Abstract

We demonstrate a nanoscale optical reinforcement concept for reversible holographic recording. The bone-muscle-like mechanism enables enhancement of holographic grating formation due to the collective alignment of liquid crystal (LC) molecules nearby photo-reconfigurable polymer backbones. The LC fluidity facilitates the ease of polymer chain transformation during the holographic recording while the polymer network stabilizes the LC collective orientation and the consequential optical enhancement after the recording. As such, the holographic recording possesses both long-term persistence and real-time rewritability.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Haw, “Holographic data storage: The light fantastic,” Nature 422(6932), 556–558 (2003).
    [CrossRef] [PubMed]
  2. R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic data storage,” Nature 383(6600), 505–508 (1996).
    [CrossRef]
  3. P. Wu, Z. Liu, J. J. Yang, A. Flores, and M. R. Wang, “Wavelength-multiplexed submicron holograms for disk-compatible data storage,” Opt. Express 15(26), 17798–17804 (2007).
    [CrossRef] [PubMed]
  4. S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
    [CrossRef] [PubMed]
  5. H. I. Bjelkhagen and E. Mirlis, “Color holography to produce highly realistic three-dimensional images,” Appl. Opt. 47(4), A123–A133 (2008).
    [CrossRef] [PubMed]
  6. C. Hsieh, O. Momtahan, A. Karbaschi, and A. Adibi, “Compact Fourier-transform volume holographic spectrometer for diffuse source spectroscopy,” Opt. Lett. 30(8), 836–838 (2005).
    [CrossRef] [PubMed]
  7. P. Dean, M. R. Dickinson, and D. P. West, “Depth-resolved holographic imaging through scattering media by use of a photorefractive polymer composite device in the near infrared,” Opt. Lett. 30(15), 1941–1943 (2005) (References and further reading may be available for this article. To view references and further reading you must purchase this article.).
    [CrossRef] [PubMed]
  8. M. Salvador, J. Prauzner, S. Köber, K. Meerholz, J. J. Turek, K. Jeong, and D. D. Nolte, “Three-dimensional holographic imaging of living tissue using a highly sensitive photorefractive polymer device,” Opt. Express 17(14), 11834–11849 (2009).
    [CrossRef] [PubMed]
  9. P. Cheben and M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78(11), 1490–1492 (2001).
    [CrossRef]
  10. A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35(14), 2389–2398 (1996).
    [CrossRef] [PubMed]
  11. K. Meerholz, B. L. Volodin, B. Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371(6497), 497–500 (1994).
    [CrossRef]
  12. E. Mecher, F. Gallego-Gómez, H. Tillmann, H.-H. Hörhold, J. C. Hummelen, and K. Meerholz, “Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination,” Nature 418(6901), 959–964 (2002).
    [CrossRef] [PubMed]
  13. O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev. 104(7), 3267–3314 (2004).
    [CrossRef] [PubMed]
  14. Y. H. Cho and Y. Kawakami, “A novel process for holographic polymer dispersed liquid crystal system via simultaneous photo-polymerization and siloxane network formation,” Silicon Chem. 3(5), 219–227 (2007).
    [CrossRef]
  15. J. Qi and G. P. Crawford, “Holographically formed polymer dispersed liquid crystal displays,” Displays 25(5), 177–186 (2004).
    [CrossRef]
  16. E. H. Kim, J. Y. Woo, and B. K. Kim, “LC dependent electro-optical properties of holographic polymer dispersed liquid crystals,” Displays 29(5), 482–486 (2008).
    [CrossRef]
  17. Y. Q. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95(3), 810–815 (2004).
    [CrossRef]
  18. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
    [CrossRef]
  19. J. F. Rabek, Photochemistry and Photophysics (CRC, Boca Raton, FL, 1990), 120–141.
  20. T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268(5219), 1873–1875 (1995).
    [CrossRef] [PubMed]
  21. P. Wu, L. Wang, J. Xu, B. Zou, X. Gong, G. Zhang, G. Tang, W. Chen, and W. Huang, “Transient biphotonic holographic grating in photoisomerizative azo materials,” Phys. Rev. B 57(7), 3874–3880 (1998).
    [CrossRef]
  22. A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
    [CrossRef] [PubMed]
  23. P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. DeCristofano, “Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation,” Appl. Phys. Lett. 78(9), 1189–1191 (2001).
    [CrossRef]
  24. L. Nikolova, T. Todorov, V. Dragostinova, T. Petrova, and N. Tomova, “Polarization reflection holographic gratings in azobenzene-containing gelatine films,” Opt. Lett. 27(2), 92–94 (2002).
    [CrossRef] [PubMed]
  25. J. Luc, K. Bouchouit, R. Czaplicki, J.-L. Fillaut, and B. Sahraoui, “Study of surface relief gratings on azo organometallic films in picosecond regime,” Opt. Express 16(20), 15633–15639 (2008).
    [CrossRef] [PubMed]
  26. K. Matczyszyn, S. Bartkiewicz, and B. Sahraoui, “A new holographic system: liquid crystal doped with photochromic molecules,” Opt. Mater. 20(1), 57–61 (2002).
    [CrossRef]
  27. J. Eickmans, T. Bieringer, S. Kostromine, H. Berneth, and R. Thoma, “Photoaddressable polymers: a new class of materials for optical data storage and holographic memories,” Jpn. J. Appl. Phys. 38(Part 1, No. 3B), 1835–1836 (1999).
    [CrossRef]
  28. Y. Sabi, M. Yamamoto, H. Watanabe, T. Bieringer, D. Haarer, R. Hagen, S. G. Kostromine, and H. Berneth, “Photoaddressable polymers for rewritable optical disc systems,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1613–1618 (2001).
    [CrossRef]
  29. A. Y.-G. Fuh, C.-R. Lee, and K.-T. Cheng, “Fast optical recording of polarization holographic grating based on an azo-dye-doped polymer-ball-type polymer-dispersed liquid crystal film,” Jpn. J. Appl. Phys. 42(Part 1, No. 7A), 4406–4410 (2003).
    [CrossRef]
  30. X. Tong, G. Wang, A. Yavrian, T. Galstian, and Y. Zhao, “Dual-mode switching of diffraction gratings based on azobenzene-polymer-stabilized liquid crystals,” Adv. Mater. (Deerfield Beach Fla.) 17(3), 370–374 (2005).
    [CrossRef]
  31. X. Li, A. Natansohn, and P. Rochon, “Photoinduced liquid crystal alignment based on a surface relief grating in an assembled cell,” Appl. Phys. Lett. 74(25), 3791–3793 (1999).
    [CrossRef]
  32. M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2155–2164 (1992).
    [CrossRef]
  33. G. Lee, J. Lee, J. Kim, U. Hwang, C. Oh, B. Park, Y. Lee, and S. Paek, “Liquid crystal alignment by Holographic surface relief grating inscribed on azo-polymer film,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 424(1), 75–83 (2004).
    [CrossRef]
  34. H. Choi, J. W. Wu, H.-J. Chang, and B. Park, “Holographically generated twisted nematic liquid crystal gratings,” Appl. Phys. Lett. 88(2), 021905 (2006).

