, P.

M. D. Leistikow, J. Johansen, A. J. Kettelarij, P. Lodahl, and W. L. Vos, “Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states,” Phys. Rev. B 79(4), 045301 (2009).
[CrossRef]

Loudon, R.

S. M. Barnett, B. Huttner, R. Loudon, and R. Matloob, “Decay of exited atoms in absorbing dielectrics,” J. Phys. B 29(16), 3763–3781 (1996).
[CrossRef]

Lukishova, S. G.

S. G. Lukishova, L. J. Bissell, C. R. Stroud, and R. W. Boyd, “Room-temperature single photon sources with definite circular and linear polarizations,” Opt. Spectrosc. 108(3), 417–424 (2010).
[CrossRef]

Lukosz, W.

W. Lukosz and R. E. Kunz, “Fluorescence lifetime of magnetic and electric dipoles near a dielectric interface,” Opt. Commun. 20(2), 195–199 (1977).
[CrossRef]

W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” J. Opt. Soc. Am. 67(12), 1607 (1977).
[CrossRef]

Maccagnano-Zacher, S.

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature 459(7247), 686–689 (2009).
[CrossRef] [PubMed]

Matloob, R.

S. M. Barnett, B. Huttner, R. Loudon, and R. Matloob, “Decay of exited atoms in absorbing dielectrics,” J. Phys. B 29(16), 3763–3781 (1996).
[CrossRef]

Mattoussi, H.

O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[CrossRef]

Mikulec, F. V.

C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106(31), 7619–7622 (2002).
[CrossRef]

O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[CrossRef]

Naik, G. V.

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
[CrossRef]

Narimanov, E. E.

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
[CrossRef]

Ober, R.

O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[CrossRef]

Pala, R.

Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C 114(16), 7269–7273 (2010).
[CrossRef]

Pelton, M.

Ch. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[CrossRef] [PubMed]

Rajeswaran, M.

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature 459(7247), 686–689 (2009).
[CrossRef] [PubMed]

Ren, X.

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature 459(7247), 686–689 (2009).
[CrossRef] [PubMed]

Rodriguez-Viejo, J.

O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[CrossRef]

Sanders, B.

Ph. Grangier, B. Sanders, and J. Vuckovic, eds., special issue “Focus on single photons on demand,” New J. Phys. 6(1), 85 (2004).

Santori, Ch.

Ch. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[CrossRef] [PubMed]

Schmedake, T. A.

K. Liu, T. A. Schmedake, K. Daneshvar, and R. Tsu, “Interaction of CdSe/ZnS quantum dots: among themselves and with matrices,” Microelectron. J. 38(6-7), 700–705 (2007).
[CrossRef]

Shalaev, V. M.

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
[CrossRef]

Shields, A. J.

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007).
[CrossRef]

Silcox, J.

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature 459(7247), 686–689 (2009).
[CrossRef] [PubMed]

Solomon, G.

Ch. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[CrossRef] [PubMed]

Stroud, C. R.

S. G. Lukishova, L. J. Bissell, C. R. Stroud, and R. W. Boyd, “Room-temperature single photon sources with definite circular and linear polarizations,” Opt. Spectrosc. 108(3), 417–424 (2010).
[CrossRef]

Tsu, R.

K. Liu, T. A. Schmedake, K. Daneshvar, and R. Tsu, “Interaction of CdSe/ZnS quantum dots: among themselves and with matrices,” Microelectron. J. 38(6-7), 700–705 (2007).
[CrossRef]

Vos, W. L.

M. D. Leistikow, J. Johansen, A. J. Kettelarij, P. Lodahl, and W. L. Vos, “Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states,” Phys. Rev. B 79(4), 045301 (2009).
[CrossRef]

Vuckovic, J.

Ph. Grangier, B. Sanders, and J. Vuckovic, eds., special issue “Focus on single photons on demand,” New J. Phys. 6(1), 85 (2004).

Walsh, Ch. B.

Ch. B. Walsh and E. I. Franses, “Ultrathin PMMA films spin-coated from toluene solutions,” Thin Solid Films 429(1-2), 71–76 (2003).
[CrossRef]

Wang, X.

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature 459(7247), 686–689 (2009).
[CrossRef] [PubMed]

Wang, X.-Y.

Woo, W.-K.

C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106(31), 7619–7622 (2002).
[CrossRef]

Xiao, M.

Yablonovitch, E.

E. Yablonovitch, T. J. Gmitter, and R. Bhat, “Inhibited and enhanced spontaneous emission from optically thin AlGaAs/GaAs double heterostructures,” Phys. Rev. Lett. 61(22), 2546–2549 (1988).
[CrossRef] [PubMed]

Yamamoto, Y.

Ch. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[CrossRef] [PubMed]

Zhang, J.-Y.

Appl. Phys. B (1)

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. B (1)

S. M. Barnett, B. Huttner, R. Loudon, and R. Matloob, “Decay of exited atoms in absorbing dielectrics,” J. Phys. B 29(16), 3763–3781 (1996).
[CrossRef]

J. Phys. Chem. B (2)

O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[CrossRef]

C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106(31), 7619–7622 (2002).
[CrossRef]

J. Phys. Chem. C (1)

Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C 114(16), 7269–7273 (2010).
[CrossRef]

Microelectron. J. (1)

K. Liu, T. A. Schmedake, K. Daneshvar, and R. Tsu, “Interaction of CdSe/ZnS quantum dots: among themselves and with matrices,” Microelectron. J. 38(6-7), 700–705 (2007).
[CrossRef]

Nat. Photonics (1)

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007).
[CrossRef]

Nature (1)

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature 459(7247), 686–689 (2009).
[CrossRef] [PubMed]

New J. Phys. (1)

Ph. Grangier, B. Sanders, and J. Vuckovic, eds., special issue “Focus on single photons on demand,” New J. Phys. 6(1), 85 (2004).

