Abstract

Recently, several theoretical papers have derived relationships for fiber-optic transmission system performance in terms of associated physical layer parameters. At the same time, a large number of detailed experiments have been and continue being performed that demonstrate increasing capacities and unregenerated reach. We use this wealth of experimental data to validate the aforementioned relationships, and to propose a set of simple scaling rules for performance. We find that, despite substantial differences in experimental configurations, overall performance in terms of spectral efficiency and unregenerated reach is well explained by scaling rules. These scaling rules will be useful to carriers seeking to understand what they should expect to see in terms of network performance using deployed or easily accessible technology, which may be radically different from hero experiment results. These rules will also be useful to design engineers seeking cost effective tradeoffs to achieving higher performance using realistic upgrade strategies, and what might be encountered as a fundamental limit.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity Limits of Optical Fiber Networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [CrossRef]
  2. A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the Non-Linear Shannon Limit,” J. Lightwave Technol. 28(4), 423–433 (2010).
    [CrossRef]
  3. M. Salsi, C. Koebele, P. Tran, H. Mardoyan, S. Bigo, and G. Charlet, “80x100Gbit/s transmission over 9000km using erbium-doped fibre repeaters only,” in Proceedings ECOC 2010, Torino, Italy, 2010, Paper We.7.C.3.
  4. G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16 x 100Gb/s Transmission Over Installed Fiber With Different Dispersion Maps,” IEEE Photon. Technol. Lett. 22(6), 371–373 (2010).
    [CrossRef]
  5. M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11 x 224 Gb/s POLMUX-RZ-16QAM Transmission Over 670 km of SSMF With 50-GHz Channel Spacing,” IEEE Photon. Technol. Lett. 22(15), 1150–1152 (2010).
    [CrossRef]
  6. P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally Efficient Long-Haul Optical Networking Using 112-Gb/s Polarization-Multiplexed 16-QAM,” J. Lightwave Technol. 28(4), 547–556 (2010).
    [CrossRef]
  7. X. Chen and W. Shieh, “Closed-form expressions for nonlinear transmission performance of densely spaced coherent optical OFDM systems,” Opt. Express 18(18), 19039–19054 (2010).
    [CrossRef] [PubMed]
  8. G. Bosco, A. Carena, R. Cigliutti, V. Curri, P. Poggiolini, and F. Forghieri, “Performance prediction for WDM PM-QPSK transmission over uncompensated links,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThO7.
  9. C. Xia and D. van den Borne, “Impact of the Channel Count on the Nonlinear Tolerance in Coherently-detected POLMUX-QPSK modulation,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWO1.
  10. P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical Modeling of Nonlinear Propagation in Uncompensated Optical Transmission Links,” IEEE Photon. Technol. Lett. 23(11), 742–744 (2011).
    [CrossRef]
  11. A. Bononi, N. Rossi, and P. Serena, “Transmission Limitations due to Fiber Nonlinearity,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWO7.
  12. Z. Tao, W. Yan, L. Liu, L. Li, S. Oda, T. Hoshida, and J. C. Rasmussen, “Simple Fiber Model for Determination of XPM Effects,” J. Lightwave Technol. 29(7), 974–986 (2011).
    [CrossRef]
  13. L. B. Du and A. J. Lowery, “Optimizing the subcarrier granularity of coherent optical communications systems,” Opt. Express 19(9), 8079–8084 (2011).
    [CrossRef] [PubMed]
  14. V. Curri, P. Poggiolini, G. Bosco, A. Carena, and F. Forghieri, “Performance Evaluation of Long-Haul 111Gb/s PM-QPSK Transmission Over Different Fiber Types,” IEEE Photon. Technol. Lett. 22(19), 1446–1448 (2010).
    [CrossRef]
  15. A. Carena, V. Curri, P. Poggiolini, G. Bosco, and F. Forghieri, “Maximum Reach Versus Transmission Capacity for Terabit Superchannels Based on 27.75-GBaud PM-QPSK, PM-8QAM, or PM-16QAM,” IEEE Photon. Technol. Lett. 22(11), 829–831 (2010).
    [CrossRef]
  16. C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Fibre Nonlinearities in WDM-Systems with Reduced Channel-Spacing and Symbol-Rate,” in Proceedings ECOC 2010, Torino, Italy, 2010, Paper P4.20.
  17. E. Grellier and A. Bononi, “Quality parameter for coherent transmissions with Gaussian-distributed nonlinear noise,” Opt. Express 19(13), 12781–12788 (2011).
    [CrossRef] [PubMed]
  18. J. Cai, Y. Cai, C. R. Davidson, A. Lucero, H. Zhang, D. G. Foursa, O. V. Sinkin, W. W. Patterson, A. Pilipetskii, G. Mohs, and N. Bergano, “20 Tbit/s Capacity Transmission Over 6,860 km,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB4.
  19. J. Yu, X. Zhou, D. Qian, M. Huang, P. N. Ji, and G. Zhang, “20x112Gbit/s, 50GHz spaced, PolMux-RZ-QPSK straight-line transmission over 1540km of SSMF employing digital coherent detection and pure EDFA amplification,” in Proceedings ECOC 2008, Brussels, Belgium, 2008, Paper Th.2.A.2.
