Abstract

We proposed a novel optical coupling technique based on two parallel singlemode-multimode- singlemode (SMS) fiber structures. This technique utilizes one SMS structure to excite multiple cladding modes within an output singlemode fiber. The excited multiple cladding modes will be coupled to the input SMF in the second SMS structure by placing the two SMS fiber structures in parallel and in close contact each other. The coupled cladding modes will be re-coupled to a guided core mode by the second SMS fiber structure. Theoretical analysis for such technique was provided and experimentally we have achieved a pass band spectral response with an extinction ratio higher than 20 dB and a maximum coupling efficiency of 5.9%.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Kim, Y. M. Jung, B. H. Kim, W. T. Han, and B. H. Lee, “Ultra-wide bandpass filter based on long-period fiber gratings and the evanescent field coupling between two fibers,” Opt. Express 15(17), 10855–10862 (2007).
    [CrossRef] [PubMed]
  2. P. K. Lam, A. J. Stevenson, and J. D. Love, “Bandpass spectra of evanescent couplers with long period gratings,” Electron. Lett. 36(11), 967–969 (2000).
    [CrossRef]
  3. Q. Liu, K. S. Chiang, and Y. Q. Liu, “Analysis of six-port optical fiber couplers based on three parallel long-period fiber gratings,” J. Lightwave Technol. 26(18), 3277–3286 (2008).
    [CrossRef]
  4. Y. Q. Liu, K. S. Chiang, Y. J. Rao, Z. L. Ran, and T. Zhu, “Light coupling between two parallel CO2-laser written long-period fiber gratings,” Opt. Express 15(26), 17645–17651 (2007).
    [CrossRef] [PubMed]
  5. Y. M. Jung, G. Brambilla, G. S. Murugan, and D. J. Richardson, “Optical racetrack ring-resonator based on two U-bent microfibers,” Appl. Phys. Lett. 98(2), 021109 (2011).
    [CrossRef]
  6. Z. H. Hong, X. W. Li, L. J. Zhou, X. W. Shen, J. G. Shen, S. G. Li, and J. P. Chen, “Coupling characteristics between two conical micro/nano fibers: simulation and experiment,” Opt. Express 19(5), 3854–3861 (2011).
    [CrossRef] [PubMed]
  7. X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
    [CrossRef]
  8. Y. Wu, X. Zeng, C. L. Hou, J. Bai, and G. G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 92(19), 191112 (2008).
    [CrossRef]
  9. Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer--analysis and experiment,” Opt. Express 19(9), 7937–7944 (2011).
    [CrossRef] [PubMed]
  10. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
    [CrossRef]
  11. Q. Wu, Y. Semenova, J. Mathew, P. Wang, and G. Farrell, “Humidity sensor based on a single-mode hetero-core fiber structure,” Opt. Lett. 36(10), 1752–1754 (2011).
    [CrossRef] [PubMed]
  12. W. S. Mohammed, A. Mehta, and E. G. Johnson, “Wavelength tunable fiber lens based on multimode interference,” J. Lightwave Technol. 22(2), 469–477 (2004).
    [CrossRef]
  13. Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011).
    [CrossRef]
  14. S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, and J. P. Meunier, “Strain and temperature sensing characteristics of single-mode-multimode- single-mode structures,” J. Lightwave Technol. 27(13), 2348–2356 (2009).
    [CrossRef]
  15. Q. Wu, Y. Semenova, B. B. Yan, Y. Q. Ma, P. Wang, C. X. Yu, and G. Farrell, “Fiber refractometer based on a fiber Bragg grating and single-mode-multimode-single-mode fiber structure,” Opt. Lett. 36(12), 2197–2199 (2011).
    [CrossRef] [PubMed]
  16. H. Kogelnik and R. V. Schmidt, “Switched directional couplers with alternating Δβ,” IEEE J. Quantum Electron. 12(7), 396–401 (1976).
    [CrossRef]
  17. K. S. Chiang, F. Y. M. Chan, and M. N. Ng, “Analysis of two parallel long-period fiber gratings,” J. Lightwave Technol. 22(5), 1358–1366 (2004).
    [CrossRef]

2011 (6)

2009 (1)

2008 (2)

Y. Wu, X. Zeng, C. L. Hou, J. Bai, and G. G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 92(19), 191112 (2008).
[CrossRef]