2009 (1)

2008 (4)

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

H. I. Bjelkhagen and E. Mirlis, “Color holography to produce highly realistic three-dimensional images,” Appl. Opt. 47(4), A123–A133 (2008).
[CrossRef] [PubMed]

E. H. Kim, J. Y. Woo, and B. K. Kim, “LC dependent electro-optical properties of holographic polymer dispersed liquid crystals,” Displays 29(5), 482–486 (2008).
[CrossRef]

J. Luc, K. Bouchouit, R. Czaplicki, J.-L. Fillaut, and B. Sahraoui, “Study of surface relief gratings on azo organometallic films in picosecond regime,” Opt. Express 16(20), 15633–15639 (2008).
[CrossRef] [PubMed]

2007 (2)

Y. H. Cho and Y. Kawakami, “A novel process for holographic polymer dispersed liquid crystal system via simultaneous photo-polymerization and siloxane network formation,” Silicon Chem. 3(5), 219–227 (2007).
[CrossRef]

P. Wu, Z. Liu, J. J. Yang, A. Flores, and M. R. Wang, “Wavelength-multiplexed submicron holograms for disk-compatible data storage,” Opt. Express 15(26), 17798–17804 (2007).
[CrossRef] [PubMed]

2006 (1)

H. Choi, J. W. Wu, H.-J. Chang, and B. Park, “Holographically generated twisted nematic liquid crystal gratings,” Appl. Phys. Lett. 88(2), 021905 (2006).

2005 (3)

2004 (4)

Y. Q. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95(3), 810–815 (2004).
[CrossRef]

G. Lee, J. Lee, J. Kim, U. Hwang, C. Oh, B. Park, Y. Lee, and S. Paek, “Liquid crystal alignment by Holographic surface relief grating inscribed on azo-polymer film,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 424(1), 75–83 (2004).
[CrossRef]

J. Qi and G. P. Crawford, “Holographically formed polymer dispersed liquid crystal displays,” Displays 25(5), 177–186 (2004).
[CrossRef]

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev. 104(7), 3267–3314 (2004).
[CrossRef] [PubMed]

2003 (2)

A. Y.-G. Fuh, C.-R. Lee, and K.-T. Cheng, “Fast optical recording of polarization holographic grating based on an azo-dye-doped polymer-ball-type polymer-dispersed liquid crystal film,” Jpn. J. Appl. Phys. 42(Part 1, No. 7A), 4406–4410 (2003).
[CrossRef]

M. Haw, “Holographic data storage: The light fantastic,” Nature 422(6932), 556–558 (2003).
[CrossRef] [PubMed]

2002 (4)

E. Mecher, F. Gallego-Gómez, H. Tillmann, H.-H. Hörhold, J. C. Hummelen, and K. Meerholz, “Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination,” Nature 418(6901), 959–964 (2002).
[CrossRef] [PubMed]

L. Nikolova, T. Todorov, V. Dragostinova, T. Petrova, and N. Tomova, “Polarization reflection holographic gratings in azobenzene-containing gelatine films,” Opt. Lett. 27(2), 92–94 (2002).
[CrossRef] [PubMed]

