Abstract

A novel technique, designated dual imaging and modeling evaluation (DIME), for evaluating single-laser shot fluorescence lifetimes is presented. The technique is experimentally verified in a generic gas mixing experiment to provide a clear demonstration of the rapidness and sensitivity of the detector scheme. Single-laser shot fluorescence lifetimes of roughly 800 ps with a standard deviation of ~120 ps were determined. These results were compared to streak camera measurements. Furthermore, a general fluorescence lifetime determination algorithm is proposed. The evaluation algorithm has an analytic, linear relationship between the fluorescence lifetime and detector signal ratio. In combination with the DIME detector scheme, it is a faster, more accurate and more sensitive approach for rapid fluorescence lifetime imaging than previously proposed techniques. Monte Carlo simulations were conducted to analyze the sensitivity of the detector scheme as well as to compare the proposed evaluation algorithm to previously presented rapid lifetime determination algorithms.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. B. van Munster and T. W. Gadella, “Fluorescence lifetime imaging microscopy (FLIM),” Adv. Biochem. Eng. Biotechnol. 95, 143–175 (2005).
    [PubMed]
  2. J. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).
  3. A. D. Scully, R. B. Ostler, D. Phillips, P. O’Neill, K. M. S. Townsend, A. W. Parker, and A. J. MacRobert, “Application of fluorescence lifetime imaging microscopy to the investigation of intracellular PDT mechanisms,” Bioimaging 5(1), 9–18 (1997).
    [CrossRef]
  4. R. Pepperkok, A. Squire, S. Geley, and P. I. H. Bastiaens, “Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy,” Curr. Biol. 9(5), 269–274 (1999).
    [CrossRef] [PubMed]
  5. P. J. Verveer, F. S. Wouters, A. R. Reynolds, and P. I. H. Bastiaens, “Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane,” Science 290(5496), 1567–1570 (2000).
    [CrossRef] [PubMed]
  6. H. E. Grecco, P. Roda-Navarro, A. Girod, J. Hou, T. Frahm, D. C. Truxius, R. Pepperkok, A. Squire, and P. I. H. Bastiaens, “In situ analysis of tyrosine phosphorylation networks by FLIM on cell arrays,” Nat. Methods 7(6), 467–472 (2010).
    [CrossRef] [PubMed]
  7. C.-W. Chang, D. Sud, and M.-A. Mycek, “Fluorescence lifetime imaging microscopy,” Methods Cell Biol. 81, 495–524 (2007).
    [CrossRef] [PubMed]
  8. T. Robinson, P. Valluri, H. B. Manning, D. M. Owen, I. Munro, C. B. Talbot, C. Dunsby, J. F. Eccleston, G. S. Baldwin, M. A. A. Neil, A. J. de Mello, and P. M. W. French, “Three-dimensional molecular mapping in a microfluidic mixing device using fluorescence lifetime imaging,” Opt. Lett. 33(16), 1887–1889 (2008).
    [CrossRef] [PubMed]
  9. T. Ni and L. A. Melton, “Fuel equivalence ratio imaging for methane jets,” Appl. Spectrosc. 47(6), 773–781 (1993).
    [CrossRef]
  10. T. Ni and L. A. Melton, “Two-dimensional gas-phase temperature measurements using fluorescencelifetime imaging,” Appl. Spectrosc. 50(9), 1112–1116 (1996).
    [CrossRef]
  11. A. Ehn, O. Johansson, J. Bood, A. Arvidsson, B. Li, and M. Aldén, “Fluorescence lifetime imaging in a flame,” Proc. Combust. Inst. 33(1), 807–813 (2011).
    [CrossRef]
  12. W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Toluene LIF at elevated temperatures: implications for fuel–air ratio measurements,” Appl. Phys. B 80(2), 147–150 (2005).
    [CrossRef]
  13. C. J. de Grauw and H. C. Gerritsen, “Multiple time-gate module for fluorescence lifetime imaging,” Appl. Spectrosc. 55(6), 670–678 (2001).
    [CrossRef]
  14. D. V. O’Conner and D. Phillips, Time-Correlated Single Photon Counting (Academic, 1984).
  15. K. Dowling, S. C. W. Hyde, J. C. Dainty, P. M. W. French, and J. D. Hares, “2-D fluorescence lifetime imaging using a time-gated image intensifier,” Opt. Commun. 135(1-3), 27–31 (1997).
    [CrossRef]
  16. X. F. Wang, T. Uchida, and S. Minami, “A fluorescence lifetime distribution measurement system based on phase-resolved detection using an image dissector tube,” Appl. Spectrosc. 43(5), 840–845 (1989).
    [CrossRef]
  17. P. C. Schneider and R. M. Clegg, “Rapid acquisition, analysis, and display of fluorescence lifetime-resolved images for real-time application,” Rev. Sci. Instrum. 68(11), 4107–4119 (1997).
    [CrossRef]
  18. R. J. Woods, S. Scypinski, and L. J. Cline Love “Transient digitizer for the determination of microsecond luminescence lifetimes,” Anal. Chem. 56(8), 1395–1400 (1984).
    [CrossRef] [PubMed]
  19. D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intesifier,” New J. Phys. 6, 180 (2004).
    [CrossRef]
  20. P. I. H. Bastiaens and A. Squire, “Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell,” Trends Cell Biol. 9(2), 48–52 (1999).
    [CrossRef] [PubMed]
  21. G. Bunt and F. S. Wouters, “Visualization of molecular activities inside living cells with fluorescent labels,” Int. Rev. Cytol. 237, 205–277 (2004).
    [CrossRef] [PubMed]
  22. A. Esposito, C. P. Dohm, M. Bähr, and F. S. Wouters, “Unsupervised fluorescence lifetime imaging microscopy for high content and high throughput screening,” Mol. Cell. Proteomics 6(8), 1446–1454 (2007).
    [CrossRef] [PubMed]
  23. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).
    [CrossRef] [PubMed]
  24. T. B. Settersten and M. A. Linne, “Modeling pulsed excitation for gas-phase laser diagnostics,” J. Opt. Soc. Am. B 19(5), 954–964 (2002).
    [CrossRef]
  25. R. A. Alberty and R. J. Silbey, Physical Chemistry, 2nd ed. (Wiley, New York, 1997), Chap 19.7.
  26. A. Elder, S. Schlachter, and C. F. Kaminski, “Theoretical investigation of the photon efficiency in frequency-domain fluorescence lifetime imaging microscopy,” J. Opt. Soc. Am. A 25(2), 452–462 (2008).
    [CrossRef] [PubMed]
  27. A. Draaijer, R. Sanders, and H. C. Gerritsen, “Fluorescence lifetime imaging, a new tool in confocal microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, New York, 1995), pp. 491–505.
  28. J. McGinty, J. Requejo-Isidro, I. Munro, C. B. Talbot, P. A. Kellett, J. D. Hares, C. Dunsby, M A A. Neil, and P. M. W. French, “Signal-to-noise characterization of time-gated intensifiers used for wide-field time-domain FLIM,” J. Phys. D Appl. Phys. 42(13), 135103 (2009).
    [CrossRef]
  29. A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, “High frame rate fluorescence lifetime imaging,” J. Phys. D Appl. Phys. 36(14), 1655–1662 (2003).
    [CrossRef]
  30. S. P. Chan, Z. J. Fuller, J. N. Demas, and B. A. DeGraff, “Optimized gating scheme for rapid lifetime determinations of single-exponential luminescence lifetimes,” Anal. Chem. 73(18), 4486–4490 (2001).
    [CrossRef] [PubMed]