Q. Liu, K. S. Chiang, and Y. Q. Liu, “Analysis of six-port optical fiber couplers based on three parallel long-period fiber gratings,” J. Lightwave Technol. 26(18), 3277–3286 (2008).
[CrossRef]

2007 (2)

2006 (1)

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

2004 (2)

2000 (1)

P. K. Lam, A. J. Stevenson, and J. D. Love, “Bandpass spectra of evanescent couplers with long period gratings,” Electron. Lett. 36(11), 967–969 (2000).
[CrossRef]

1995 (1)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

1976 (1)

H. Kogelnik and R. V. Schmidt, “Switched directional couplers with alternating Δβ,” IEEE J. Quantum Electron. 12(7), 396–401 (1976).
[CrossRef]

Bai, J.

Y. Wu, X. Zeng, C. L. Hou, J. Bai, and G. G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 92(19), 191112 (2008).
[CrossRef]

Brambilla, G.

Y. M. Jung, G. Brambilla, G. S. Murugan, and D. J. Richardson, “Optical racetrack ring-resonator based on two U-bent microfibers,” Appl. Phys. Lett. 98(2), 021109 (2011).
[CrossRef]

Chan, F. Y. M.

Chen, J. P.

Chiang, K. S.

Farrell, G.

Guo, X.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Han, W. T.

Hatta, A. M.

Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011).
[CrossRef]

Hong, Z. H.

Hou, C. L.

Y. Wu, X. Zeng, C. L. Hou, J. Bai, and G. G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 92(19), 191112 (2008).
[CrossRef]

Jiang, X. S.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Johnson, E. G.

Jung, Y. M.

Y. M. Jung, G. Brambilla, G. S. Murugan, and D. J. Richardson, “Optical racetrack ring-resonator based on two U-bent microfibers,” Appl. Phys. Lett. 98(2), 021109 (2011).
[CrossRef]

M. J. Kim, Y. M. Jung, B. H. Kim, W. T. Han, and B. H. Lee, “Ultra-wide bandpass filter based on long-period fiber gratings and the evanescent field coupling between two fibers,” Opt. Express 15(17), 10855–10862 (2007).
[CrossRef] [PubMed]

Kim, B. H.

Kim, M. J.

Kogelnik, H.

H. Kogelnik and R. V. Schmidt, “Switched directional couplers with alternating Δβ,” IEEE J. Quantum Electron. 12(7), 396–401 (1976).
[CrossRef]

Kumar, A.

Kumar, Y. B. P.

Lam, P. K.

P. K. Lam, A. J. Stevenson, and J. D. Love, “Bandpass spectra of evanescent couplers with long period gratings,” Electron. Lett. 36(11), 967–969 (2000).
[CrossRef]

Lee, B. H.

Li, S. G.

Li, X. W.

Liu, Q.

Liu, Y. Q.

Love, J. D.

P. K. Lam, A. J. Stevenson, and J. D. Love, “Bandpass spectra of evanescent couplers with long period gratings,” Electron. Lett. 36(11), 967–969 (2000).
[CrossRef]

Ma, Y. Q.

Marin, E.

Mathew, J.

Mehta, A.

Meunier, J. P.

Mohammed, W. S.

Murugan, G. S.

Y. M. Jung, G. Brambilla, G. S. Murugan, and D. J. Richardson, “Optical racetrack ring-resonator based on two U-bent microfibers,” Appl. Phys. Lett. 98(2), 021109 (2011).
[CrossRef]

Ng, M. N.

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

Ran, Z. L.

Rao, Y. J.

Richardson, D. J.

Y. M. Jung, G. Brambilla, G. S. Murugan, and D. J. Richardson, “Optical racetrack ring-resonator based on two U-bent microfibers,” Appl. Phys. Lett. 98(2), 021109 (2011).
[CrossRef]

Schmidt, R. V.

H. Kogelnik and R. V. Schmidt, “Switched directional couplers with alternating Δβ,” IEEE J. Quantum Electron. 12(7), 396–401 (1976).
[CrossRef]

Semenova, Y.

Shen, J. G.

Shen, X. W.

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

Stevenson, A. J.