  20. J. Downie, J. E. Hurley, J. Cartledge, S. R. Bickham, and S. Mishra, “Transmission of 112 Gb/s PM-QPSK Signals over 7200 km of Optical Fiber with Very Large Effective Area and Ultra-Low Loss in 100 km Spans with EDFAs Only,” in Optical Fiber Communications Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMI6.
  21. G. Charlet, M. Salsi, P. Tran, M. Bertolini, H. Mardoyan, J. Renaudier, O. Bertran-Pardo, and S. Bigo, “72x100Gb/s transmission over transoceanic distance, using large effective area fiber, hybrid Raman-Erbium amplification and coherent detection,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper PDPB6.
  22. C. Behrens, S. Makovejs, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Pulse-shaping versus digital backpropagation in 224Gbit/s PDM-16QAM transmission,” Opt. Express 19(14), 12879–12884 (2011).
    [CrossRef] [PubMed]
  23. A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Packham, “10 x 224-Gb/s WDM Transmission of 28-Gbaud PDM 16-QAM on a 50-GHz Grid over 1,200 km of Fiber,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper PDPB8.
  24. M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “Transmission of 11 x 224-Gb/s POLMUX-RZ-16QAM over 1500 km of LongLine and pure-silica SMF,” in Proceedings ECOC 2010, Torino, Italy, 2010, Paper We.8.C.2.
  25. S. Yamanaka, T. Kobayashi, A. Sano, H. Masuda, E. Yoshida, Y. Miyamoto, T. Nakagawa, M. Nagatani, and H. Noaka, “11 x 171 Gb/s PDM 16-QAM Transmission over 1440 km with a Spectral Effiency of 6.4 b/s/Hz using High-Speed DAC,” in Proceedings ECOC 2010, Torino, Italy, 2010, Paper We.8.C.1.
  26. A. Gnauck and P. J. Winzer, “Ultra-High-Spectral-Efficiency Transmission,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OWE4.
  27. J. Yu and X. Zhou, “16 x 107-Gb/s 12.5-GHz-Spaced PDM-36QAM Transmission Over 400 km of Standard Single-Mode Fiber,” IEEE Photon. Technol. Lett. 22(17), 1312–1314 (2010).
    [CrossRef]
  28. A. Sano, T. Kobayashi, A. Matsuura, S. Yamamoto, S. Yamanaka, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizuguchi, and T. Mizuno, “100 x 120-Gb/s PDM 64-QAM Transmission over 160 km Using Linewidth-Tolerant Pilotless Digital Coherent Detection,” in Proceedings ECOC 2010, Torino, Italy, 2010, Paper pd2_4.
  29. J. Yu, X. Zhou, Y. Huang, S. Gupta, M. Huang, T. Wang, and P. Magill, “112.8-Gb/s PM-RZ-64QAM optical signal generation and transmission on a 12.5GHz WDM Grid,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OThM1.
  30. D. Rafique, J. Zhao, and A. D. Ellis, “Digital back-propagation for spectrally efficient WDM 112 Gbit/s PM m-ary QAM transmission,” Opt. Express 19(6), 5219–5224 (2011).
    [CrossRef] [PubMed]
  31. J.-X. Cai, M. Nissov, A. N. Pilipetskii, A. J. Lucero, C. R. Davidson, D. Foursa, H. Kidorf, M. A. Mills, R. Menges, P. C. Corbett, D. Sutton, and N. S. Bergano, “2.4 Tb/s (120 x 20 Gb/s) Transmission over Transoceanic Distance using Optimum FEC Overhead and 48% Spectral Efficiency,” in Optical Fiber Communication Conference, 2001 OSA Technical Digest Series (Optical Society of America, 2001), paper PD20.
  32. A. Agata, K. Tanaka, and N. Edagawa, “Study on the Optimum Reed-Solomon-Based FEC Codes for 40-Gb/s-Based Ultralong-Distance WDM transmission,” J. Lightwave Technol. 20(12), 2189–2195 (2002).
    [CrossRef]
  33. M. O’Sullivan, “Expanding network application with coherent detection,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper NWC3.
  34. S. R. Desbruslais and S. J. Savory, “Relationship Between Electrical Bandwidth and FEC Overhead in a 100 GbE Digital Coherent Receiver,” in Proceedings ECOC 2010, Torino, Italy, 2010, Paper P3.19.
  35. S. Dave, L. Esker, F. Mo, W. Thesling, J. Keszenheimer, and R. Fuerst, “Soft-decision Forward Error Correction in a 40-nm ASIC for 100-Gbps OTN Applications,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JWA014.
  36. J. Bromage, “Raman Amplification for Fiber Communications Systems,” J. Lightwave Technol. 22(1), 79–93 (2004).
    [CrossRef]
  37. M. Karlsson and E. Agrell, “Which is the most power-efficient modulation format in optical Links?” Opt. Express 17(13), 10814–10819 (2009).
    [CrossRef] [PubMed]
  38. H. Bülow and E. S. Masalkina, “Coded Modulation in Optical Communications,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America,2011), paper OThO1.
  39. L. Beygi, E. Agrell, and M. Karlsson, “Optimization of 16-point Ring Constellations in the Presence of Nonlinear Phase Noise,” in Optical Fiber communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThO4.
  40. E. Torrengo, S. Makovejs, D. Millar, I. Fatadin, R. Killey, S. Savory, and P. Bayvel, “Influence of Pulse Shape in 112-Gb/s WDM PDM-QPSK Transmission,” IEEE Photon. Technol. Lett. 22(23), 1714–1716 (2010).
    [CrossRef]
  41. I. Lyubomirsky, A. Nilsson, M. Mitchell, and D. Welch, “Signal Chirp Design for Supression of Nonlinear Polarization Scattering in DP-QPSK Transmission,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThF3.
  42. B. Châtelain, C. Laperle, K. Roberts, X. Xu, M. Chagnon, A. Borowiec, F. Gagnon, J. Cartedge, and D. V. Plant, “Optimized Pulse Shaping for Intra-channel Nonlinearities Mitigation in a 10 Gbaud Dual-Polarization 16-QAM System,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWO5.