K. Matczyszyn, S. Bartkiewicz, and B. Sahraoui, “A new holographic system: liquid crystal doped with photochromic molecules,” Opt. Mater. 20(1), 57–61 (2002).
[CrossRef]

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
[CrossRef] [PubMed]

2001 (3)

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. DeCristofano, “Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation,” Appl. Phys. Lett. 78(9), 1189–1191 (2001).
[CrossRef]

Y. Sabi, M. Yamamoto, H. Watanabe, T. Bieringer, D. Haarer, R. Hagen, S. G. Kostromine, and H. Berneth, “Photoaddressable polymers for rewritable optical disc systems,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1613–1618 (2001).
[CrossRef]

P. Cheben and M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78(11), 1490–1492 (2001).
[CrossRef]

2000 (1)

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

1999 (2)

X. Li, A. Natansohn, and P. Rochon, “Photoinduced liquid crystal alignment based on a surface relief grating in an assembled cell,” Appl. Phys. Lett. 74(25), 3791–3793 (1999).
[CrossRef]

J. Eickmans, T. Bieringer, S. Kostromine, H. Berneth, and R. Thoma, “Photoaddressable polymers: a new class of materials for optical data storage and holographic memories,” Jpn. J. Appl. Phys. 38(Part 1, No. 3B), 1835–1836 (1999).
[CrossRef]

1998 (1)

P. Wu, L. Wang, J. Xu, B. Zou, X. Gong, G. Zhang, G. Tang, W. Chen, and W. Huang, “Transient biphotonic holographic grating in photoisomerizative azo materials,” Phys. Rev. B 57(7), 3874–3880 (1998).
[CrossRef]

1996 (2)

R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic data storage,” Nature 383(6600), 505–508 (1996).
[CrossRef]

A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35(14), 2389–2398 (1996).
[CrossRef] [PubMed]

1995 (1)

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268(5219), 1873–1875 (1995).
[CrossRef] [PubMed]

1994 (1)

K. Meerholz, B. L. Volodin, B. Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371(6497), 497–500 (1994).
[CrossRef]

1992 (1)

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2155–2164 (1992).
[CrossRef]

Adibi, A.

Bartkiewicz, S.

K. Matczyszyn, S. Bartkiewicz, and B. Sahraoui, “A new holographic system: liquid crystal doped with photochromic molecules,” Opt. Mater. 20(1), 57–61 (2002).
[CrossRef]

Berg, R. H.

R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic data storage,” Nature 383(6600), 505–508 (1996).
[CrossRef]

Berneth, H.

Y. Sabi, M. Yamamoto, H. Watanabe, T. Bieringer, D. Haarer, R. Hagen, S. G. Kostromine, and H. Berneth, “Photoaddressable polymers for rewritable optical disc systems,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1613–1618 (2001).
[CrossRef]

J. Eickmans, T. Bieringer, S. Kostromine, H. Berneth, and R. Thoma, “Photoaddressable polymers: a new class of materials for optical data storage and holographic memories,” Jpn. J. Appl. Phys. 38(Part 1, No. 3B), 1835–1836 (1999).
[CrossRef]

Bieringer, T.

Y. Sabi, M. Yamamoto, H. Watanabe, T. Bieringer, D. Haarer, R. Hagen, S. G. Kostromine, and H. Berneth, “Photoaddressable polymers for rewritable optical disc systems,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1613–1618 (2001).
[CrossRef]

J. Eickmans, T. Bieringer, S. Kostromine, H. Berneth, and R. Thoma, “Photoaddressable polymers: a new class of materials for optical data storage and holographic memories,” Jpn. J. Appl. Phys. 38(Part 1, No. 3B), 1835–1836 (1999).
[CrossRef]

Bjelkhagen, H. I.

Blanche, P.-A.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Bouchouit, K.

Bunning, T. J.

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

Calvo, M. L.

P. Cheben and M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78(11), 1490–1492 (2001).
[CrossRef]

Chang, H.-J.

H. Choi, J. W. Wu, H.-J. Chang, and B. Park, “Holographically generated twisted nematic liquid crystal gratings,” Appl. Phys. Lett. 88(2), 021905 (2006).

Cheben, P.

P. Cheben and M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78(11), 1490–1492 (2001).
[CrossRef]

Chen, W.

P. Wu, L. Wang, J. Xu, B. Zou, X. Gong, G. Zhang, G. Tang, W. Chen, and W. Huang, “Transient biphotonic holographic grating in photoisomerizative azo materials,” Phys. Rev. B 57(7), 3874–3880 (1998).
[CrossRef]

Cheng, K.-T.

A. Y.-G. Fuh, C.-R. Lee, and K.-T. Cheng, “Fast optical recording of polarization holographic grating based on an azo-dye-doped polymer-ball-type polymer-dispersed liquid crystal film,” Jpn. J. Appl. Phys. 42(Part 1, No. 7A), 4406–4410 (2003).
[CrossRef]

Chigrinov, V.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2155–2164 (1992).
[CrossRef]

Cho, Y. H.

Y. H. Cho and Y. Kawakami, “A novel process for holographic polymer dispersed liquid crystal system via simultaneous photo-polymerization and siloxane network formation,” Silicon Chem. 3(5), 219–227 (2007).
[CrossRef]

Choi, H.