2011 (1)

A. Ehn, O. Johansson, J. Bood, A. Arvidsson, B. Li, and M. Aldén, “Fluorescence lifetime imaging in a flame,” Proc. Combust. Inst. 33(1), 807–813 (2011).
[CrossRef]

2010 (1)

H. E. Grecco, P. Roda-Navarro, A. Girod, J. Hou, T. Frahm, D. C. Truxius, R. Pepperkok, A. Squire, and P. I. H. Bastiaens, “In situ analysis of tyrosine phosphorylation networks by FLIM on cell arrays,” Nat. Methods 7(6), 467–472 (2010).
[CrossRef] [PubMed]

2009 (1)

J. McGinty, J. Requejo-Isidro, I. Munro, C. B. Talbot, P. A. Kellett, J. D. Hares, C. Dunsby, M A A. Neil, and P. M. W. French, “Signal-to-noise characterization of time-gated intensifiers used for wide-field time-domain FLIM,” J. Phys. D Appl. Phys. 42(13), 135103 (2009).
[CrossRef]

2008 (2)

2007 (2)

A. Esposito, C. P. Dohm, M. Bähr, and F. S. Wouters, “Unsupervised fluorescence lifetime imaging microscopy for high content and high throughput screening,” Mol. Cell. Proteomics 6(8), 1446–1454 (2007).
[CrossRef] [PubMed]

C.-W. Chang, D. Sud, and M.-A. Mycek, “Fluorescence lifetime imaging microscopy,” Methods Cell Biol. 81, 495–524 (2007).
[CrossRef] [PubMed]

2005 (2)

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Toluene LIF at elevated temperatures: implications for fuel–air ratio measurements,” Appl. Phys. B 80(2), 147–150 (2005).
[CrossRef]

E. B. van Munster and T. W. Gadella, “Fluorescence lifetime imaging microscopy (FLIM),” Adv. Biochem. Eng. Biotechnol. 95, 143–175 (2005).
[PubMed]

2004 (2)

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intesifier,” New J. Phys. 6, 180 (2004).
[CrossRef]

G. Bunt and F. S. Wouters, “Visualization of molecular activities inside living cells with fluorescent labels,” Int. Rev. Cytol. 237, 205–277 (2004).
[CrossRef] [PubMed]

2003 (1)

A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, “High frame rate fluorescence lifetime imaging,” J. Phys. D Appl. Phys. 36(14), 1655–1662 (2003).
[CrossRef]

2002 (1)

2001 (2)

C. J. de Grauw and H. C. Gerritsen, “Multiple time-gate module for fluorescence lifetime imaging,” Appl. Spectrosc. 55(6), 670–678 (2001).
[CrossRef]

S. P. Chan, Z. J. Fuller, J. N. Demas, and B. A. DeGraff, “Optimized gating scheme for rapid lifetime determinations of single-exponential luminescence lifetimes,” Anal. Chem. 73(18), 4486–4490 (2001).
[CrossRef] [PubMed]

2000 (1)

P. J. Verveer, F. S. Wouters, A. R. Reynolds, and P. I. H. Bastiaens, “Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane,” Science 290(5496), 1567–1570 (2000).
[CrossRef] [PubMed]

1999 (2)

R. Pepperkok, A. Squire, S. Geley, and P. I. H. Bastiaens, “Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy,” Curr. Biol. 9(5), 269–274 (1999).
[CrossRef] [PubMed]

P. I. H. Bastiaens and A. Squire, “Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell,” Trends Cell Biol. 9(2), 48–52 (1999).
[CrossRef] [PubMed]

1997 (3)

A. D. Scully, R. B. Ostler, D. Phillips, P. O’Neill, K. M. S. Townsend, A. W. Parker, and A. J. MacRobert, “Application of fluorescence lifetime imaging microscopy to the investigation of intracellular PDT mechanisms,” Bioimaging 5(1), 9–18 (1997).
[CrossRef]

K. Dowling, S. C. W. Hyde, J. C. Dainty, P. M. W. French, and J. D. Hares, “2-D fluorescence lifetime imaging using a time-gated image intensifier,” Opt. Commun. 135(1-3), 27–31 (1997).
[CrossRef]

P. C. Schneider and R. M. Clegg, “Rapid acquisition, analysis, and display of fluorescence lifetime-resolved images for real-time application,” Rev. Sci. Instrum. 68(11), 4107–4119 (1997).
[CrossRef]

1993 (1)

1989 (1)

1984 (1)

R. J. Woods, S. Scypinski, and L. J. Cline Love “Transient digitizer for the determination of microsecond luminescence lifetimes,” Anal. Chem. 56(8), 1395–1400 (1984).
[CrossRef] [PubMed]

1983 (1)

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).
[CrossRef] [PubMed]

Agronskaia, A. V.