Opt. Commun. (1)

W. Lukosz and R. E. Kunz, “Fluorescence lifetime of magnetic and electric dipoles near a dielectric interface,” Opt. Commun. 20(2), 195–199 (1977).
[CrossRef]

Opt. Lett. (1)

Opt. Spectrosc. (1)

S. G. Lukishova, L. J. Bissell, C. R. Stroud, and R. W. Boyd, “Room-temperature single photon sources with definite circular and linear polarizations,” Opt. Spectrosc. 108(3), 417–424 (2010).
[CrossRef]

Phys. Rev. B (1)

M. D. Leistikow, J. Johansen, A. J. Kettelarij, P. Lodahl, and W. L. Vos, “Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states,” Phys. Rev. B 79(4), 045301 (2009).
[CrossRef]

Phys. Rev. Lett. (3)

Ch. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[CrossRef] [PubMed]

E. Yablonovitch, T. J. Gmitter, and R. Bhat, “Inhibited and enhanced spontaneous emission from optically thin AlGaAs/GaAs double heterostructures,” Phys. Rev. Lett. 61(22), 2546–2549 (1988).
[CrossRef] [PubMed]

X. Brokmann, L. Coolen, M. Dahan, and J. P. Hermier, “Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission,” Phys. Rev. Lett. 93(10), 107403 (2004).
[CrossRef] [PubMed]

Thin Solid Films (1)

Ch. B. Walsh and E. I. Franses, “Ultrathin PMMA films spin-coated from toluene solutions,” Thin Solid Films 429(1-2), 71–76 (2003).
[CrossRef]

Other (3)

A. Efros, “Fine structure and polarization properties of band-edge excitons in semiconductor nanocrystals,” Nanocrystal Quantum Dots (CRC Press, 2010), Chap. 1.

J. Hollingsworth and V. Klimov, “Soft chemical synthesis and manipulation of semiconductor nanocrystals,” Nanocrystal Quantum Dots (CRC Press, 2010), Chap. 1

Z. Jacob, I. Smolyaninov, and E. E. Narimanov, “Single photon gun: radiative decay engineering with metamaterials,” International Quantum Electronics Conference, Baltimore, MD, May 31–June 5, 2009, post-deadline paper IPDB2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Illustration of Lorentz-Lorenz / Clausius-Mossotti relationship between the macroscopic electric field E1 and the local field E2 seen by the atom (ε2 = 1) or quantum dot (ε2 = εdot). (b) Enhancement of the radiative decay rate, compared to the rate in free space, by the refractive index n of the dielectric surrounding the quantum dot. The solid blue line corresponds to the case of complete embedding of the quantum dot into the dielectric host [Eq. (5)]. The solid red line corresponds to the quantum dot positioned at the air-dielectric interface [Eq. (7)]. The dashed purple line shows the asymptotic dependence n5/9.

Fig. 2
Fig. 2

(a) Experimental setup. Quantum dots deposited on the dielectric are positioned on a 3D piezo-electric translation stage with 50 nm resolution. (b) Spontaneous decay time as a function of refractive index of the dielectric host or interface. The theoretical curves are Eq. (7) and Eq. (5) for the air-dielectric interface (blue) and liquid (green), respectively. Data for low-index dielectrics fit acceptably with the simple dipole-on-the-surface model of Eq. (7). However, the silicon sample shows considerably slower decay compared to the predicted values and requires a more complicated model of Eq. (9) (red), accounting for the distance between the quantum dot and the surface.

Fig. 3
Fig. 3

(a) Examples of the raw individual time-decay measurements used in generating the data points in Fig. 2(b). The straight lines are the exponential fits yielding τ = 13.6, 4.6, and 25.6 ns for toluene, silicon, and CaF2, respectively. (b) Scanning electron microscope image of quantum dots deposited on a silicon substrate. (c) The confocal fluorescence image of quantum dots deposited on a glass substrate. Red circles show the single dots selected for measurements after image analysis. These three dots satisfy the three important criteria: the brightness and the dot size correspond to a single dot particle, and these dots have largest mean square average distance from the neighbors (the typical distance is larger than λ0).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

γ free-space = 1 τ 8 π 2 3 e 2 d 2 1 ε 0 λ 0 3 ,
γ atom medium γ free-space ε medium ( ε medium +2 3 ) 2 .
γ dot free-space = γ free-space ( 3 ε dot +2 ) 2 ,
γ dot medium = γ freespace ε medium ( ε medium +2 ε dot +2 ) 2 .
γ dot medium = γ dot freespace ε medium ( ε medium +2 3 ) 2 .
ε medium +2 ε dot +2 is replaced by ε medium +2 ε ligands +2 ε ligands +2 ε dot +2 = ε medium +2 ε dot +2 .
γ dot interface γ dot free-space + γ dot medium 2 γ dot free-space 2 [ 1+ ε medium ( ε medium +2 3 ) 2 ].
τ=1/ γ dot total =1/ γ dot radiatve +1/ γ dot non-radiatve .
γ dot over interface γ dot free-space { 1+ 1 2 e 3 π 2 4λ a ε medium [ ε medium ( ε medium +2 3 ) 2 1 ] }.

Metrics