H. Choi, J. W. Wu, H.-J. Chang, and B. Park, “Holographically generated twisted nematic liquid crystal gratings,” Appl. Phys. Lett. 88(2), 021905 (2006).

Crawford, G. P.

J. Qi and G. P. Crawford, “Holographically formed polymer dispersed liquid crystal displays,” Displays 25(5), 177–186 (2004).
[CrossRef]

Czaplicki, R.

Dean, P.

DeCristofano, B. S.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. DeCristofano, “Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation,” Appl. Phys. Lett. 78(9), 1189–1191 (2001).
[CrossRef]

Dickinson, M. R.

Dragostinova, V.

Du, F.

Y. Q. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95(3), 810–815 (2004).
[CrossRef]

Eickmans, J.

J. Eickmans, T. Bieringer, S. Kostromine, H. Berneth, and R. Thoma, “Photoaddressable polymers: a new class of materials for optical data storage and holographic memories,” Jpn. J. Appl. Phys. 38(Part 1, No. 3B), 1835–1836 (1999).
[CrossRef]

Fillaut, J.-L.

Flores, A.

Flores, D.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Fuh, A. Y.-G.

A. Y.-G. Fuh, C.-R. Lee, and K.-T. Cheng, “Fast optical recording of polarization holographic grating based on an azo-dye-doped polymer-ball-type polymer-dispersed liquid crystal film,” Jpn. J. Appl. Phys. 42(Part 1, No. 7A), 4406–4410 (2003).
[CrossRef]

Gallego-Gómez, F.

E. Mecher, F. Gallego-Gómez, H. Tillmann, H.-H. Hörhold, J. C. Hummelen, and K. Meerholz, “Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination,” Nature 418(6901), 959–964 (2002).
[CrossRef] [PubMed]

Galstian, T.

X. Tong, G. Wang, A. Yavrian, T. Galstian, and Y. Zhao, “Dual-mode switching of diffraction gratings based on azobenzene-polymer-stabilized liquid crystals,” Adv. Mater. (Deerfield Beach Fla.) 17(3), 370–374 (2005).
[CrossRef]

Gong, X.

P. Wu, L. Wang, J. Xu, B. Zou, X. Gong, G. Zhang, G. Tang, W. Chen, and W. Huang, “Transient biphotonic holographic grating in photoisomerizative azo materials,” Phys. Rev. B 57(7), 3874–3880 (1998).
[CrossRef]

Gu, T.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Haarer, D.

Y. Sabi, M. Yamamoto, H. Watanabe, T. Bieringer, D. Haarer, R. Hagen, S. G. Kostromine, and H. Berneth, “Photoaddressable polymers for rewritable optical disc systems,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1613–1618 (2001).
[CrossRef]

Hagen, R.

Y. Sabi, M. Yamamoto, H. Watanabe, T. Bieringer, D. Haarer, R. Hagen, S. G. Kostromine, and H. Berneth, “Photoaddressable polymers for rewritable optical disc systems,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1613–1618 (2001).
[CrossRef]

Haw, M.

M. Haw, “Holographic data storage: The light fantastic,” Nature 422(6932), 556–558 (2003).
[CrossRef] [PubMed]

Hörhold, H.-H.

E. Mecher, F. Gallego-Gómez, H. Tillmann, H.-H. Hörhold, J. C. Hummelen, and K. Meerholz, “Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination,” Nature 418(6901), 959–964 (2002).
[CrossRef] [PubMed]

Hsieh, C.

Huang, W.

P. Wu, L. Wang, J. Xu, B. Zou, X. Gong, G. Zhang, G. Tang, W. Chen, and W. Huang, “Transient biphotonic holographic grating in photoisomerizative azo materials,” Phys. Rev. B 57(7), 3874–3880 (1998).
[CrossRef]

Hummelen, J. C.

E. Mecher, F. Gallego-Gómez, H. Tillmann, H.-H. Hörhold, J. C. Hummelen, and K. Meerholz, “Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination,” Nature 418(6901), 959–964 (2002).
[CrossRef] [PubMed]

Hvilsted, S.

R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic data storage,” Nature 383(6600), 505–508 (1996).
[CrossRef]

Hwang, U.

G. Lee, J. Lee, J. Kim, U. Hwang, C. Oh, B. Park, Y. Lee, and S. Paek, “Liquid crystal alignment by Holographic surface relief grating inscribed on azo-polymer film,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 424(1), 75–83 (2004).
[CrossRef]

Ikeda, T.

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268(5219), 1873–1875 (1995).
[CrossRef] [PubMed]

Jeong, K.

Karbaschi, A.

Kawakami, Y.

Y. H. Cho and Y. Kawakami, “A novel process for holographic polymer dispersed liquid crystal system via simultaneous photo-polymerization and siloxane network formation,” Silicon Chem. 3(5), 219–227 (2007).
[CrossRef]

Kim, B. K.

E. H. Kim, J. Y. Woo, and B. K. Kim, “LC dependent electro-optical properties of holographic polymer dispersed liquid crystals,” Displays 29(5), 482–486 (2008).
[CrossRef]

Kim, E. H.

