Abstract

Real-time photoacoustic (PA) imaging involves beamforming methods using an assumed fixed sound speed, typically 1540 m/s in soft tissue. This leads to degradation of PA image quality because the true sound speed changes as PA signal propagates through different types of soft tissues: the range from 1450 m/s to 1600 m/s. This paper proposes a new method for estimating an optimal sound speed to enhance the cross-sectional PA image quality. The optimal sound speed is determined when coherent factor with the sound speed is maximized. The proposed method was validated through simulation and ex vivo experiments with microcalcification-contained breast cancer specimen. The experimental results demonstrated that the best lateral resolution of PA images of microcalcifications can be achieved when the optimal sound speed is utilized.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
    [CrossRef] [PubMed]
  2. R. I. Siphanto, K. K. Thumma, R. G. M. Kolkman, T. G. van Leeuwen, F. F. M. de Mul, J. W. van Neck, L. N. A. van Adrichem, and W. Steenbergen, “Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis,” Opt. Express 13(1), 89–95 (2005).
    [CrossRef] [PubMed]
  3. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 0411011 (2006).
    [CrossRef]
  4. T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system,” Radiology 256(1), 102–110 (2010).
    [CrossRef] [PubMed]
  5. X. Wang, J. B. Fowlkes, J. M. Cannata, C. Hu, and P. L. Carson, “Photoacoustic imaging with a commercial ultrasound system and a custom probe,” Ultrasound Med. Biol. 37(3), 484–492 (2011).
    [CrossRef] [PubMed]
  6. T. Harrison and R. J. Zemp, “The applicability of ultrasound dynamic receive beamformers to photoacoustic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(10), 2259–2263 (2011).
    [CrossRef] [PubMed]
  7. C.-K. Liao, M.-L. Li, and P.-C. Li, “Optoacoustic imaging with synthetic aperture focusing and coherence weighting,” Opt. Lett. 29(21), 2506–2508 (2004).
    [CrossRef] [PubMed]
  8. S. Park, A. B. Karpiouk, S. R. Aglyamov, and S. Y. Emelianov, “Adaptive beamforming for photoacoustic imaging,” Opt. Lett. 33(12), 1291–1293 (2008).
    [CrossRef] [PubMed]
  9. C. Yoon, Y. Lee, J. H. Chang, T.-K. Song, and Y. Yoo, “In vitro estimation of mean sound speed based on minimum average phase variance in medical ultrasound imaging,” Ultrasonics 51(7), 795–802 (2011).
    [CrossRef] [PubMed]
  10. B. E. Treeby, T. K. Varslot, E. Z. Zhang, J. G. Laufer, and P. C. Beard, “Automatic sound speed selection in photoacoustic image reconstruction using an autofocus approach,” J. Biomed. Opt. 16(9), 090501 (2011).
    [CrossRef] [PubMed]
  11. R. G. M. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Reflection mode photoacoustic measurement of speed of sound,” Opt. Express 15(6), 3291–3300 (2007).
    [CrossRef] [PubMed]
  12. K. P. Köstli and P. C. Beard, “Two-dimensional photoacoustic imaging by use of Fourier-transform image reconstruction and a detector with an anisotropic response,” Appl. Opt. 42(10), 1899–1908 (2003).
    [CrossRef] [PubMed]
  13. B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
    [CrossRef] [PubMed]
  14. J. Kang, E. K. Kim, J. Y. Kwak, Y. Yoo, T.-K. Song, and J. H. Chang, “Optimal laser wavelength for photoacoustic imaging of breast microcalcification,” Appl. Phys. Lett. 99(15), 153702 (2011).
    [CrossRef]
  15. C. R. Hill, J. C. Bamber, and G. Haar, “Physical principles of medical ultrasonics (John Wiley and Sons, 2004), Chap. 5.
  16. S. W. Flax and M. O’Donnell, “Phase-aberration correction using signals from point reflector and diffuse scatterers: basic principles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35(6), 758–767 (1988).
    [CrossRef]
  17. C. I. Nilsen and S. Holm, “Wiener beamforming and the coherence factor in ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(6), 1329–1346 (2010).
    [CrossRef] [PubMed]