A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, “High frame rate fluorescence lifetime imaging,” J. Phys. D Appl. Phys. 36(14), 1655–1662 (2003).
[CrossRef]

Aldén, M.

A. Ehn, O. Johansson, J. Bood, A. Arvidsson, B. Li, and M. Aldén, “Fluorescence lifetime imaging in a flame,” Proc. Combust. Inst. 33(1), 807–813 (2011).
[CrossRef]

Arvidsson, A.

A. Ehn, O. Johansson, J. Bood, A. Arvidsson, B. Li, and M. Aldén, “Fluorescence lifetime imaging in a flame,” Proc. Combust. Inst. 33(1), 807–813 (2011).
[CrossRef]

Bähr, M.

A. Esposito, C. P. Dohm, M. Bähr, and F. S. Wouters, “Unsupervised fluorescence lifetime imaging microscopy for high content and high throughput screening,” Mol. Cell. Proteomics 6(8), 1446–1454 (2007).
[CrossRef] [PubMed]

Baldwin, G. S.

Bastiaens, P. I. H.

H. E. Grecco, P. Roda-Navarro, A. Girod, J. Hou, T. Frahm, D. C. Truxius, R. Pepperkok, A. Squire, and P. I. H. Bastiaens, “In situ analysis of tyrosine phosphorylation networks by FLIM on cell arrays,” Nat. Methods 7(6), 467–472 (2010).
[CrossRef] [PubMed]

P. J. Verveer, F. S. Wouters, A. R. Reynolds, and P. I. H. Bastiaens, “Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane,” Science 290(5496), 1567–1570 (2000).
[CrossRef] [PubMed]

P. I. H. Bastiaens and A. Squire, “Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell,” Trends Cell Biol. 9(2), 48–52 (1999).
[CrossRef] [PubMed]

R. Pepperkok, A. Squire, S. Geley, and P. I. H. Bastiaens, “Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy,” Curr. Biol. 9(5), 269–274 (1999).
[CrossRef] [PubMed]

Bood, J.

A. Ehn, O. Johansson, J. Bood, A. Arvidsson, B. Li, and M. Aldén, “Fluorescence lifetime imaging in a flame,” Proc. Combust. Inst. 33(1), 807–813 (2011).
[CrossRef]

Bunt, G.

G. Bunt and F. S. Wouters, “Visualization of molecular activities inside living cells with fluorescent labels,” Int. Rev. Cytol. 237, 205–277 (2004).
[CrossRef] [PubMed]

Chan, S. P.

S. P. Chan, Z. J. Fuller, J. N. Demas, and B. A. DeGraff, “Optimized gating scheme for rapid lifetime determinations of single-exponential luminescence lifetimes,” Anal. Chem. 73(18), 4486–4490 (2001).
[CrossRef] [PubMed]

Chang, C.-W.

C.-W. Chang, D. Sud, and M.-A. Mycek, “Fluorescence lifetime imaging microscopy,” Methods Cell Biol. 81, 495–524 (2007).
[CrossRef] [PubMed]

Clegg, R. M.

P. C. Schneider and R. M. Clegg, “Rapid acquisition, analysis, and display of fluorescence lifetime-resolved images for real-time application,” Rev. Sci. Instrum. 68(11), 4107–4119 (1997).
[CrossRef]

Cline Love, L. J.

R. J. Woods, S. Scypinski, and L. J. Cline Love “Transient digitizer for the determination of microsecond luminescence lifetimes,” Anal. Chem. 56(8), 1395–1400 (1984).
[CrossRef] [PubMed]

Dainty, J. C.

K. Dowling, S. C. W. Hyde, J. C. Dainty, P. M. W. French, and J. D. Hares, “2-D fluorescence lifetime imaging using a time-gated image intensifier,” Opt. Commun. 135(1-3), 27–31 (1997).
[CrossRef]

de Grauw, C. J.

de Mello, A. J.

DeGraff, B. A.

S. P. Chan, Z. J. Fuller, J. N. Demas, and B. A. DeGraff, “Optimized gating scheme for rapid lifetime determinations of single-exponential luminescence lifetimes,” Anal. Chem. 73(18), 4486–4490 (2001).
[CrossRef] [PubMed]

Demas, J. N.

S. P. Chan, Z. J. Fuller, J. N. Demas, and B. A. DeGraff, “Optimized gating scheme for rapid lifetime determinations of single-exponential luminescence lifetimes,” Anal. Chem. 73(18), 4486–4490 (2001).
[CrossRef] [PubMed]

Dohm, C. P.

A. Esposito, C. P. Dohm, M. Bähr, and F. S. Wouters, “Unsupervised fluorescence lifetime imaging microscopy for high content and high throughput screening,” Mol. Cell. Proteomics 6(8), 1446–1454 (2007).
[CrossRef] [PubMed]

Dowling, K.

K. Dowling, S. C. W. Hyde, J. C. Dainty, P. M. W. French, and J. D. Hares, “2-D fluorescence lifetime imaging using a time-gated image intensifier,” Opt. Commun. 135(1-3), 27–31 (1997).
[CrossRef]

Dunsby, C.

J. McGinty, J. Requejo-Isidro, I. Munro, C. B. Talbot, P. A. Kellett, J. D. Hares, C. Dunsby, M A A. Neil, and P. M. W. French, “Signal-to-noise characterization of time-gated intensifiers used for wide-field time-domain FLIM,” J. Phys. D Appl. Phys. 42(13), 135103 (2009).
[CrossRef]

T. Robinson, P. Valluri, H. B. Manning, D. M. Owen, I. Munro, C. B. Talbot, C. Dunsby, J. F. Eccleston, G. S. Baldwin, M. A. A. Neil, A. J. de Mello, and P. M. W. French, “Three-dimensional molecular mapping in a microfluidic mixing device using fluorescence lifetime imaging,” Opt. Lett. 33(16), 1887–1889 (2008).
[CrossRef] [PubMed]

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intesifier,” New J. Phys. 6, 180 (2004).
[CrossRef]

Dymoke-Bradshaw, A.

