Abstract

We demonstrate a fully continuous liquid crystal (LC) grating device with the alternating semi-circular alignment which exhibits the switching effect between the diffraction orders independent of the thickness of the LC cell. The continuous phase modulation in the LC grating with the rotational symmetry was achieved on a micro-imprinted surface where the semi-circular alignment of the LC was spontaneously produced. Our LC grating device in the hybrid geometry exhibited the perfect continuity of the phase retardation and the switchable diffraction with the diffraction efficiency of 44% at ±1st orders as a function of an applied voltage. It was found that the symmetry of the input polarization direction with respect to the grating patterns results in the interchange between two symmetric grating configurations.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ivanov and T. Eiju, “Compact spectral ellipsometer with polarization grating,” Proc. SPIE 4580, 664–672 (2001).
    [CrossRef]
  2. J. A. Davis, J. Adachi, C. R. Fernández-Pousa, and I. Moreno, “Polarization beam splitters using polarization diffraction gratings,” Opt. Lett. 26(9), 587–589 (2001).
    [CrossRef] [PubMed]
  3. E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1-3), 45–54 (2002).
    [CrossRef]
  4. S. Jung, J.-H. Park, H. Choi, and B. Lee, “Wide-viewing integral three-dimensional imaging by use of orthogonal polarization switching,” Appl. Opt. 42(14), 2513–2520 (2003).
    [CrossRef] [PubMed]
  5. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21(3), 40–45 (2010).
    [CrossRef]
  6. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axes gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
    [CrossRef]
  7. M. Le Doucen and P. Pellat-Finet, “Polarization properties and diffraction efficiencies of binary anisotropic gratings: general study and experiments on ferroelectric liquid crystals,” Opt. Commun. 151(4-6), 321–330 (1998).
    [CrossRef]
  8. J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro‐optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
    [CrossRef]
  9. C. M. Titus and P. J. Bos, “Efficient, polarization-independent, reflective liquid crystal phase grating,” Appl. Phys. Lett. 71(16), 2239–2241 (1997).
    [CrossRef]
  10. Z. He and S. Sato, “Polarization properties of inversely twisted nematic liquid-crystal gratings,” Appl. Opt. 37(28), 6755–6763 (1998).
    [CrossRef] [PubMed]
  11. B. Wen, R. G. Petschek, and C. Rosenblatt, “Nematic liquid-crystal polarization gratings by modification of surface alignment,” Appl. Opt. 41(7), 1246–1250 (2002).
    [CrossRef] [PubMed]
  12. C.-J. Yu, D.-W. Kim, J. Kim, and S.-D. Lee, “Polarization-invariant grating based on a photoaligned liquid crystal in an oppositely twisted binary configuration,” Opt. Lett. 30(15), 1995–1997 (2005).
    [CrossRef] [PubMed]
  13. J.-H. Park, I. C. Khoo, C.-J. Yu, M.-S. Jung, and S.-D. Lee, “Formation of binary phase gratings in photopolymer-liquid crystal composites by a surface-controlled anisotropic phase separation,” Appl. Phys. Lett. 86(2), 021906 (2005).
    [CrossRef]
  14. E. Jang, H.-R. Kim, Y.-J. Na, and S.-D. Lee, “Multistage optical memory of a liquid crystal diffraction grating in a single beam rewriting scheme,” Appl. Phys. Lett. 91(7), 071109 (2007).
    [CrossRef]
  15. M. Zhu, G. Carbone, and C. Rosenblatt, “Electrically switchable, polarization-independent diffraction grating based on negative dielectric anisotropy liquid crystal,” Appl. Phys. Lett. 88(25), 253502 (2006).
    [CrossRef]
  16. C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89(12), 121105 (2006).
    [CrossRef]
  17. H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Y. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
    [CrossRef] [PubMed]
  18. C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
    [CrossRef] [PubMed]
  19. V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express 14(22), 10558–10564 (2006).
    [CrossRef] [PubMed]
  20. J.-C. Chao, W.-Y. Wu, and A. Y.-G. Fuh, “Diffraction characteristics of a liquid crystal polarization grating analyzed using the finite-difference time-domain method,” Opt. Express 15(25), 16702–16711 (2007).
    [CrossRef] [PubMed]
  21. M. Honma and T. Nose, “Liquid-crystal blazed grating with azimuthally distributed liquid-crystal directors,” Appl. Opt. 43(27), 5193–5197 (2004).
    [CrossRef] [PubMed]
  22. N. Bennis, M. A. Geday, X. Quintana, B. Cerrolaza, D. P. Medialdea, A. Spadlo, R. Dabrowski, and J. M. Oton, ““Nearly-analogue blazed grating using high birefringence liquid crystal,” Opto-Electron. Rev. 17, 112–115 (2009).
  23. Y.-W. Lim, C.-H. Kwak, and S.-D. Lee, “Anisotropic nano-imprinting technique for fabricating a patterned optical film of a liquid crystalline polymer,” J. Nanosci. Nanotechnol. 8(9), 4775–4778 (2008).
    [CrossRef] [PubMed]
  24. D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett. 28(26), 1683–1686 (1972).
    [CrossRef]