2011 (5)

X. Wang, J. B. Fowlkes, J. M. Cannata, C. Hu, and P. L. Carson, “Photoacoustic imaging with a commercial ultrasound system and a custom probe,” Ultrasound Med. Biol. 37(3), 484–492 (2011).
[CrossRef] [PubMed]

T. Harrison and R. J. Zemp, “The applicability of ultrasound dynamic receive beamformers to photoacoustic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(10), 2259–2263 (2011).
[CrossRef] [PubMed]

C. Yoon, Y. Lee, J. H. Chang, T.-K. Song, and Y. Yoo, “In vitro estimation of mean sound speed based on minimum average phase variance in medical ultrasound imaging,” Ultrasonics 51(7), 795–802 (2011).
[CrossRef] [PubMed]

B. E. Treeby, T. K. Varslot, E. Z. Zhang, J. G. Laufer, and P. C. Beard, “Automatic sound speed selection in photoacoustic image reconstruction using an autofocus approach,” J. Biomed. Opt. 16(9), 090501 (2011).
[CrossRef] [PubMed]

J. Kang, E. K. Kim, J. Y. Kwak, Y. Yoo, T.-K. Song, and J. H. Chang, “Optimal laser wavelength for photoacoustic imaging of breast microcalcification,” Appl. Phys. Lett. 99(15), 153702 (2011).
[CrossRef]

2010 (3)

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[CrossRef] [PubMed]

T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system,” Radiology 256(1), 102–110 (2010).
[CrossRef] [PubMed]

C. I. Nilsen and S. Holm, “Wiener beamforming and the coherence factor in ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(6), 1329–1346 (2010).
[CrossRef] [PubMed]

2008 (1)

2007 (1)

2006 (2)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 0411011 (2006).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

2003 (1)

1988 (1)

S. W. Flax and M. O’Donnell, “Phase-aberration correction using signals from point reflector and diffuse scatterers: basic principles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35(6), 758–767 (1988).
[CrossRef]

Aglyamov, S. R.

Beard, P. C.

B. E. Treeby, T. K. Varslot, E. Z. Zhang, J. G. Laufer, and P. C. Beard, “Automatic sound speed selection in photoacoustic image reconstruction using an autofocus approach,” J. Biomed. Opt. 16(9), 090501 (2011).
[CrossRef] [PubMed]

K. P. Köstli and P. C. Beard, “Two-dimensional photoacoustic imaging by use of Fourier-transform image reconstruction and a detector with an anisotropic response,” Appl. Opt. 42(10), 1899–1908 (2003).
[CrossRef] [PubMed]

Cannata, J. M.

X. Wang, J. B. Fowlkes, J. M. Cannata, C. Hu, and P. L. Carson, “Photoacoustic imaging with a commercial ultrasound system and a custom probe,” Ultrasound Med. Biol. 37(3), 484–492 (2011).
[CrossRef] [PubMed]

Carson, P. L.

X. Wang, J. B. Fowlkes, J. M. Cannata, C. Hu, and P. L. Carson, “Photoacoustic imaging with a commercial ultrasound system and a custom probe,” Ultrasound Med. Biol. 37(3), 484–492 (2011).
[CrossRef] [PubMed]

Chang, J. H.

J. Kang, E. K. Kim, J. Y. Kwak, Y. Yoo, T.-K. Song, and J. H. Chang, “Optimal laser wavelength for photoacoustic imaging of breast microcalcification,” Appl. Phys. Lett. 99(15), 153702 (2011).
[CrossRef]

C. Yoon, Y. Lee, J. H. Chang, T.-K. Song, and Y. Yoo, “In vitro estimation of mean sound speed based on minimum average phase variance in medical ultrasound imaging,” Ultrasonics 51(7), 795–802 (2011).
[CrossRef] [PubMed]

Cox, B. T.