E. H. Kim, J. Y. Woo, and B. K. Kim, “LC dependent electro-optical properties of holographic polymer dispersed liquid crystals,” Displays 29(5), 482–486 (2008).
[CrossRef]

Kim, J.

G. Lee, J. Lee, J. Kim, U. Hwang, C. Oh, B. Park, Y. Lee, and S. Paek, “Liquid crystal alignment by Holographic surface relief grating inscribed on azo-polymer film,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 424(1), 75–83 (2004).
[CrossRef]

Kimball, B. R.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. DeCristofano, “Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation,” Appl. Phys. Lett. 78(9), 1189–1191 (2001).
[CrossRef]

Kippelen, B.

K. Meerholz, B. L. Volodin, B. Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371(6497), 497–500 (1994).
[CrossRef]

Köber, S.

Kostromine, S.

J. Eickmans, T. Bieringer, S. Kostromine, H. Berneth, and R. Thoma, “Photoaddressable polymers: a new class of materials for optical data storage and holographic memories,” Jpn. J. Appl. Phys. 38(Part 1, No. 3B), 1835–1836 (1999).
[CrossRef]

Kostromine, S. G.

Y. Sabi, M. Yamamoto, H. Watanabe, T. Bieringer, D. Haarer, R. Hagen, S. G. Kostromine, and H. Berneth, “Photoaddressable polymers for rewritable optical disc systems,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1613–1618 (2001).
[CrossRef]

Kozinkov, V.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2155–2164 (1992).
[CrossRef]

Lee, C.-R.

A. Y.-G. Fuh, C.-R. Lee, and K.-T. Cheng, “Fast optical recording of polarization holographic grating based on an azo-dye-doped polymer-ball-type polymer-dispersed liquid crystal film,” Jpn. J. Appl. Phys. 42(Part 1, No. 7A), 4406–4410 (2003).
[CrossRef]

Lee, G.

G. Lee, J. Lee, J. Kim, U. Hwang, C. Oh, B. Park, Y. Lee, and S. Paek, “Liquid crystal alignment by Holographic surface relief grating inscribed on azo-polymer film,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 424(1), 75–83 (2004).
[CrossRef]

Lee, J.

G. Lee, J. Lee, J. Kim, U. Hwang, C. Oh, B. Park, Y. Lee, and S. Paek, “Liquid crystal alignment by Holographic surface relief grating inscribed on azo-polymer film,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 424(1), 75–83 (2004).
[CrossRef]

Lee, Y.

G. Lee, J. Lee, J. Kim, U. Hwang, C. Oh, B. Park, Y. Lee, and S. Paek, “Liquid crystal alignment by Holographic surface relief grating inscribed on azo-polymer film,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 424(1), 75–83 (2004).
[CrossRef]

Li, G.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Li, X.

X. Li, A. Natansohn, and P. Rochon, “Photoinduced liquid crystal alignment based on a surface relief grating in an assembled cell,” Appl. Phys. Lett. 74(25), 3791–3793 (1999).
[CrossRef]

Lin, W.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Liu, Z.

Lu, Y. Q.

Y. Q. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95(3), 810–815 (2004).
[CrossRef]

Luc, J.

Matczyszyn, K.

K. Matczyszyn, S. Bartkiewicz, and B. Sahraoui, “A new holographic system: liquid crystal doped with photochromic molecules,” Opt. Mater. 20(1), 57–61 (2002).
[CrossRef]

Mecher, E.

E. Mecher, F. Gallego-Gómez, H. Tillmann, H.-H. Hörhold, J. C. Hummelen, and K. Meerholz, “Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination,” Nature 418(6901), 959–964 (2002).
[CrossRef] [PubMed]

Meerholz, K.

M. Salvador, J. Prauzner, S. Köber, K. Meerholz, J. J. Turek, K. Jeong, and D. D. Nolte, “Three-dimensional holographic imaging of living tissue using a highly sensitive photorefractive polymer device,” Opt. Express 17(14), 11834–11849 (2009).
[CrossRef] [PubMed]

E. Mecher, F. Gallego-Gómez, H. Tillmann, H.-H. Hörhold, J. C. Hummelen, and K. Meerholz, “Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination,” Nature 418(6901), 959–964 (2002).
[CrossRef] [PubMed]

K. Meerholz, B. L. Volodin, B. Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371(6497), 497–500 (1994).
[CrossRef]

Mirlis, E.

Moerner, W. E.

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev. 104(7), 3267–3314 (2004).
[CrossRef] [PubMed]

Momtahan, O.

Nakashima, M.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. DeCristofano, “Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation,” Appl. Phys. Lett. 78(9), 1189–1191 (2001).
[CrossRef]

Natansohn, A.

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
[CrossRef] [PubMed]

X. Li, A. Natansohn, and P. Rochon, “Photoinduced liquid crystal alignment based on a surface relief grating in an assembled cell,” Appl. Phys. Lett. 74(25), 3791–3793 (1999).
[CrossRef]

Natarajan, L. V.

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

Nikolova, L.

Nolte, D. D.

Norwood, R. A.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Oh, C.