2010 (1)

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21(3), 40–45 (2010).
[CrossRef]

2009 (2)

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axes gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
[CrossRef]

N. Bennis, M. A. Geday, X. Quintana, B. Cerrolaza, D. P. Medialdea, A. Spadlo, R. Dabrowski, and J. M. Oton, ““Nearly-analogue blazed grating using high birefringence liquid crystal,” Opto-Electron. Rev. 17, 112–115 (2009).

2008 (2)

Y.-W. Lim, C.-H. Kwak, and S.-D. Lee, “Anisotropic nano-imprinting technique for fabricating a patterned optical film of a liquid crystalline polymer,” J. Nanosci. Nanotechnol. 8(9), 4775–4778 (2008).
[CrossRef] [PubMed]

C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
[CrossRef] [PubMed]

2007 (2)

J.-C. Chao, W.-Y. Wu, and A. Y.-G. Fuh, “Diffraction characteristics of a liquid crystal polarization grating analyzed using the finite-difference time-domain method,” Opt. Express 15(25), 16702–16711 (2007).
[CrossRef] [PubMed]

E. Jang, H.-R. Kim, Y.-J. Na, and S.-D. Lee, “Multistage optical memory of a liquid crystal diffraction grating in a single beam rewriting scheme,” Appl. Phys. Lett. 91(7), 071109 (2007).
[CrossRef]

2006 (4)

M. Zhu, G. Carbone, and C. Rosenblatt, “Electrically switchable, polarization-independent diffraction grating based on negative dielectric anisotropy liquid crystal,” Appl. Phys. Lett. 88(25), 253502 (2006).
[CrossRef]

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89(12), 121105 (2006).
[CrossRef]

H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Y. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
[CrossRef] [PubMed]

V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express 14(22), 10558–10564 (2006).
[CrossRef] [PubMed]

2005 (2)

C.-J. Yu, D.-W. Kim, J. Kim, and S.-D. Lee, “Polarization-invariant grating based on a photoaligned liquid crystal in an oppositely twisted binary configuration,” Opt. Lett. 30(15), 1995–1997 (2005).
[CrossRef] [PubMed]

J.-H. Park, I. C. Khoo, C.-J. Yu, M.-S. Jung, and S.-D. Lee, “Formation of binary phase gratings in photopolymer-liquid crystal composites by a surface-controlled anisotropic phase separation,” Appl. Phys. Lett. 86(2), 021906 (2005).
[CrossRef]

2004 (1)

2003 (1)

2002 (2)

B. Wen, R. G. Petschek, and C. Rosenblatt, “Nematic liquid-crystal polarization gratings by modification of surface alignment,” Appl. Opt. 41(7), 1246–1250 (2002).
[CrossRef] [PubMed]

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1-3), 45–54 (2002).
[CrossRef]

2001 (2)

1998 (2)

Z. He and S. Sato, “Polarization properties of inversely twisted nematic liquid-crystal gratings,” Appl. Opt. 37(28), 6755–6763 (1998).
[CrossRef] [PubMed]

M. Le Doucen and P. Pellat-Finet, “Polarization properties and diffraction efficiencies of binary anisotropic gratings: general study and experiments on ferroelectric liquid crystals,” Opt. Commun. 151(4-6), 321–330 (1998).
[CrossRef]

1997 (1)

C. M. Titus and P. J. Bos, “Efficient, polarization-independent, reflective liquid crystal phase grating,” Appl. Phys. Lett. 71(16), 2239–2241 (1997).
[CrossRef]

1995 (1)

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro‐optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[CrossRef]

1972 (1)

D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett. 28(26), 1683–1686 (1972).
[CrossRef]

Adachi, J.