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[CrossRef] [PubMed]

de Mul, F. F. M.

Emelianov, S. Y.

Erpelding, T. N.

T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system,” Radiology 256(1), 102–110 (2010).
[CrossRef] [PubMed]

Flax, S. W.

S. W. Flax and M. O’Donnell, “Phase-aberration correction using signals from point reflector and diffuse scatterers: basic principles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35(6), 758–767 (1988).
[CrossRef]

Fowlkes, J. B.

X. Wang, J. B. Fowlkes, J. M. Cannata, C. Hu, and P. L. Carson, “Photoacoustic imaging with a commercial ultrasound system and a custom probe,” Ultrasound Med. Biol. 37(3), 484–492 (2011).
[CrossRef] [PubMed]

Guo, Z.

T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system,” Radiology 256(1), 102–110 (2010).
[CrossRef] [PubMed]

Harrison, T.

T. Harrison and R. J. Zemp, “The applicability of ultrasound dynamic receive beamformers to photoacoustic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(10), 2259–2263 (2011).
[CrossRef] [PubMed]

Holm, S.

C. I. Nilsen and S. Holm, “Wiener beamforming and the coherence factor in ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(6), 1329–1346 (2010).
[CrossRef] [PubMed]

Hu, C.

X. Wang, J. B. Fowlkes, J. M. Cannata, C. Hu, and P. L. Carson, “Photoacoustic imaging with a commercial ultrasound system and a custom probe,” Ultrasound Med. Biol. 37(3), 484–492 (2011).
[CrossRef] [PubMed]

Jankovic, L.

T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system,” Radiology 256(1), 102–110 (2010).
[CrossRef] [PubMed]

Kang, J.

J. Kang, E. K. Kim, J. Y. Kwak, Y. Yoo, T.-K. Song, and J. H. Chang, “Optimal laser wavelength for photoacoustic imaging of breast microcalcification,” Appl. Phys. Lett. 99(15), 153702 (2011).
[CrossRef]

Karpiouk, A. B.

Kim, C.

T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system,” Radiology 256(1), 102–110 (2010).
[CrossRef] [PubMed]

Kim, E. K.

J. Kang, E. K. Kim, J. Y. Kwak, Y. Yoo, T.-K. Song, and J. H. Chang, “Optimal laser wavelength for photoacoustic imaging of breast microcalcification,” Appl. Phys. Lett. 99(15), 153702 (2011).
[CrossRef]

Kolkman, R. G. M.

Köstli, K. P.

Kwak, J. Y.

J. Kang, E. K. Kim, J. Y. Kwak, Y. Yoo, T.-K. Song, and J. H. Chang, “Optimal laser wavelength for photoacoustic imaging of breast microcalcification,” Appl. Phys. Lett. 99(15), 153702 (2011).
[CrossRef]

Laufer, J. G.

B. E. Treeby, T. K. Varslot, E. Z. Zhang, J. G. Laufer, and P. C. Beard, “Automatic sound speed selection in photoacoustic image reconstruction using an autofocus approach,” J. Biomed. Opt. 16(9), 090501 (2011).
[CrossRef] [PubMed]

Lee, Y.

C. Yoon, Y. Lee, J. H. Chang, T.-K. Song, and Y. Yoo, “In vitro estimation of mean sound speed based on minimum average phase variance in medical ultrasound imaging,” Ultrasonics 51(7), 795–802 (2011).
[CrossRef] [PubMed]

Li, M.-L.

Li, P.-C.

Liao, C.-K.

Margenthaler, J. A.

T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system,” Radiology 256(1), 102–110 (2010).
[CrossRef] [PubMed]

Maslov, K.

T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system,” Radiology 256(1), 102–110 (2010).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Nilsen, C. I.