G. Lee, J. Lee, J. Kim, U. Hwang, C. Oh, B. Park, Y. Lee, and S. Paek, “Liquid crystal alignment by Holographic surface relief grating inscribed on azo-polymer film,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 424(1), 75–83 (2004).
[CrossRef]

Ostroverkhova, O.

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev. 104(7), 3267–3314 (2004).
[CrossRef] [PubMed]

Paek, S.

G. Lee, J. Lee, J. Kim, U. Hwang, C. Oh, B. Park, Y. Lee, and S. Paek, “Liquid crystal alignment by Holographic surface relief grating inscribed on azo-polymer film,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 424(1), 75–83 (2004).
[CrossRef]

Park, B.

H. Choi, J. W. Wu, H.-J. Chang, and B. Park, “Holographically generated twisted nematic liquid crystal gratings,” Appl. Phys. Lett. 88(2), 021905 (2006).

G. Lee, J. Lee, J. Kim, U. Hwang, C. Oh, B. Park, Y. Lee, and S. Paek, “Liquid crystal alignment by Holographic surface relief grating inscribed on azo-polymer film,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 424(1), 75–83 (2004).
[CrossRef]

Petrova, T.

Peyghambarian, N.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

K. Meerholz, B. L. Volodin, B. Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371(6497), 497–500 (1994).
[CrossRef]

Prauzner, J.

Psaltis, D.

Pu, A.

Qi, J.

J. Qi and G. P. Crawford, “Holographically formed polymer dispersed liquid crystal displays,” Displays 25(5), 177–186 (2004).
[CrossRef]

Ramanujam, P. S.

R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic data storage,” Nature 383(6600), 505–508 (1996).
[CrossRef]

Rao, D. V. G. L. N.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. DeCristofano, “Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation,” Appl. Phys. Lett. 78(9), 1189–1191 (2001).
[CrossRef]

Rochon, P.

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
[CrossRef] [PubMed]

X. Li, A. Natansohn, and P. Rochon, “Photoinduced liquid crystal alignment based on a surface relief grating in an assembled cell,” Appl. Phys. Lett. 74(25), 3791–3793 (1999).
[CrossRef]

Rokutanda, S.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Sabi, Y.

Y. Sabi, M. Yamamoto, H. Watanabe, T. Bieringer, D. Haarer, R. Hagen, S. G. Kostromine, and H. Berneth, “Photoaddressable polymers for rewritable optical disc systems,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1613–1618 (2001).
[CrossRef]

Sahraoui, B.

J. Luc, K. Bouchouit, R. Czaplicki, J.-L. Fillaut, and B. Sahraoui, “Study of surface relief gratings on azo organometallic films in picosecond regime,” Opt. Express 16(20), 15633–15639 (2008).
[CrossRef] [PubMed]

K. Matczyszyn, S. Bartkiewicz, and B. Sahraoui, “A new holographic system: liquid crystal doped with photochromic molecules,” Opt. Mater. 20(1), 57–61 (2002).
[CrossRef]

Salvador, M.

Sandalphon, B.

K. Meerholz, B. L. Volodin, B. Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371(6497), 497–500 (1994).
[CrossRef]

Schadt, M.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2155–2164 (1992).
[CrossRef]

Schmitt, K.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2155–2164 (1992).
[CrossRef]

St Hilaire, P.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Sutherland, R. L.

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

Tang, G.

P. Wu, L. Wang, J. Xu, B. Zou, X. Gong, G. Zhang, G. Tang, W. Chen, and W. Huang, “Transient biphotonic holographic grating in photoisomerizative azo materials,” Phys. Rev. B 57(7), 3874–3880 (1998).
[CrossRef]

Tay, S.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Thoma, R.

J. Eickmans, T. Bieringer, S. Kostromine, H. Berneth, and R. Thoma, “Photoaddressable polymers: a new class of materials for optical data storage and holographic memories,” Jpn. J. Appl. Phys. 38(Part 1, No. 3B), 1835–1836 (1999).
[CrossRef]

Thomas, J.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Tillmann, H.

E. Mecher, F. Gallego-Gómez, H. Tillmann, H.-H. Hörhold, J. C. Hummelen, and K. Meerholz, “Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination,” Nature 418(6901), 959–964 (2002).
[CrossRef] [PubMed]

Todorov, T.

Tomova, N.

Tondiglia, V. P.

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

Tong, X.

X. Tong, G. Wang, A. Yavrian, T. Galstian, and Y. Zhao, “Dual-mode switching of diffraction gratings based on azobenzene-polymer-stabilized liquid crystals,” Adv. Mater. (Deerfield Beach Fla.) 17(3), 370–374 (2005).
[CrossRef]

Tsutsumi, O.

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268(5219), 1873–1875 (1995).
[CrossRef] [PubMed]

Tunç, A. V.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Turek, J. J.

Volodin, B. L.

K. Meerholz, B. L. Volodin, B. Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371(6497), 497–500 (1994).
[CrossRef]

Voorakaranam, R.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Wang, G.

X. Tong, G. Wang, A. Yavrian, T. Galstian, and Y. Zhao, “Dual-mode switching of diffraction gratings based on azobenzene-polymer-stabilized liquid crystals,” Adv. Mater. (Deerfield Beach Fla.) 17(3), 370–374 (2005).
[CrossRef]

Wang, L.