Asatryan, K.

Bennis, N.

N. Bennis, M. A. Geday, X. Quintana, B. Cerrolaza, D. P. Medialdea, A. Spadlo, R. Dabrowski, and J. M. Oton, ““Nearly-analogue blazed grating using high birefringence liquid crystal,” Opto-Electron. Rev. 17, 112–115 (2009).

Berreman, D. W.

D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett. 28(26), 1683–1686 (1972).
[CrossRef]

Biener, G.

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1-3), 45–54 (2002).
[CrossRef]

Bomzon, Z.

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1-3), 45–54 (2002).
[CrossRef]

Bos, P. J.

C. M. Titus and P. J. Bos, “Efficient, polarization-independent, reflective liquid crystal phase grating,” Appl. Phys. Lett. 71(16), 2239–2241 (1997).
[CrossRef]

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro‐optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[CrossRef]

Carbone, G.

M. Zhu, G. Carbone, and C. Rosenblatt, “Electrically switchable, polarization-independent diffraction grating based on negative dielectric anisotropy liquid crystal,” Appl. Phys. Lett. 88(25), 253502 (2006).
[CrossRef]

Cerrolaza, B.

N. Bennis, M. A. Geday, X. Quintana, B. Cerrolaza, D. P. Medialdea, A. Spadlo, R. Dabrowski, and J. M. Oton, ““Nearly-analogue blazed grating using high birefringence liquid crystal,” Opto-Electron. Rev. 17, 112–115 (2009).

Chao, J.-C.

Chen, J.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro‐optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[CrossRef]

Chigrinov, V.

Choi, H.

Cipparrone, G.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89(12), 121105 (2006).
[CrossRef]

Dabrowski, R.

N. Bennis, M. A. Geday, X. Quintana, B. Cerrolaza, D. P. Medialdea, A. Spadlo, R. Dabrowski, and J. M. Oton, ““Nearly-analogue blazed grating using high birefringence liquid crystal,” Opto-Electron. Rev. 17, 112–115 (2009).

Davis, J. A.

Eiju, T.

M. Ivanov and T. Eiju, “Compact spectral ellipsometer with polarization grating,” Proc. SPIE 4580, 664–672 (2001).
[CrossRef]

Escuti, M. J.

Fernández-Pousa, C. R.

Fuh, A. Y.-G.

Galstian, T.

Geday, M. A.

N. Bennis, M. A. Geday, X. Quintana, B. Cerrolaza, D. P. Medialdea, A. Spadlo, R. Dabrowski, and J. M. Oton, ““Nearly-analogue blazed grating using high birefringence liquid crystal,” Opto-Electron. Rev. 17, 112–115 (2009).

Glebov, L. B.

Hasman, E.

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1-3), 45–54 (2002).
[CrossRef]

He, Z.

Honma, M.

Ivanov, M.

M. Ivanov and T. Eiju, “Compact spectral ellipsometer with polarization grating,” Proc. SPIE 4580, 664–672 (2001).
[CrossRef]

Jang, E.

E. Jang, H.-R. Kim, Y.-J. Na, and S.-D. Lee, “Multistage optical memory of a liquid crystal diffraction grating in a single beam rewriting scheme,” Appl. Phys. Lett. 91(7), 071109 (2007).
[CrossRef]

Johnson, D. L.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro‐optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[CrossRef]

Jung, M.-S.

J.-H. Park, I. C. Khoo, C.-J. Yu, M.-S. Jung, and S.-D. Lee, “Formation of binary phase gratings in photopolymer-liquid crystal composites by a surface-controlled anisotropic phase separation,” Appl. Phys. Lett. 86(2), 021906 (2005).
[CrossRef]

Jung, S.

Khoo, I. C.

J.-H. Park, I. C. Khoo, C.-J. Yu, M.-S. Jung, and S.-D. Lee, “Formation of binary phase gratings in photopolymer-liquid crystal composites by a surface-controlled anisotropic phase separation,” Appl. Phys. Lett. 86(2), 021906 (2005).
[CrossRef]

Kim, D.-W.

Kim, H.-R.