C. I. Nilsen and S. Holm, “Wiener beamforming and the coherence factor in ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(6), 1329–1346 (2010).
[CrossRef] [PubMed]

O’Donnell, M.

S. W. Flax and M. O’Donnell, “Phase-aberration correction using signals from point reflector and diffuse scatterers: basic principles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35(6), 758–767 (1988).
[CrossRef]

Park, S.

Pashley, M. D.

T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system,” Radiology 256(1), 102–110 (2010).
[CrossRef] [PubMed]

Pramanik, M.

T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system,” Radiology 256(1), 102–110 (2010).
[CrossRef] [PubMed]

Siphanto, R. I.

Song, T.-K.

J. Kang, E. K. Kim, J. Y. Kwak, Y. Yoo, T.-K. Song, and J. H. Chang, “Optimal laser wavelength for photoacoustic imaging of breast microcalcification,” Appl. Phys. Lett. 99(15), 153702 (2011).
[CrossRef]

C. Yoon, Y. Lee, J. H. Chang, T.-K. Song, and Y. Yoo, “In vitro estimation of mean sound speed based on minimum average phase variance in medical ultrasound imaging,” Ultrasonics 51(7), 795–802 (2011).
[CrossRef] [PubMed]

Steenbergen, W.

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Thumma, K. K.

Treeby, B. E.

B. E. Treeby, T. K. Varslot, E. Z. Zhang, J. G. Laufer, and P. C. Beard, “Automatic sound speed selection in photoacoustic image reconstruction using an autofocus approach,” J. Biomed. Opt. 16(9), 090501 (2011).
[CrossRef] [PubMed]

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[CrossRef] [PubMed]

van Adrichem, L. N. A.

van Leeuwen, T. G.

van Neck, J. W.

Varslot, T. K.

B. E. Treeby, T. K. Varslot, E. Z. Zhang, J. G. Laufer, and P. C. Beard, “Automatic sound speed selection in photoacoustic image reconstruction using an autofocus approach,” J. Biomed. Opt. 16(9), 090501 (2011).
[CrossRef] [PubMed]

Wang, L. V.

T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system,” Radiology 256(1), 102–110 (2010).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 0411011 (2006).
[CrossRef]

Wang, X.

X. Wang, J. B. Fowlkes, J. M. Cannata, C. Hu, and P. L. Carson, “Photoacoustic imaging with a commercial ultrasound system and a custom probe,” Ultrasound Med. Biol. 37(3), 484–492 (2011).
[CrossRef] [PubMed]

Xu, M.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 0411011 (2006).
[CrossRef]

Yoo, Y.

J. Kang, E. K. Kim, J. Y. Kwak, Y. Yoo, T.-K. Song, and J. H. Chang, “Optimal laser wavelength for photoacoustic imaging of breast microcalcification,” Appl. Phys. Lett. 99(15), 153702 (2011).
[CrossRef]

C. Yoon, Y. Lee, J. H. Chang, T.-K. Song, and Y. Yoo, “In vitro estimation of mean sound speed based on minimum average phase variance in medical ultrasound imaging,” Ultrasonics 51(7), 795–802 (2011).
[CrossRef] [PubMed]

Yoon, C.

C. Yoon, Y. Lee, J. H. Chang, T.-K. Song, and Y. Yoo, “In vitro estimation of mean sound speed based on minimum average phase variance in medical ultrasound imaging,” Ultrasonics 51(7), 795–802 (2011).
[CrossRef] [PubMed]

Zemp, R. J.

T. Harrison and R. J. Zemp, “The applicability of ultrasound dynamic receive beamformers to photoacoustic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(10), 2259–2263 (2011).
[CrossRef] [PubMed]

Zhang, E. Z.