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intesifier,” New J. Phys. 6, 180 (2004).
[CrossRef]

Eccleston, J. F.

Ehn, A.

A. Ehn, O. Johansson, J. Bood, A. Arvidsson, B. Li, and M. Aldén, “Fluorescence lifetime imaging in a flame,” Proc. Combust. Inst. 33(1), 807–813 (2011).
[CrossRef]

Elder, A.

Elson, D. S.

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intesifier,” New J. Phys. 6, 180 (2004).
[CrossRef]

Esposito, A.

A. Esposito, C. P. Dohm, M. Bähr, and F. S. Wouters, “Unsupervised fluorescence lifetime imaging microscopy for high content and high throughput screening,” Mol. Cell. Proteomics 6(8), 1446–1454 (2007).
[CrossRef] [PubMed]

Frahm, T.

H. E. Grecco, P. Roda-Navarro, A. Girod, J. Hou, T. Frahm, D. C. Truxius, R. Pepperkok, A. Squire, and P. I. H. Bastiaens, “In situ analysis of tyrosine phosphorylation networks by FLIM on cell arrays,” Nat. Methods 7(6), 467–472 (2010).
[CrossRef] [PubMed]

French, P. M. W.

J. McGinty, J. Requejo-Isidro, I. Munro, C. B. Talbot, P. A. Kellett, J. D. Hares, C. Dunsby, M A A. Neil, and P. M. W. French, “Signal-to-noise characterization of time-gated intensifiers used for wide-field time-domain FLIM,” J. Phys. D Appl. Phys. 42(13), 135103 (2009).
[CrossRef]

T. Robinson, P. Valluri, H. B. Manning, D. M. Owen, I. Munro, C. B. Talbot, C. Dunsby, J. F. Eccleston, G. S. Baldwin, M. A. A. Neil, A. J. de Mello, and P. M. W. French, “Three-dimensional molecular mapping in a microfluidic mixing device using fluorescence lifetime imaging,” Opt. Lett. 33(16), 1887–1889 (2008).
[CrossRef] [PubMed]

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intesifier,” New J. Phys. 6, 180 (2004).
[CrossRef]

K. Dowling, S. C. W. Hyde, J. C. Dainty, P. M. W. French, and J. D. Hares, “2-D fluorescence lifetime imaging using a time-gated image intensifier,” Opt. Commun. 135(1-3), 27–31 (1997).
[CrossRef]

Fuller, Z. J.

S. P. Chan, Z. J. Fuller, J. N. Demas, and B. A. DeGraff, “Optimized gating scheme for rapid lifetime determinations of single-exponential luminescence lifetimes,” Anal. Chem. 73(18), 4486–4490 (2001).
[CrossRef] [PubMed]

Gadella, T. W.

E. B. van Munster and T. W. Gadella, “Fluorescence lifetime imaging microscopy (FLIM),” Adv. Biochem. Eng. Biotechnol. 95, 143–175 (2005).
[PubMed]

Galletly, N.

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intesifier,” New J. Phys. 6, 180 (2004).
[CrossRef]

Gelatt, C. D.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).
[CrossRef] [PubMed]

Geley, S.

R. Pepperkok, A. Squire, S. Geley, and P. I. H. Bastiaens, “Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy,” Curr. Biol. 9(5), 269–274 (1999).
[CrossRef] [PubMed]

Gerritsen, H. C.

A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, “High frame rate fluorescence lifetime imaging,” J. Phys. D Appl. Phys. 36(14), 1655–1662 (2003).
[CrossRef]

C. J. de Grauw and H. C. Gerritsen, “Multiple time-gate module for fluorescence lifetime imaging,” Appl. Spectrosc. 55(6), 670–678 (2001).
[CrossRef]

Girod, A.

H. E. Grecco, P. Roda-Navarro, A. Girod, J. Hou, T. Frahm, D. C. Truxius, R. Pepperkok, A. Squire, and P. I. H. Bastiaens, “In situ analysis of tyrosine phosphorylation networks by FLIM on cell arrays,” Nat. Methods 7(6), 467–472 (2010).
[CrossRef] [PubMed]

Grecco, H. E.

H. E. Grecco, P. Roda-Navarro, A. Girod, J. Hou, T. Frahm, D. C. Truxius, R. Pepperkok, A. Squire, and P. I. H. Bastiaens, “In situ analysis of tyrosine phosphorylation networks by FLIM on cell arrays,” Nat. Methods 7(6), 467–472 (2010).
[CrossRef] [PubMed]

Hanson, R. K.

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Toluene LIF at elevated temperatures: implications for fuel–air ratio measurements,” Appl. Phys. B 80(2), 147–150 (2005).
[CrossRef]

Hares, J.

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intesifier,” New J. Phys. 6, 180 (2004).
[CrossRef]

Hares, J. D.

J. McGinty, J. Requejo-Isidro, I. Munro, C. B. Talbot, P. A. Kellett, J. D. Hares, C. Dunsby, M A A. Neil, and P. M. W. French, “Signal-to-noise characterization of time-gated intensifiers used for wide-field time-domain FLIM,” J. Phys. D Appl. Phys. 42(13), 135103 (2009).
[CrossRef]

K. Dowling, S. C. W. Hyde, J. C. Dainty, P. M. W. French, and J. D. Hares, “2-D fluorescence lifetime imaging using a time-gated image intensifier,” Opt. Commun. 135(1-3), 27–31 (1997).
[CrossRef]

Hou, J.

H. E. Grecco, P. Roda-Navarro, A. Girod, J. Hou, T. Frahm, D. C. Truxius, R. Pepperkok, A. Squire, and P. I. H. Bastiaens, “In situ analysis of tyrosine phosphorylation networks by FLIM on cell arrays,” Nat. Methods 7(6), 467–472 (2010).
[CrossRef] [PubMed]

Hyde, S. C. W.