E. Jang, H.-R. Kim, Y.-J. Na, and S.-D. Lee, “Multistage optical memory of a liquid crystal diffraction grating in a single beam rewriting scheme,” Appl. Phys. Lett. 91(7), 071109 (2007).
[CrossRef]

Kim, J.

Kimball, B. R.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21(3), 40–45 (2010).
[CrossRef]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axes gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
[CrossRef]

Kleiner, V.

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1-3), 45–54 (2002).
[CrossRef]

Kwak, C.-H.

Y.-W. Lim, C.-H. Kwak, and S.-D. Lee, “Anisotropic nano-imprinting technique for fabricating a patterned optical film of a liquid crystalline polymer,” J. Nanosci. Nanotechnol. 8(9), 4775–4778 (2008).
[CrossRef] [PubMed]

Le Doucen, M.

M. Le Doucen and P. Pellat-Finet, “Polarization properties and diffraction efficiencies of binary anisotropic gratings: general study and experiments on ferroelectric liquid crystals,” Opt. Commun. 151(4-6), 321–330 (1998).
[CrossRef]

Lee, B.

Lee, S.-D.

Y.-W. Lim, C.-H. Kwak, and S.-D. Lee, “Anisotropic nano-imprinting technique for fabricating a patterned optical film of a liquid crystalline polymer,” J. Nanosci. Nanotechnol. 8(9), 4775–4778 (2008).
[CrossRef] [PubMed]

E. Jang, H.-R. Kim, Y.-J. Na, and S.-D. Lee, “Multistage optical memory of a liquid crystal diffraction grating in a single beam rewriting scheme,” Appl. Phys. Lett. 91(7), 071109 (2007).
[CrossRef]

J.-H. Park, I. C. Khoo, C.-J. Yu, M.-S. Jung, and S.-D. Lee, “Formation of binary phase gratings in photopolymer-liquid crystal composites by a surface-controlled anisotropic phase separation,” Appl. Phys. Lett. 86(2), 021906 (2005).
[CrossRef]

C.-J. Yu, D.-W. Kim, J. Kim, and S.-D. Lee, “Polarization-invariant grating based on a photoaligned liquid crystal in an oppositely twisted binary configuration,” Opt. Lett. 30(15), 1995–1997 (2005).
[CrossRef] [PubMed]

Lim, Y.-W.

Y.-W. Lim, C.-H. Kwak, and S.-D. Lee, “Anisotropic nano-imprinting technique for fabricating a patterned optical film of a liquid crystalline polymer,” J. Nanosci. Nanotechnol. 8(9), 4775–4778 (2008).
[CrossRef] [PubMed]

Medialdea, D. P.

N. Bennis, M. A. Geday, X. Quintana, B. Cerrolaza, D. P. Medialdea, A. Spadlo, R. Dabrowski, and J. M. Oton, ““Nearly-analogue blazed grating using high birefringence liquid crystal,” Opto-Electron. Rev. 17, 112–115 (2009).

Moreno, I.

Na, Y.-J.

E. Jang, H.-R. Kim, Y.-J. Na, and S.-D. Lee, “Multistage optical memory of a liquid crystal diffraction grating in a single beam rewriting scheme,” Appl. Phys. Lett. 91(7), 071109 (2007).
[CrossRef]

Nersisyan, S. R.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21(3), 40–45 (2010).
[CrossRef]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axes gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
[CrossRef]

Niv, A.

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1-3), 45–54 (2002).
[CrossRef]

Nose, T.

Oh, C.

Oton, J. M.

N. Bennis, M. A. Geday, X. Quintana, B. Cerrolaza, D. P. Medialdea, A. Spadlo, R. Dabrowski, and J. M. Oton, ““Nearly-analogue blazed grating using high birefringence liquid crystal,” Opto-Electron. Rev. 17, 112–115 (2009).

Pagliusi, P.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89(12), 121105 (2006).
[CrossRef]

Park, J.-H.

J.-H. Park, I. C. Khoo, C.-J. Yu, M.-S. Jung, and S.-D. Lee, “Formation of binary phase gratings in photopolymer-liquid crystal composites by a surface-controlled anisotropic phase separation,” Appl. Phys. Lett. 86(2), 021906 (2005).
[CrossRef]

S. Jung, J.-H. Park, H. Choi, and B. Lee, “Wide-viewing integral three-dimensional imaging by use of orthogonal polarization switching,” Appl. Opt. 42(14), 2513–2520 (2003).
[CrossRef] [PubMed]

Pellat-Finet, P.