2011 (6)

2010 (10)

J. Yu and X. Zhou, “16 x 107-Gb/s 12.5-GHz-Spaced PDM-36QAM Transmission Over 400 km of Standard Single-Mode Fiber,” IEEE Photon. Technol. Lett. 22(17), 1312–1314 (2010).
[CrossRef]

E. Torrengo, S. Makovejs, D. Millar, I. Fatadin, R. Killey, S. Savory, and P. Bayvel, “Influence of Pulse Shape in 112-Gb/s WDM PDM-QPSK Transmission,” IEEE Photon. Technol. Lett. 22(23), 1714–1716 (2010).
[CrossRef]

V. Curri, P. Poggiolini, G. Bosco, A. Carena, and F. Forghieri, “Performance Evaluation of Long-Haul 111Gb/s PM-QPSK Transmission Over Different Fiber Types,” IEEE Photon. Technol. Lett. 22(19), 1446–1448 (2010).
[CrossRef]

A. Carena, V. Curri, P. Poggiolini, G. Bosco, and F. Forghieri, “Maximum Reach Versus Transmission Capacity for Terabit Superchannels Based on 27.75-GBaud PM-QPSK, PM-8QAM, or PM-16QAM,” IEEE Photon. Technol. Lett. 22(11), 829–831 (2010).
[CrossRef]

R. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity Limits of Optical Fiber Networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
[CrossRef]

A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the Non-Linear Shannon Limit,” J. Lightwave Technol. 28(4), 423–433 (2010).
[CrossRef]

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16 x 100Gb/s Transmission Over Installed Fiber With Different Dispersion Maps,” IEEE Photon. Technol. Lett. 22(6), 371–373 (2010).
[CrossRef]

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11 x 224 Gb/s POLMUX-RZ-16QAM Transmission Over 670 km of SSMF With 50-GHz Channel Spacing,” IEEE Photon. Technol. Lett. 22(15), 1150–1152 (2010).
[CrossRef]

P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally Efficient Long-Haul Optical Networking Using 112-Gb/s Polarization-Multiplexed 16-QAM,” J. Lightwave Technol. 28(4), 547–556 (2010).
[CrossRef]

X. Chen and W. Shieh, “Closed-form expressions for nonlinear transmission performance of densely spaced coherent optical OFDM systems,” Opt. Express 18(18), 19039–19054 (2010).
[CrossRef] [PubMed]

2009 (1)

2004 (1)

2002 (1)

Agata, A.