P. K. Lam, A. J. Stevenson, and J. D. Love, “Bandpass spectra of evanescent couplers with long period gratings,” Electron. Lett. 36(11), 967–969 (2000).
[CrossRef]

Tong, L. M.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Tripathi, S. M.

Tsao, A.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Varshney, R. K.

Vienne, G.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Wang, P.

Wu, Q.

Wu, Y.

Y. Wu, X. Zeng, C. L. Hou, J. Bai, and G. G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 92(19), 191112 (2008).
[CrossRef]

Yan, B. B.

Yang, D.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Yang, G. G.

Y. Wu, X. Zeng, C. L. Hou, J. Bai, and G. G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 92(19), 191112 (2008).
[CrossRef]

Yang, Q.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Yu, C. X.

Zeng, X.

Y. Wu, X. Zeng, C. L. Hou, J. Bai, and G. G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 92(19), 191112 (2008).
[CrossRef]

Zhou, L. J.

Zhu, T.

Appl. Phys. Lett. (3)

Y. M. Jung, G. Brambilla, G. S. Murugan, and D. J. Richardson, “Optical racetrack ring-resonator based on two U-bent microfibers,” Appl. Phys. Lett. 98(2), 021109 (2011).
[CrossRef]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Y. Wu, X. Zeng, C. L. Hou, J. Bai, and G. G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 92(19), 191112 (2008).
[CrossRef]

Electron. Lett. (1)

P. K. Lam, A. J. Stevenson, and J. D. Love, “Bandpass spectra of evanescent couplers with long period gratings,” Electron. Lett. 36(11), 967–969 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. Kogelnik and R. V. Schmidt, “Switched directional couplers with alternating Δβ,” IEEE J. Quantum Electron. 12(7), 396–401 (1976).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011).
[CrossRef]

J. Lightwave Technol. (5)

Opt. Express (4)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Configuration of the fiber-to-fiber coupling technique based on two parallel SMS fiber structures.

Fig. 2
Fig. 2

Simulated transmission spectra for (a) LP01 core mode and (b) LP02-06 cladding modes within SMF in the SMS structure with different MMF lengths.

Fig. 3
Fig. 3

Calculated coupling coefficients between two parallel SMFs for LP02-10 cladding modes.

Fig. 4
Fig. 4

Calculated coupling from Port 1 to Port 4 at different coupling lengths and SRI.

Fig. 5
Fig. 5

Calculated influence of separation d on the coupling from Port 1 to Port 4 with coupling length L = 60 mm at two different SRI conditions (a) ns = 1.33 and (b) ns = 1.44.

Fig. 6
Fig. 6

Normalised transmission spectral responses of the two SMS fiber structures when separated.

Fig. 7
Fig. 7

(a) Comparison between simulation and experimental results for an SRI = 1.334 and (b) measured results at two different SRIs of 1.334 and 1.438 with different coupling lengths L = 41 and 56 mm.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

A1( r, L 1 )= m=1 M b m Ψ m ( r )exp( j β m L 1 )
b m = 0 Ω(r) Ψ m ( r )rdr 0 Ψ m ( r ) Ψ m ( r )rdr
b n = 0 A1(r, L 1 ) Φ n ( r )rdr 0 Φ n ( r ) Φ n ( r )rdr
B 1 n ( r, L 1 )= b n Φ n ( r )
0 Ω( r )Ω( r )rdr = 0 Ψ m ( r ) Ψ m ( r )rdr = 0 Φ n ( r ) Φ n (r)rdr =1
B 1 n ( r, L 1 +L )=B 1 n ( r, L 1 )cos( C n L)
B 2 n ( r, L 1 +L )=jB 1 n ( r, L 1 )sin( C n L)
C n = 2Δ a 0 U n 2 V n 3 K 0 [ W n (2+d/ a 0 ) ] K 1 2 ( W n )
E(r, L 1 +L+ L 2 )= m=1 M c m Ψ m ( r )exp( j β m L 2 )
c m = n=2 N 0 B 2 n ( r, L 1 +L ) Ψ m ( r )rdr 0 Ψ m ( r ) Ψ m ( r )rdr
A2(r, L 1 +L+ L 2 )= 0 E( r, L 1 +L+ L 2 )Ω(r)rdr 0 Ω( r )Ω( r )rdr

Metrics