B. E. Treeby, T. K. Varslot, E. Z. Zhang, J. G. Laufer, and P. C. Beard, “Automatic sound speed selection in photoacoustic image reconstruction using an autofocus approach,” J. Biomed. Opt. 16(9), 090501 (2011).
[CrossRef] [PubMed]

Zhang, H. F.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. Kang, E. K. Kim, J. Y. Kwak, Y. Yoo, T.-K. Song, and J. H. Chang, “Optimal laser wavelength for photoacoustic imaging of breast microcalcification,” Appl. Phys. Lett. 99(15), 153702 (2011).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (3)

S. W. Flax and M. O’Donnell, “Phase-aberration correction using signals from point reflector and diffuse scatterers: basic principles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35(6), 758–767 (1988).
[CrossRef]

C. I. Nilsen and S. Holm, “Wiener beamforming and the coherence factor in ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(6), 1329–1346 (2010).
[CrossRef] [PubMed]

T. Harrison and R. J. Zemp, “The applicability of ultrasound dynamic receive beamformers to photoacoustic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(10), 2259–2263 (2011).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[CrossRef] [PubMed]

B. E. Treeby, T. K. Varslot, E. Z. Zhang, J. G. Laufer, and P. C. Beard, “Automatic sound speed selection in photoacoustic image reconstruction using an autofocus approach,” J. Biomed. Opt. 16(9), 090501 (2011).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Radiology (1)

T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system,” Radiology 256(1), 102–110 (2010).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 0411011 (2006).
[CrossRef]

Ultrasonics (1)

C. Yoon, Y. Lee, J. H. Chang, T.-K. Song, and Y. Yoo, “In vitro estimation of mean sound speed based on minimum average phase variance in medical ultrasound imaging,” Ultrasonics 51(7), 795–802 (2011).
[CrossRef] [PubMed]

Ultrasound Med. Biol. (1)

X. Wang, J. B. Fowlkes, J. M. Cannata, C. Hu, and P. L. Carson, “Photoacoustic imaging with a commercial ultrasound system and a custom probe,” Ultrasound Med. Biol. 37(3), 484–492 (2011).
[CrossRef] [PubMed]

Other (1)

C. R. Hill, J. C. Bamber, and G. Haar, “Physical principles of medical ultrasonics (John Wiley and Sons, 2004), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Illustration of PA signal generated from a point-like reflector and received by an US array transducer when the assumed sound speed is equal to or (b) different from the true one.

Fig. 2
Fig. 2

System configuration for ex vivo experiments. A 7-ns laser pulse with the energy of 19 mJ/cm2 was used to generate PA signals.

Fig. 3
Fig. 3

(a) PA image obtained by the simulation. The image was logarithmically compressed with a dynamic range of 30 dB. The diameter of absorber was 0.09 mm. (b) Normalized maximal CF values as a function of sound speed. The maximal CF was found at sound speed of 1500 m/s. (c) the −6 dB lateral resolution as a function of sound speed.

Fig. 4
Fig. 4

(a) Normalized maximal CF values as a function of sound speed. The maximal CF was found at sound speed of 1496 m/s. PA images registered on US images were reconstructed with the sound speed of (b) 1540 m/s and (c) 1496 m/s. The dynamic ranges were 30 dB and 60 dB for PA and US imaging, respectively.

Fig. 5
Fig. 5

(a) Lateral beam profile of the microcalcification indicated by an arrow in Fig. 3(b) and (b) the corresponding CF values at each location.

Fig. 6
Fig. 6

The −6 dB lateral resolution as a function of sound speed.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

τ n = (x x n ) 2 + (z z n ) 2 R c ,
C F l (t)= | n=0 N1 x l,n (t τ n ) | 2 N n=0 N1 | x l,n (t τ n ) | 2 ,
c opt = argmax c=c+ c inc [ max( C F l (t) ) ],
c saline =1449.05+45.7 T 5.21 T 2 +0.23 T 3 +( 1.3330.126 T +0.009 T 2 )( 10S35 ),

Metrics