Agrell, E.

Alfiad, M. S.

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11 x 224 Gb/s POLMUX-RZ-16QAM Transmission Over 670 km of SSMF With 50-GHz Channel Spacing,” IEEE Photon. Technol. Lett. 22(15), 1150–1152 (2010).
[CrossRef]

Bayvel, P.

C. Behrens, S. Makovejs, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Pulse-shaping versus digital backpropagation in 224Gbit/s PDM-16QAM transmission,” Opt. Express 19(14), 12879–12884 (2011).
[CrossRef] [PubMed]

E. Torrengo, S. Makovejs, D. Millar, I. Fatadin, R. Killey, S. Savory, and P. Bayvel, “Influence of Pulse Shape in 112-Gb/s WDM PDM-QPSK Transmission,” IEEE Photon. Technol. Lett. 22(23), 1714–1716 (2010).
[CrossRef]

Behrens, C.

Bononi, A.

Bosco, G.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical Modeling of Nonlinear Propagation in Uncompensated Optical Transmission Links,” IEEE Photon. Technol. Lett. 23(11), 742–744 (2011).
[CrossRef]

V. Curri, P. Poggiolini, G. Bosco, A. Carena, and F. Forghieri, “Performance Evaluation of Long-Haul 111Gb/s PM-QPSK Transmission Over Different Fiber Types,” IEEE Photon. Technol. Lett. 22(19), 1446–1448 (2010).
[CrossRef]

A. Carena, V. Curri, P. Poggiolini, G. Bosco, and F. Forghieri, “Maximum Reach Versus Transmission Capacity for Terabit Superchannels Based on 27.75-GBaud PM-QPSK, PM-8QAM, or PM-16QAM,” IEEE Photon. Technol. Lett. 22(11), 829–831 (2010).
[CrossRef]

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16 x 100Gb/s Transmission Over Installed Fiber With Different Dispersion Maps,” IEEE Photon. Technol. Lett. 22(6), 371–373 (2010).
[CrossRef]

Bromage, J.

Buhl, L. L.

Carena, A.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical Modeling of Nonlinear Propagation in Uncompensated Optical Transmission Links,” IEEE Photon. Technol. Lett. 23(11), 742–744 (2011).
[CrossRef]

V. Curri, P. Poggiolini, G. Bosco, A. Carena, and F. Forghieri, “Performance Evaluation of Long-Haul 111Gb/s PM-QPSK Transmission Over Different Fiber Types,” IEEE Photon. Technol. Lett. 22(19), 1446–1448 (2010).
[CrossRef]

A. Carena, V. Curri, P. Poggiolini, G. Bosco, and F. Forghieri, “Maximum Reach Versus Transmission Capacity for Terabit Superchannels Based on 27.75-GBaud PM-QPSK, PM-8QAM, or PM-16QAM,” IEEE Photon. Technol. Lett. 22(11), 829–831 (2010).
[CrossRef]

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16 x 100Gb/s Transmission Over Installed Fiber With Different Dispersion Maps,” IEEE Photon. Technol. Lett. 22(6), 371–373 (2010).
[CrossRef]

Chen, M.

Chen, X.

Cotter, D.

Curri, V.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical Modeling of Nonlinear Propagation in Uncompensated Optical Transmission Links,” IEEE Photon. Technol. Lett. 23(11), 742–744 (2011).
[CrossRef]

V. Curri, P. Poggiolini, G. Bosco, A. Carena, and F. Forghieri, “Performance Evaluation of Long-Haul 111Gb/s PM-QPSK Transmission Over Different Fiber Types,” IEEE Photon. Technol. Lett. 22(19), 1446–1448 (2010).
[CrossRef]

A. Carena, V. Curri, P. Poggiolini, G. Bosco, and F. Forghieri, “Maximum Reach Versus Transmission Capacity for Terabit Superchannels Based on 27.75-GBaud PM-QPSK, PM-8QAM, or PM-16QAM,” IEEE Photon. Technol. Lett. 22(11), 829–831 (2010).
[CrossRef]

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16 x 100Gb/s Transmission Over Installed Fiber With Different Dispersion Maps,” IEEE Photon. Technol. Lett. 22(6), 371–373 (2010).
[CrossRef]

de Waardt, H.