M. Le Doucen and P. Pellat-Finet, “Polarization properties and diffraction efficiencies of binary anisotropic gratings: general study and experiments on ferroelectric liquid crystals,” Opt. Commun. 151(4-6), 321–330 (1998).
[CrossRef]

Petschek, R. G.

Presnyakov, V.

Provenzano, C.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89(12), 121105 (2006).
[CrossRef]

Quintana, X.

N. Bennis, M. A. Geday, X. Quintana, B. Cerrolaza, D. P. Medialdea, A. Spadlo, R. Dabrowski, and J. M. Oton, ““Nearly-analogue blazed grating using high birefringence liquid crystal,” Opto-Electron. Rev. 17, 112–115 (2009).

Rosenblatt, C.

M. Zhu, G. Carbone, and C. Rosenblatt, “Electrically switchable, polarization-independent diffraction grating based on negative dielectric anisotropy liquid crystal,” Appl. Phys. Lett. 88(25), 253502 (2006).
[CrossRef]

B. Wen, R. G. Petschek, and C. Rosenblatt, “Nematic liquid-crystal polarization gratings by modification of surface alignment,” Appl. Opt. 41(7), 1246–1250 (2002).
[CrossRef] [PubMed]

Rotar, V.

Sarkissian, H.

Sato, S.

Serak, S. V.

Spadlo, A.

N. Bennis, M. A. Geday, X. Quintana, B. Cerrolaza, D. P. Medialdea, A. Spadlo, R. Dabrowski, and J. M. Oton, ““Nearly-analogue blazed grating using high birefringence liquid crystal,” Opto-Electron. Rev. 17, 112–115 (2009).

Steeves, D. M.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21(3), 40–45 (2010).
[CrossRef]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axes gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
[CrossRef]

Tabiryan, N. V.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21(3), 40–45 (2010).
[CrossRef]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axes gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
[CrossRef]

H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Y. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
[CrossRef] [PubMed]

Titus, C. M.

C. M. Titus and P. J. Bos, “Efficient, polarization-independent, reflective liquid crystal phase grating,” Appl. Phys. Lett. 71(16), 2239–2241 (1997).
[CrossRef]

Vithana, H.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro‐optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[CrossRef]

Wen, B.

Wu, W.-Y.

Yu, C.-J.

C.-J. Yu, D.-W. Kim, J. Kim, and S.-D. Lee, “Polarization-invariant grating based on a photoaligned liquid crystal in an oppositely twisted binary configuration,” Opt. Lett. 30(15), 1995–1997 (2005).
[CrossRef] [PubMed]

J.-H. Park, I. C. Khoo, C.-J. Yu, M.-S. Jung, and S.-D. Lee, “Formation of binary phase gratings in photopolymer-liquid crystal composites by a surface-controlled anisotropic phase separation,” Appl. Phys. Lett. 86(2), 021906 (2005).
[CrossRef]

Zeldovich, B. Y.

Zhu, M.

M. Zhu, G. Carbone, and C. Rosenblatt, “Electrically switchable, polarization-independent diffraction grating based on negative dielectric anisotropy liquid crystal,” Appl. Phys. Lett. 88(25), 253502 (2006).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (6)

J.-H. Park, I. C. Khoo, C.-J. Yu, M.-S. Jung, and S.-D. Lee, “Formation of binary phase gratings in photopolymer-liquid crystal composites by a surface-controlled anisotropic phase separation,” Appl. Phys. Lett. 86(2), 021906 (2005).
[CrossRef]

E. Jang, H.-R. Kim, Y.-J. Na, and S.-D. Lee, “Multistage optical memory of a liquid crystal diffraction grating in a single beam rewriting scheme,” Appl. Phys. Lett. 91(7), 071109 (2007).
[CrossRef]

M. Zhu, G. Carbone, and C. Rosenblatt, “Electrically switchable, polarization-independent diffraction grating based on negative dielectric anisotropy liquid crystal,” Appl. Phys. Lett. 88(25), 253502 (2006).
[CrossRef]

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89(12), 121105 (2006).
[CrossRef]

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro‐optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[CrossRef]