K. Dowling, S. C. W. Hyde, J. C. Dainty, P. M. W. French, and J. D. Hares, “2-D fluorescence lifetime imaging using a time-gated image intensifier,” Opt. Commun. 135(1-3), 27–31 (1997).
[CrossRef]

Johansson, O.

A. Ehn, O. Johansson, J. Bood, A. Arvidsson, B. Li, and M. Aldén, “Fluorescence lifetime imaging in a flame,” Proc. Combust. Inst. 33(1), 807–813 (2011).
[CrossRef]

Kaminski, C. F.

Kellett, P. A.

J. McGinty, J. Requejo-Isidro, I. Munro, C. B. Talbot, P. A. Kellett, J. D. Hares, C. Dunsby, M A A. Neil, and P. M. W. French, “Signal-to-noise characterization of time-gated intensifiers used for wide-field time-domain FLIM,” J. Phys. D Appl. Phys. 42(13), 135103 (2009).
[CrossRef]

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intesifier,” New J. Phys. 6, 180 (2004).
[CrossRef]

Kirkpatrick, S.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).
[CrossRef] [PubMed]

Koban, W.

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Toluene LIF at elevated temperatures: implications for fuel–air ratio measurements,” Appl. Phys. B 80(2), 147–150 (2005).
[CrossRef]

Koch, J. D.

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Toluene LIF at elevated temperatures: implications for fuel–air ratio measurements,” Appl. Phys. B 80(2), 147–150 (2005).
[CrossRef]

Lever, M. J.

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intesifier,” New J. Phys. 6, 180 (2004).
[CrossRef]

Li, B.

A. Ehn, O. Johansson, J. Bood, A. Arvidsson, B. Li, and M. Aldén, “Fluorescence lifetime imaging in a flame,” Proc. Combust. Inst. 33(1), 807–813 (2011).
[CrossRef]

Linne, M. A.

MacRobert, A. J.

A. D. Scully, R. B. Ostler, D. Phillips, P. O’Neill, K. M. S. Townsend, A. W. Parker, and A. J. MacRobert, “Application of fluorescence lifetime imaging microscopy to the investigation of intracellular PDT mechanisms,” Bioimaging 5(1), 9–18 (1997).
[CrossRef]

Manning, H. B.

McGinty, J.

J. McGinty, J. Requejo-Isidro, I. Munro, C. B. Talbot, P. A. Kellett, J. D. Hares, C. Dunsby, M A A. Neil, and P. M. W. French, “Signal-to-noise characterization of time-gated intensifiers used for wide-field time-domain FLIM,” J. Phys. D Appl. Phys. 42(13), 135103 (2009).
[CrossRef]

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intesifier,” New J. Phys. 6, 180 (2004).
[CrossRef]

Melton, L. A.

T. Ni and L. A. Melton, “Fuel equivalence ratio imaging for methane jets,” Appl. Spectrosc. 47(6), 773–781 (1993).
[CrossRef]

T. Ni and L. A. Melton, “Two-dimensional gas-phase temperature measurements using fluorescencelifetime imaging,” Appl. Spectrosc. 50(9), 1112–1116 (1996).
[CrossRef]

Minami, S.

Munro, I.

J. McGinty, J. Requejo-Isidro, I. Munro, C. B. Talbot, P. A. Kellett, J. D. Hares, C. Dunsby, M A A. Neil, and P. M. W. French, “Signal-to-noise characterization of time-gated intensifiers used for wide-field time-domain FLIM,” J. Phys. D Appl. Phys. 42(13), 135103 (2009).
[CrossRef]

T. Robinson, P. Valluri, H. B. Manning, D. M. Owen, I. Munro, C. B. Talbot, C. Dunsby, J. F. Eccleston, G. S. Baldwin, M. A. A. Neil, A. J. de Mello, and P. M. W. French, “Three-dimensional molecular mapping in a microfluidic mixing device using fluorescence lifetime imaging,” Opt. Lett. 33(16), 1887–1889 (2008).
[CrossRef] [PubMed]

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intesifier,” New J. Phys. 6, 180 (2004).
[CrossRef]

Mycek, M.-A.

C.-W. Chang, D. Sud, and M.-A. Mycek, “Fluorescence lifetime imaging microscopy,” Methods Cell Biol. 81, 495–524 (2007).
[CrossRef] [PubMed]

Neil, M A A.

J. McGinty, J. Requejo-Isidro, I. Munro, C. B. Talbot, P. A. Kellett, J. D. Hares, C. Dunsby, M A A. Neil, and P. M. W. French, “Signal-to-noise characterization of time-gated intensifiers used for wide-field time-domain FLIM,” J. Phys. D Appl. Phys. 42(13), 135103 (2009).
[CrossRef]

Neil, M. A. A.

T. Robinson, P. Valluri, H. B. Manning, D. M. Owen, I. Munro, C. B. Talbot, C. Dunsby, J. F. Eccleston, G. S. Baldwin, M. A. A. Neil, A. J. de Mello, and P. M. W. French, “Three-dimensional molecular mapping in a microfluidic mixing device using fluorescence lifetime imaging,” Opt. Lett. 33(16), 1887–1889 (2008).
[CrossRef] [PubMed]

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intesifier,” New J. Phys. 6, 180 (2004).
[CrossRef]

Ni, T.

T. Ni and L. A. Melton, “Fuel equivalence ratio imaging for methane jets,” Appl. Spectrosc. 47(6), 773–781 (1993).
[CrossRef]

T. Ni and L. A. Melton, “Two-dimensional gas-phase temperature measurements using fluorescencelifetime imaging,” Appl. Spectrosc. 50(9), 1112–1116 (1996).
[CrossRef]

O’Neill, P.

A. D. Scully, R. B. Ostler, D. Phillips, P. O’Neill, K. M. S. Townsend, A. W. Parker, and A. J. MacRobert, “Application of fluorescence lifetime imaging microscopy to the investigation of intracellular PDT mechanisms,” Bioimaging 5(1), 9–18 (1997).
[CrossRef]

Ostler, R. B.