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11 x 224 Gb/s POLMUX-RZ-16QAM Transmission Over 670 km of SSMF With 50-GHz Channel Spacing,” IEEE Photon. Technol. Lett. 22(15), 1150–1152 (2010).
[CrossRef]

Doerr, C. R.

Du, L. B.

Edagawa, N.

Ellis, A. D.

Essiambre, R.

Fatadin, I.

E. Torrengo, S. Makovejs, D. Millar, I. Fatadin, R. Killey, S. Savory, and P. Bayvel, “Influence of Pulse Shape in 112-Gb/s WDM PDM-QPSK Transmission,” IEEE Photon. Technol. Lett. 22(23), 1714–1716 (2010).
[CrossRef]

Forghieri, F.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical Modeling of Nonlinear Propagation in Uncompensated Optical Transmission Links,” IEEE Photon. Technol. Lett. 23(11), 742–744 (2011).
[CrossRef]

V. Curri, P. Poggiolini, G. Bosco, A. Carena, and F. Forghieri, “Performance Evaluation of Long-Haul 111Gb/s PM-QPSK Transmission Over Different Fiber Types,” IEEE Photon. Technol. Lett. 22(19), 1446–1448 (2010).
[CrossRef]

A. Carena, V. Curri, P. Poggiolini, G. Bosco, and F. Forghieri, “Maximum Reach Versus Transmission Capacity for Terabit Superchannels Based on 27.75-GBaud PM-QPSK, PM-8QAM, or PM-16QAM,” IEEE Photon. Technol. Lett. 22(11), 829–831 (2010).
[CrossRef]

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16 x 100Gb/s Transmission Over Installed Fiber With Different Dispersion Maps,” IEEE Photon. Technol. Lett. 22(6), 371–373 (2010).
[CrossRef]

Foschini, G. J.

Freund, R.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16 x 100Gb/s Transmission Over Installed Fiber With Different Dispersion Maps,” IEEE Photon. Technol. Lett. 22(6), 371–373 (2010).
[CrossRef]

Gavioli, G.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16 x 100Gb/s Transmission Over Installed Fiber With Different Dispersion Maps,” IEEE Photon. Technol. Lett. 22(6), 371–373 (2010).
[CrossRef]

Gnauck, A. H.

Goebel, B.

Grellier, E.

Hoshida, T.

Jansen, S. L.

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11 x 224 Gb/s POLMUX-RZ-16QAM Transmission Over 670 km of SSMF With 50-GHz Channel Spacing,” IEEE Photon. Technol. Lett. 22(15), 1150–1152 (2010).
[CrossRef]

Karlsson, M.

Killey, R.

E. Torrengo, S. Makovejs, D. Millar, I. Fatadin, R. Killey, S. Savory, and P. Bayvel, “Influence of Pulse Shape in 112-Gb/s WDM PDM-QPSK Transmission,” IEEE Photon. Technol. Lett. 22(23), 1714–1716 (2010).
[CrossRef]

Killey, R. I.

Kramer, G.

Kuschnerov, M.

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11 x 224 Gb/s POLMUX-RZ-16QAM Transmission Over 670 km of SSMF With 50-GHz Channel Spacing,” IEEE Photon. Technol. Lett. 22(15), 1150–1152 (2010).
[CrossRef]

Li, L.

Liu, L.

Lowery, A. J.

Magarini, M.

Makovejs, S.

C. Behrens, S. Makovejs, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Pulse-shaping versus digital backpropagation in 224Gbit/s PDM-16QAM transmission,” Opt. Express 19(14), 12879–12884 (2011).
[CrossRef] [PubMed]

E. Torrengo, S. Makovejs, D. Millar, I. Fatadin, R. Killey, S. Savory, and P. Bayvel, “Influence of Pulse Shape in 112-Gb/s WDM PDM-QPSK Transmission,” IEEE Photon. Technol. Lett. 22(23), 1714–1716 (2010).
[CrossRef]

Millar, D.