P. Wu, L. Wang, J. Xu, B. Zou, X. Gong, G. Zhang, G. Tang, W. Chen, and W. Huang, “Transient biphotonic holographic grating in photoisomerizative azo materials,” Phys. Rev. B 57(7), 3874–3880 (1998).
[CrossRef]

Wang, M. R.

Wang, P.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Watanabe, H.

Y. Sabi, M. Yamamoto, H. Watanabe, T. Bieringer, D. Haarer, R. Hagen, S. G. Kostromine, and H. Berneth, “Photoaddressable polymers for rewritable optical disc systems,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1613–1618 (2001).
[CrossRef]

West, D. P.

Woo, J. Y.

E. H. Kim, J. Y. Woo, and B. K. Kim, “LC dependent electro-optical properties of holographic polymer dispersed liquid crystals,” Displays 29(5), 482–486 (2008).
[CrossRef]

Wu, J. W.

H. Choi, J. W. Wu, H.-J. Chang, and B. Park, “Holographically generated twisted nematic liquid crystal gratings,” Appl. Phys. Lett. 88(2), 021905 (2006).

Wu, P.

P. Wu, Z. Liu, J. J. Yang, A. Flores, and M. R. Wang, “Wavelength-multiplexed submicron holograms for disk-compatible data storage,” Opt. Express 15(26), 17798–17804 (2007).
[CrossRef] [PubMed]

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. DeCristofano, “Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation,” Appl. Phys. Lett. 78(9), 1189–1191 (2001).
[CrossRef]

P. Wu, L. Wang, J. Xu, B. Zou, X. Gong, G. Zhang, G. Tang, W. Chen, and W. Huang, “Transient biphotonic holographic grating in photoisomerizative azo materials,” Phys. Rev. B 57(7), 3874–3880 (1998).
[CrossRef]

Wu, S. T.

Y. Q. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95(3), 810–815 (2004).
[CrossRef]

Xu, J.

P. Wu, L. Wang, J. Xu, B. Zou, X. Gong, G. Zhang, G. Tang, W. Chen, and W. Huang, “Transient biphotonic holographic grating in photoisomerizative azo materials,” Phys. Rev. B 57(7), 3874–3880 (1998).
[CrossRef]

Yamamoto, M.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Y. Sabi, M. Yamamoto, H. Watanabe, T. Bieringer, D. Haarer, R. Hagen, S. G. Kostromine, and H. Berneth, “Photoaddressable polymers for rewritable optical disc systems,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1613–1618 (2001).
[CrossRef]

Yang, J. J.

Yavrian, A.

X. Tong, G. Wang, A. Yavrian, T. Galstian, and Y. Zhao, “Dual-mode switching of diffraction gratings based on azobenzene-polymer-stabilized liquid crystals,” Adv. Mater. (Deerfield Beach Fla.) 17(3), 370–374 (2005).
[CrossRef]

Zhang, G.

P. Wu, L. Wang, J. Xu, B. Zou, X. Gong, G. Zhang, G. Tang, W. Chen, and W. Huang, “Transient biphotonic holographic grating in photoisomerizative azo materials,” Phys. Rev. B 57(7), 3874–3880 (1998).
[CrossRef]

Zhao, Y.

X. Tong, G. Wang, A. Yavrian, T. Galstian, and Y. Zhao, “Dual-mode switching of diffraction gratings based on azobenzene-polymer-stabilized liquid crystals,” Adv. Mater. (Deerfield Beach Fla.) 17(3), 370–374 (2005).
[CrossRef]

Zou, B.

P. Wu, L. Wang, J. Xu, B. Zou, X. Gong, G. Zhang, G. Tang, W. Chen, and W. Huang, “Transient biphotonic holographic grating in photoisomerizative azo materials,” Phys. Rev. B 57(7), 3874–3880 (1998).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

X. Tong, G. Wang, A. Yavrian, T. Galstian, and Y. Zhao, “Dual-mode switching of diffraction gratings based on azobenzene-polymer-stabilized liquid crystals,” Adv. Mater. (Deerfield Beach Fla.) 17(3), 370–374 (2005).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

P. Cheben and M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78(11), 1490–1492 (2001).
[CrossRef]

X. Li, A. Natansohn, and P. Rochon, “Photoinduced liquid crystal alignment based on a surface relief grating in an assembled cell,” Appl. Phys. Lett. 74(25), 3791–3793 (1999).
[CrossRef]

H. Choi, J. W. Wu, H.-J. Chang, and B. Park, “Holographically generated twisted nematic liquid crystal gratings,” Appl. Phys. Lett. 88(2), 021905 (2006).