A. D. Scully, R. B. Ostler, D. Phillips, P. O’Neill, K. M. S. Townsend, A. W. Parker, and A. J. MacRobert, “Application of fluorescence lifetime imaging microscopy to the investigation of intracellular PDT mechanisms,” Bioimaging 5(1), 9–18 (1997).
[CrossRef]

Owen, D. M.

Parker, A. W.

A. D. Scully, R. B. Ostler, D. Phillips, P. O’Neill, K. M. S. Townsend, A. W. Parker, and A. J. MacRobert, “Application of fluorescence lifetime imaging microscopy to the investigation of intracellular PDT mechanisms,” Bioimaging 5(1), 9–18 (1997).
[CrossRef]

Pepperkok, R.

H. E. Grecco, P. Roda-Navarro, A. Girod, J. Hou, T. Frahm, D. C. Truxius, R. Pepperkok, A. Squire, and P. I. H. Bastiaens, “In situ analysis of tyrosine phosphorylation networks by FLIM on cell arrays,” Nat. Methods 7(6), 467–472 (2010).
[CrossRef] [PubMed]

R. Pepperkok, A. Squire, S. Geley, and P. I. H. Bastiaens, “Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy,” Curr. Biol. 9(5), 269–274 (1999).
[CrossRef] [PubMed]

Phillips, D.

A. D. Scully, R. B. Ostler, D. Phillips, P. O’Neill, K. M. S. Townsend, A. W. Parker, and A. J. MacRobert, “Application of fluorescence lifetime imaging microscopy to the investigation of intracellular PDT mechanisms,” Bioimaging 5(1), 9–18 (1997).
[CrossRef]

Requejo-Isidro, J.

J. McGinty, J. Requejo-Isidro, I. Munro, C. B. Talbot, P. A. Kellett, J. D. Hares, C. Dunsby, M A A. Neil, and P. M. W. French, “Signal-to-noise characterization of time-gated intensifiers used for wide-field time-domain FLIM,” J. Phys. D Appl. Phys. 42(13), 135103 (2009).
[CrossRef]

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intesifier,” New J. Phys. 6, 180 (2004).
[CrossRef]

Reynolds, A. R.

P. J. Verveer, F. S. Wouters, A. R. Reynolds, and P. I. H. Bastiaens, “Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane,” Science 290(5496), 1567–1570 (2000).
[CrossRef] [PubMed]

Robinson, T.

Roda-Navarro, P.

H. E. Grecco, P. Roda-Navarro, A. Girod, J. Hou, T. Frahm, D. C. Truxius, R. Pepperkok, A. Squire, and P. I. H. Bastiaens, “In situ analysis of tyrosine phosphorylation networks by FLIM on cell arrays,” Nat. Methods 7(6), 467–472 (2010).
[CrossRef] [PubMed]

Schlachter, S.

Schneider, P. C.

P. C. Schneider and R. M. Clegg, “Rapid acquisition, analysis, and display of fluorescence lifetime-resolved images for real-time application,” Rev. Sci. Instrum. 68(11), 4107–4119 (1997).
[CrossRef]

Schulz, C.

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Toluene LIF at elevated temperatures: implications for fuel–air ratio measurements,” Appl. Phys. B 80(2), 147–150 (2005).
[CrossRef]

Scully, A. D.

A. D. Scully, R. B. Ostler, D. Phillips, P. O’Neill, K. M. S. Townsend, A. W. Parker, and A. J. MacRobert, “Application of fluorescence lifetime imaging microscopy to the investigation of intracellular PDT mechanisms,” Bioimaging 5(1), 9–18 (1997).
[CrossRef]

Scypinski, S.

R. J. Woods, S. Scypinski, and L. J. Cline Love “Transient digitizer for the determination of microsecond luminescence lifetimes,” Anal. Chem. 56(8), 1395–1400 (1984).
[CrossRef] [PubMed]

Settersten, T. B.

Squire, A.

H. E. Grecco, P. Roda-Navarro, A. Girod, J. Hou, T. Frahm, D. C. Truxius, R. Pepperkok, A. Squire, and P. I. H. Bastiaens, “In situ analysis of tyrosine phosphorylation networks by FLIM on cell arrays,” Nat. Methods 7(6), 467–472 (2010).
[CrossRef] [PubMed]

P. I. H. Bastiaens and A. Squire, “Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell,” Trends Cell Biol. 9(2), 48–52 (1999).
[CrossRef] [PubMed]

R. Pepperkok, A. Squire, S. Geley, and P. I. H. Bastiaens, “Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy,” Curr. Biol. 9(5), 269–274 (1999).
[CrossRef] [PubMed]

Stamp, G. W.

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intesifier,” New J. Phys. 6, 180 (2004).
[CrossRef]

Sud, D.

C.-W. Chang, D. Sud, and M.-A. Mycek, “Fluorescence lifetime imaging microscopy,” Methods Cell Biol. 81, 495–524 (2007).
[CrossRef] [PubMed]

Talbot, C. B.

J. McGinty, J. Requejo-Isidro, I. Munro, C. B. Talbot, P. A. Kellett, J. D. Hares, C. Dunsby, M A A. Neil, and P. M. W. French, “Signal-to-noise characterization of time-gated intensifiers used for wide-field time-domain FLIM,” J. Phys. D Appl. Phys. 42(13), 135103 (2009).
[CrossRef]

T. Robinson, P. Valluri, H. B. Manning, D. M. Owen, I. Munro, C. B. Talbot, C. Dunsby, J. F. Eccleston, G. S. Baldwin, M. A. A. Neil, A. J. de Mello, and P. M. W. French, “Three-dimensional molecular mapping in a microfluidic mixing device using fluorescence lifetime imaging,” Opt. Lett. 33(16), 1887–1889 (2008).
[CrossRef] [PubMed]

Tertoolen, L.

A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, “High frame rate fluorescence lifetime imaging,” J. Phys. D Appl. Phys. 36(14), 1655–1662 (2003).
[CrossRef]

Townsend, K. M. S.

A. D. Scully, R. B. Ostler, D. Phillips, P. O’Neill, K. M. S. Townsend, A. W. Parker, and A. J. MacRobert, “Application of fluorescence lifetime imaging microscopy to the investigation of intracellular PDT mechanisms,” Bioimaging 5(1), 9–18 (1997).
[CrossRef]

Truxius, D. C.