E. Torrengo, S. Makovejs, D. Millar, I. Fatadin, R. Killey, S. Savory, and P. Bayvel, “Influence of Pulse Shape in 112-Gb/s WDM PDM-QPSK Transmission,” IEEE Photon. Technol. Lett. 22(23), 1714–1716 (2010).
[CrossRef]

Miot, V.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16 x 100Gb/s Transmission Over Installed Fiber With Different Dispersion Maps,” IEEE Photon. Technol. Lett. 22(6), 371–373 (2010).
[CrossRef]

Molle, L.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16 x 100Gb/s Transmission Over Installed Fiber With Different Dispersion Maps,” IEEE Photon. Technol. Lett. 22(6), 371–373 (2010).
[CrossRef]

Oda, S.

Poggiolini, P.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical Modeling of Nonlinear Propagation in Uncompensated Optical Transmission Links,” IEEE Photon. Technol. Lett. 23(11), 742–744 (2011).
[CrossRef]

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16 x 100Gb/s Transmission Over Installed Fiber With Different Dispersion Maps,” IEEE Photon. Technol. Lett. 22(6), 371–373 (2010).
[CrossRef]

A. Carena, V. Curri, P. Poggiolini, G. Bosco, and F. Forghieri, “Maximum Reach Versus Transmission Capacity for Terabit Superchannels Based on 27.75-GBaud PM-QPSK, PM-8QAM, or PM-16QAM,” IEEE Photon. Technol. Lett. 22(11), 829–831 (2010).
[CrossRef]

V. Curri, P. Poggiolini, G. Bosco, A. Carena, and F. Forghieri, “Performance Evaluation of Long-Haul 111Gb/s PM-QPSK Transmission Over Different Fiber Types,” IEEE Photon. Technol. Lett. 22(19), 1446–1448 (2010).
[CrossRef]

Rafique, D.

Rasmussen, J. C.

Savory, S.

E. Torrengo, S. Makovejs, D. Millar, I. Fatadin, R. Killey, S. Savory, and P. Bayvel, “Influence of Pulse Shape in 112-Gb/s WDM PDM-QPSK Transmission,” IEEE Photon. Technol. Lett. 22(23), 1714–1716 (2010).
[CrossRef]

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16 x 100Gb/s Transmission Over Installed Fiber With Different Dispersion Maps,” IEEE Photon. Technol. Lett. 22(6), 371–373 (2010).
[CrossRef]

Savory, S. J.

Shieh, W.

Tanaka, K.

Tao, Z.

Torrengo, E.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16 x 100Gb/s Transmission Over Installed Fiber With Different Dispersion Maps,” IEEE Photon. Technol. Lett. 22(6), 371–373 (2010).
[CrossRef]

E. Torrengo, S. Makovejs, D. Millar, I. Fatadin, R. Killey, S. Savory, and P. Bayvel, “Influence of Pulse Shape in 112-Gb/s WDM PDM-QPSK Transmission,” IEEE Photon. Technol. Lett. 22(23), 1714–1716 (2010).
[CrossRef]

van den Borne, D.

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11 x 224 Gb/s POLMUX-RZ-16QAM Transmission Over 670 km of SSMF With 50-GHz Channel Spacing,” IEEE Photon. Technol. Lett. 22(15), 1150–1152 (2010).
[CrossRef]

Winzer, P. J.

Wuth, T.

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11 x 224 Gb/s POLMUX-RZ-16QAM Transmission Over 670 km of SSMF With 50-GHz Channel Spacing,” IEEE Photon. Technol. Lett. 22(15), 1150–1152 (2010).
[CrossRef]

Yan, W.

Yu, J.

J. Yu and X. Zhou, “16 x 107-Gb/s 12.5-GHz-Spaced PDM-36QAM Transmission Over 400 km of Standard Single-Mode Fiber,” IEEE Photon. Technol. Lett. 22(17), 1312–1314 (2010).
[CrossRef]

Zhao, J.

Zhou, X.