C. M. Titus and P. J. Bos, “Efficient, polarization-independent, reflective liquid crystal phase grating,” Appl. Phys. Lett. 71(16), 2239–2241 (1997).
[CrossRef]

J. Nanosci. Nanotechnol. (1)

Y.-W. Lim, C.-H. Kwak, and S.-D. Lee, “Anisotropic nano-imprinting technique for fabricating a patterned optical film of a liquid crystalline polymer,” J. Nanosci. Nanotechnol. 8(9), 4775–4778 (2008).
[CrossRef] [PubMed]

J. Nonlinear Opt. Phys. Mater. (1)

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axes gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
[CrossRef]

Opt. Commun. (2)

M. Le Doucen and P. Pellat-Finet, “Polarization properties and diffraction efficiencies of binary anisotropic gratings: general study and experiments on ferroelectric liquid crystals,” Opt. Commun. 151(4-6), 321–330 (1998).
[CrossRef]

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1-3), 45–54 (2002).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Opt. Photonics News (1)

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21(3), 40–45 (2010).
[CrossRef]

Opto-Electron. Rev. (1)

N. Bennis, M. A. Geday, X. Quintana, B. Cerrolaza, D. P. Medialdea, A. Spadlo, R. Dabrowski, and J. M. Oton, ““Nearly-analogue blazed grating using high birefringence liquid crystal,” Opto-Electron. Rev. 17, 112–115 (2009).

Phys. Rev. Lett. (1)

D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett. 28(26), 1683–1686 (1972).
[CrossRef]

Proc. SPIE (1)

M. Ivanov and T. Eiju, “Compact spectral ellipsometer with polarization grating,” Proc. SPIE 4580, 664–672 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic representation of the distribution of the LC director in (a) a continuous grating structure with a wall (indicated in red) separating two domains and (b) a fully continuous grating structure with no wall in alternating semi-circular (quadrant) forms and the LC director in y-z plane. The green bars represent the LC molecules.

Fig. 2
Fig. 2

(a) The schematic diagram of our LC grating cell and (b) the fabrication process of the bottom substrate with sinusoidal patterns by imprinting (d1 = d2 = 3 μm and h = 1 μm).

Fig. 3
Fig. 3

(a) The optical microscopic image of alternating semi-circular patterns on the bottom substrate. (b) The SEM image of the microgrooves in the semi-circular patterns on the bottom substrate.

Fig. 4
Fig. 4

Optical microscopic textures together with the LC distortions in our continuous LC grating device under parallel polarizers in the presence of the applied voltage of (a) 0, (b) 25, and (c) 100 V.

Fig. 5
Fig. 5

(a) Experimental geometry for measuring the diffracted patterns in the input polarization direction of 90þ. The diffraction patterns under (b) no analyzer, (c) a crossed analyzer, and (d) a parallel analyzer.

Fig. 6
Fig. 6

Experimental geometry for measuring the diffracted patterns in the input polarization direction of 45þ. The diffraction patterns under (b) no analyzer, (c) a crossed analyzer, and (d) a parallel analyzer.

Fig. 7
Fig. 7

Diffraction patterns under a parallel analyzer in the input polarization direction of 45þat (a) 0 V and (b) 100 V. (c) The normalized intensities at 0th and ±1st orders as a function of the applied voltage. The insets in (c) show the diffraction patterns at 8 V and 20 V.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

n(x)=[ cos(πx/Λ),sin(πx/Λ),0 ],
n(x)=[ sin(πx/Λ),cos(πx/Λ),0 ].
Dm= 1 Λ Λ 2 Λ 2 T(x)exp(2mπx i/Λ)Eindx,
T(x)=cos(Δndπ/λ)[ 1 0 0 1 ]+isin(Δndπ/λ)[ cos(2πx/Λ) sin(2πx/Λ) sin(2πx/Λ) cos(2πx/Λ) ],
T(x)=cos(Δndπ/λ)[ 1 0 0 1 ]+isin(Δndπ/λ)[ cos(2πx/Λ) sin(2πx/Λ) sin(2πx/Λ) cos(2πx/Λ) ].
D0= 2 π i[ 1 0 0 1 ]Ein,
D±1= 1 2 [ 0 1 1 0 ]Ein,
D±2= 2 3π i[ 1 0 0 ±1 ]Ein.

Metrics