H. E. Grecco, P. Roda-Navarro, A. Girod, J. Hou, T. Frahm, D. C. Truxius, R. Pepperkok, A. Squire, and P. I. H. Bastiaens, “In situ analysis of tyrosine phosphorylation networks by FLIM on cell arrays,” Nat. Methods 7(6), 467–472 (2010).
[CrossRef] [PubMed]

Uchida, T.

Valluri, P.

van Munster, E. B.

E. B. van Munster and T. W. Gadella, “Fluorescence lifetime imaging microscopy (FLIM),” Adv. Biochem. Eng. Biotechnol. 95, 143–175 (2005).
[PubMed]

Vecchi, M. P.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).
[CrossRef] [PubMed]

Verveer, P. J.

P. J. Verveer, F. S. Wouters, A. R. Reynolds, and P. I. H. Bastiaens, “Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane,” Science 290(5496), 1567–1570 (2000).
[CrossRef] [PubMed]

Wang, X. F.

Woods, R. J.

R. J. Woods, S. Scypinski, and L. J. Cline Love “Transient digitizer for the determination of microsecond luminescence lifetimes,” Anal. Chem. 56(8), 1395–1400 (1984).
[CrossRef] [PubMed]

Wouters, F. S.

A. Esposito, C. P. Dohm, M. Bähr, and F. S. Wouters, “Unsupervised fluorescence lifetime imaging microscopy for high content and high throughput screening,” Mol. Cell. Proteomics 6(8), 1446–1454 (2007).
[CrossRef] [PubMed]

G. Bunt and F. S. Wouters, “Visualization of molecular activities inside living cells with fluorescent labels,” Int. Rev. Cytol. 237, 205–277 (2004).
[CrossRef] [PubMed]

P. J. Verveer, F. S. Wouters, A. R. Reynolds, and P. I. H. Bastiaens, “Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane,” Science 290(5496), 1567–1570 (2000).
[CrossRef] [PubMed]

Adv. Biochem. Eng. Biotechnol. (1)

E. B. van Munster and T. W. Gadella, “Fluorescence lifetime imaging microscopy (FLIM),” Adv. Biochem. Eng. Biotechnol. 95, 143–175 (2005).
[PubMed]

Anal. Chem. (2)

R. J. Woods, S. Scypinski, and L. J. Cline Love “Transient digitizer for the determination of microsecond luminescence lifetimes,” Anal. Chem. 56(8), 1395–1400 (1984).
[CrossRef] [PubMed]

S. P. Chan, Z. J. Fuller, J. N. Demas, and B. A. DeGraff, “Optimized gating scheme for rapid lifetime determinations of single-exponential luminescence lifetimes,” Anal. Chem. 73(18), 4486–4490 (2001).
[CrossRef] [PubMed]

Appl. Phys. B (1)

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Toluene LIF at elevated temperatures: implications for fuel–air ratio measurements,” Appl. Phys. B 80(2), 147–150 (2005).
[CrossRef]

Appl. Spectrosc. (3)

Bioimaging (1)

A. D. Scully, R. B. Ostler, D. Phillips, P. O’Neill, K. M. S. Townsend, A. W. Parker, and A. J. MacRobert, “Application of fluorescence lifetime imaging microscopy to the investigation of intracellular PDT mechanisms,” Bioimaging 5(1), 9–18 (1997).
[CrossRef]

Curr. Biol. (1)

R. Pepperkok, A. Squire, S. Geley, and P. I. H. Bastiaens, “Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy,” Curr. Biol. 9(5), 269–274 (1999).
[CrossRef] [PubMed]

Int. Rev. Cytol. (1)

G. Bunt and F. S. Wouters, “Visualization of molecular activities inside living cells with fluorescent labels,” Int. Rev. Cytol. 237, 205–277 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (2)

J. McGinty, J. Requejo-Isidro, I. Munro, C. B. Talbot, P. A. Kellett, J. D. Hares, C. Dunsby, M A A. Neil, and P. M. W. French, “Signal-to-noise characterization of time-gated intensifiers used for wide-field time-domain FLIM,” J. Phys. D Appl. Phys. 42(13), 135103 (2009).
[CrossRef]

A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, “High frame rate fluorescence lifetime imaging,” J. Phys. D Appl. Phys. 36(14), 1655–1662 (2003).
[CrossRef]

Methods Cell Biol. (1)

C.-W. Chang, D. Sud, and M.-A. Mycek, “Fluorescence lifetime imaging microscopy,” Methods Cell Biol. 81, 495–524 (2007).
[CrossRef] [PubMed]

Mol. Cell. Proteomics (1)

A. Esposito, C. P. Dohm, M. Bähr, and F. S. Wouters, “Unsupervised fluorescence lifetime imaging microscopy for high content and high throughput screening,” Mol. Cell. Proteomics 6(8), 1446–1454 (2007).
[CrossRef] [PubMed]

Nat. Methods (1)

H. E. Grecco, P. Roda-Navarro, A. Girod, J. Hou, T. Frahm, D. C. Truxius, R. Pepperkok, A. Squire, and P. I. H. Bastiaens, “In situ analysis of tyrosine phosphorylation networks by FLIM on cell arrays,” Nat. Methods 7(6), 467–472 (2010).
[CrossRef] [PubMed]

New J. Phys. (1)

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intesifier,” New J. Phys. 6, 180 (2004).
[CrossRef]

Opt. Commun. (1)

K. Dowling, S. C. W. Hyde, J. C. Dainty, P. M. W. French, and J. D. Hares, “2-D fluorescence lifetime imaging using a time-gated image intensifier,” Opt. Commun. 135(1-3), 27–31 (1997).
[CrossRef]

Opt. Lett. (1)

Proc. Combust. Inst. (1)

A. Ehn, O. Johansson, J. Bood, A. Arvidsson, B. Li, and M. Aldén, “Fluorescence lifetime imaging in a flame,” Proc. Combust. Inst. 33(1), 807–813 (2011).
[CrossRef]

Rev. Sci. Instrum. (1)

P. C. Schneider and R. M. Clegg, “Rapid acquisition, analysis, and display of fluorescence lifetime-resolved images for real-time application,” Rev. Sci. Instrum. 68(11), 4107–4119 (1997).
[CrossRef]

Science (2)

P. J. Verveer, F. S. Wouters, A. R. Reynolds, and P. I. H. Bastiaens, “Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane,” Science 290(5496), 1567–1570 (2000).
[CrossRef] [PubMed]

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).
[CrossRef] [PubMed]

Trends Cell Biol. (1)

P. I. H. Bastiaens and A. Squire, “Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell,” Trends Cell Biol. 9(2), 48–52 (1999).
[CrossRef] [PubMed]

Other (5)

J. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).