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. DeCristofano, “Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation,” Appl. Phys. Lett. 78(9), 1189–1191 (2001).
[CrossRef]

Chem. Rev. (2)

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
[CrossRef] [PubMed]

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev. 104(7), 3267–3314 (2004).
[CrossRef] [PubMed]

Displays (2)

J. Qi and G. P. Crawford, “Holographically formed polymer dispersed liquid crystal displays,” Displays 25(5), 177–186 (2004).
[CrossRef]

E. H. Kim, J. Y. Woo, and B. K. Kim, “LC dependent electro-optical properties of holographic polymer dispersed liquid crystals,” Displays 29(5), 482–486 (2008).
[CrossRef]

J. Appl. Phys. (1)

Y. Q. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95(3), 810–815 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (4)

J. Eickmans, T. Bieringer, S. Kostromine, H. Berneth, and R. Thoma, “Photoaddressable polymers: a new class of materials for optical data storage and holographic memories,” Jpn. J. Appl. Phys. 38(Part 1, No. 3B), 1835–1836 (1999).
[CrossRef]

Y. Sabi, M. Yamamoto, H. Watanabe, T. Bieringer, D. Haarer, R. Hagen, S. G. Kostromine, and H. Berneth, “Photoaddressable polymers for rewritable optical disc systems,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1613–1618 (2001).
[CrossRef]

A. Y.-G. Fuh, C.-R. Lee, and K.-T. Cheng, “Fast optical recording of polarization holographic grating based on an azo-dye-doped polymer-ball-type polymer-dispersed liquid crystal film,” Jpn. J. Appl. Phys. 42(Part 1, No. 7A), 4406–4410 (2003).
[CrossRef]

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2155–2164 (1992).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

G. Lee, J. Lee, J. Kim, U. Hwang, C. Oh, B. Park, Y. Lee, and S. Paek, “Liquid crystal alignment by Holographic surface relief grating inscribed on azo-polymer film,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 424(1), 75–83 (2004).
[CrossRef]

Nature (5)

K. Meerholz, B. L. Volodin, B. Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371(6497), 497–500 (1994).
[CrossRef]

E. Mecher, F. Gallego-Gómez, H. Tillmann, H.-H. Hörhold, J. C. Hummelen, and K. Meerholz, “Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination,” Nature 418(6901), 959–964 (2002).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

M. Haw, “Holographic data storage: The light fantastic,” Nature 422(6932), 556–558 (2003).
[CrossRef] [PubMed]

R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic data storage,” Nature 383(6600), 505–508 (1996).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Opt. Mater. (1)

K. Matczyszyn, S. Bartkiewicz, and B. Sahraoui, “A new holographic system: liquid crystal doped with photochromic molecules,” Opt. Mater. 20(1), 57–61 (2002).
[CrossRef]

Phys. Rev. B (1)

P. Wu, L. Wang, J. Xu, B. Zou, X. Gong, G. Zhang, G. Tang, W. Chen, and W. Huang, “Transient biphotonic holographic grating in photoisomerizative azo materials,” Phys. Rev. B 57(7), 3874–3880 (1998).
[CrossRef]

Science (1)

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268(5219), 1873–1875 (1995).
[CrossRef] [PubMed]

Silicon Chem. (1)

Y. H. Cho and Y. Kawakami, “A novel process for holographic polymer dispersed liquid crystal system via simultaneous photo-polymerization and siloxane network formation,” Silicon Chem. 3(5), 219–227 (2007).
[CrossRef]

Other (1)

J. F. Rabek, Photochemistry and Photophysics (CRC, Boca Raton, FL, 1990), 120–141.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Holographic recording based on a concept of optical reinforcement. (a) Holographic interference pattern on a recording film. The polymer chains are reconfigured in the bright interference fringes while remaining randomly distributed in the dark fringes. (b) The bone-muscle-like concept. Holographic grating framework constructed by polymer backbones is strengthened by surrounding fluid LC molecules due to their collective alignment. (c),(d) The photoinduced reconfiguration implemented through the reorientation of side-chain azobenzene chromophore with its axis perpendicular to the polarization direction of recording light field.

Fig. 2
Fig. 2

Holographic experiments and results. (a) Microscopic images of sample film. The upper image shows nanoscale domains after sample preparation. The lower image shows transformation to its isotropic phase at phase transition temperature. (b) Holographic recording and reading arrangement. Object and reference beams are obtained from a CW 532-nm diode-pumped solid state (DPSS) laser. Reading beam is from a 659-nm DPSS laser. (c) A typical experimental result of holographic recording and reading by using a synthesized new material system. Inset, holographic recordings by using a sample film containing only the azobenzene copolymer (left inset) and a LC sample doped with azobenzene chromophore monomer (right inset). Both samples exhibit fast storage volatility after turning off recording beams.

Fig. 3
Fig. 3

Holographic nonvolatile reading and controllable erasure. (a) Holographic reading at 659-nm and 532-nm wavelengths. The recorded hologram is very stable under 659-nm reading. Nonvolatile reading can also be achieved at the same wavelength as the recording but with a relatively weak intensity. (b) Thermal erasure process which takes only about 4 seconds to completely erase the grating. Fresh holograms can be recorded again at the same location.

Fig. 4
Fig. 4

Holographic image recording and reconstruction. (a) Transient holographic recording. From top to bottom, holographic recording at 10 seconds, 30 seconds and 50 seconds. (b) Holographic real-time reconstruction (top) and long-term persistence (bottom). (c) Multiple write/rewrite cycles of hologram recording. Fresh holograms can be recorded at the same sample location after erasure.

Metrics