T. Ni and L. A. Melton, “Two-dimensional gas-phase temperature measurements using fluorescencelifetime imaging,” Appl. Spectrosc. 50(9), 1112–1116 (1996).
[CrossRef]

D. V. O’Conner and D. Phillips, Time-Correlated Single Photon Counting (Academic, 1984).

R. A. Alberty and R. J. Silbey, Physical Chemistry, 2nd ed. (Wiley, New York, 1997), Chap 19.7.

A. Draaijer, R. Sanders, and H. C. Gerritsen, “Fluorescence lifetime imaging, a new tool in confocal microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, New York, 1995), pp. 491–505.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic illustration of the experimental setup. The laser beam is expanded using a spherical telescope (ST) and then focused to a laser sheet in the measurement volume with a cylindrical lens (CL). A trig pulse (TP) is sent to the two ICCD cameras and to a trigger box (TB) which triggers both the streak camera and the MCP-PMT. A 70/30 beam splitter (BS) is located in the front of the camera lenses.

Fig. 2
Fig. 2

PLIF images and graphical illustrations of signal simulations. Simultaneous, single-laser shot PLIF images of a toluene-seeded jet in a nitrogen co-flow are seen in (aexp) and (bexp) detected with a 2 ns and a 400 ns gated camera, respectively. In (asim) and (bsim), graphical descriptions of simulations of ICCD-camera signal detection are displayed. The red curves are simulated LIF signals with lifetimes of 7 ns, the blue curve in (asim) is the 2 ns camera gain function while the rising flank of the 400 ns gain function is seen in (bsim). The gray areas are the simulated signals detected by the two ICCD cameras, using Eq. (1).

Fig. 3
Fig. 3

Signal evaluation function and fluorescence lifetime image. (a) Fluorescence lifetime as a function of the simulated signal ratio, defined by Eq. (2). (b) Single-shot fluorescence lifetime image of a toluene seeded gas jet (N2/O2-mix) in a co-flow of nitrogen.

Fig. 4
Fig. 4

Fluorescence lifetimes evaluated from 900 streak-camera accumulations (dashed and solid lines) as well as from single shot FLI detector images (filled and open circles with error bars). Two mixtures of oxygen and nitrogen were used as ambient quenching molecules; 10.5/89.5 (open circles and dashed line) and 17/83 (filled circles and solid line).

Fig. 5
Fig. 5

The signal-to-noise propagation of the system is illustrated with the figure of merit (Eq. (5)). The experiment was modeled by Monte Carlo simulations for two different delay times for the 2 ns camera gain curve. The solid line corresponds to the settings that were used in the experiments, whereas the dashed line illustrates the figure of merit when the 2 ns camera gain function is advanced 0.5 ns in time. Evidently, the sensitivity of the technique is improved if the gain curve is temporally advanced but, on the other hand, less photons are detected, resulting in a degradation of the signal to nose ratio. The red and blue crosses are the experimental F-values corresponding to the measurement presented in Fig. 4 (the same color coding has been used).

Fig. 6
Fig. 6

Monte Carlo simulations of FLI with a mean value of 350 detected photons were performed for three different sets of gain functions. (a) The blue curve is a fluorescence curve with a lifetime of 8 ns. Detection using two square gain curves is seen in the upper plot. Two different approaches were tested; standard rapid lifetime determination (SRLD) and optimized rapid lifetime determination, proposed by Chan et al. [30]. For SRLD Δt is 3 ns, Y and P are 1 and T is 6 ns, meaning that we have two gain functions with equal width where the first one closes as the other opens. For ORLD Δt is 3 ns, Y is 0.25, P is 12 and T is 36 ns. In the lower plot, two ramped gain curves are used which are described by Eqs. (7a) and (7b) (the constant B is set to 40 ns). (b) The figure of merit corresponding to the simulated results using ramped gain curves is represented by the black curve. (c) The error of the mean value of the determined fluorescence lifetime. The SRLD as well as ORLD are unable to predict short lifetimes since the signal enhanced by the latter of the two gain functions (dashed red curve) is very weak. For longer lifetimes, the SRLD breaks down. (d) The SNR for the detected fluorescence lifetime is nearly constant for the ramped-gain curve configuration. The square gain configurations have lifetime dependences on their SNR with clear optima.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I i ( τ, t i ,δ )= S( t,τ ) G i ( t t i δ )dt
D= I 2 I 2 + I 400
D s = W 2 ( t,τ )dt [ W 2 ( t,τ )+ W 400 ( t,τ ) ]dt
d D s dτ = 1 τ 2 W 2 ( t,τ )dt W 400 ( t,τ )dt { [ W 2 ( t,τ )+ W 400 ( t,τ ) ]dt } 2 [ t W 2 ( t,τ )dt W 2 ( t,τ )dt E 2 ( t ) t W 400 ( t,τ )dt W 400 ( t,τ )dt E 400 ( t ) ]
F( τ )= σ τ τ [ σ N tot N tot ] 1
[ I σ I ] 2 = k 2 N γ 2 A N γ 2 + k 2 E N γ + CCD 2
G 1 ( t )=At
G 2 ( t )=At+AB
D( τ )= I 0 A 0 t e t τ dt I 0 A 0 t e t τ dt + I 0 0 ( At+AB ) e t τ dt = τ B

Metrics