J. Yu and X. Zhou, “16 x 107-Gb/s 12.5-GHz-Spaced PDM-36QAM Transmission Over 400 km of Standard Single-Mode Fiber,” IEEE Photon. Technol. Lett. 22(17), 1312–1314 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (7)

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16 x 100Gb/s Transmission Over Installed Fiber With Different Dispersion Maps,” IEEE Photon. Technol. Lett. 22(6), 371–373 (2010).
[CrossRef]

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11 x 224 Gb/s POLMUX-RZ-16QAM Transmission Over 670 km of SSMF With 50-GHz Channel Spacing,” IEEE Photon. Technol. Lett. 22(15), 1150–1152 (2010).
[CrossRef]

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical Modeling of Nonlinear Propagation in Uncompensated Optical Transmission Links,” IEEE Photon. Technol. Lett. 23(11), 742–744 (2011).
[CrossRef]

V. Curri, P. Poggiolini, G. Bosco, A. Carena, and F. Forghieri, “Performance Evaluation of Long-Haul 111Gb/s PM-QPSK Transmission Over Different Fiber Types,” IEEE Photon. Technol. Lett. 22(19), 1446–1448 (2010).
[CrossRef]

A. Carena, V. Curri, P. Poggiolini, G. Bosco, and F. Forghieri, “Maximum Reach Versus Transmission Capacity for Terabit Superchannels Based on 27.75-GBaud PM-QPSK, PM-8QAM, or PM-16QAM,” IEEE Photon. Technol. Lett. 22(11), 829–831 (2010).
[CrossRef]

J. Yu and X. Zhou, “16 x 107-Gb/s 12.5-GHz-Spaced PDM-36QAM Transmission Over 400 km of Standard Single-Mode Fiber,” IEEE Photon. Technol. Lett. 22(17), 1312–1314 (2010).
[CrossRef]

E. Torrengo, S. Makovejs, D. Millar, I. Fatadin, R. Killey, S. Savory, and P. Bayvel, “Influence of Pulse Shape in 112-Gb/s WDM PDM-QPSK Transmission,” IEEE Photon. Technol. Lett. 22(23), 1714–1716 (2010).
[CrossRef]

J. Lightwave Technol. (6)

Opt. Express (6)

Other (23)

A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Packham, “10 x 224-Gb/s WDM Transmission of 28-Gbaud PDM 16-QAM on a 50-GHz Grid over 1,200 km of Fiber,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper PDPB8.

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “Transmission of 11 x 224-Gb/s POLMUX-RZ-16QAM over 1500 km of LongLine and pure-silica SMF,” in Proceedings ECOC 2010, Torino, Italy, 2010, Paper We.8.C.2.

S. Yamanaka, T. Kobayashi, A. Sano, H. Masuda, E. Yoshida, Y. Miyamoto, T. Nakagawa, M. Nagatani, and H. Noaka, “11 x 171 Gb/s PDM 16-QAM Transmission over 1440 km with a Spectral Effiency of 6.4 b/s/Hz using High-Speed DAC,” in Proceedings ECOC 2010, Torino, Italy, 2010, Paper We.8.C.1.

A. Gnauck and P. J. Winzer, “Ultra-High-Spectral-Efficiency Transmission,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OWE4.

J.-X. Cai, M. Nissov, A. N. Pilipetskii, A. J. Lucero, C. R. Davidson, D. Foursa, H. Kidorf, M. A. Mills, R. Menges, P. C. Corbett, D. Sutton, and N. S. Bergano, “2.4 Tb/s (120 x 20 Gb/s) Transmission over Transoceanic Distance using Optimum FEC Overhead and 48% Spectral Efficiency,” in Optical Fiber Communication Conference, 2001 OSA Technical Digest Series (Optical Society of America, 2001), paper PD20.

A. Sano, T. Kobayashi, A. Matsuura, S. Yamamoto, S. Yamanaka, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizuguchi, and T. Mizuno, “100 x 120-Gb/s PDM 64-QAM Transmission over 160 km Using Linewidth-Tolerant Pilotless Digital Coherent Detection,” in Proceedings ECOC 2010, Torino, Italy, 2010, Paper pd2_4.

J. Yu, X. Zhou, Y. Huang, S. Gupta, M. Huang, T. Wang, and P. Magill, “112.8-Gb/s PM-RZ-64QAM optical signal generation and transmission on a 12.5GHz WDM Grid,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OThM1.

H. Bülow and E. S. Masalkina, “Coded Modulation in Optical Communications,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America,2011), paper OThO1.

L. Beygi, E. Agrell, and M. Karlsson, “Optimization of 16-point Ring Constellations in the Presence of Nonlinear Phase Noise,” in Optical Fiber communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThO4.

M. O’Sullivan, “Expanding network application with coherent detection,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper NWC3.

S. R. Desbruslais and S. J. Savory, “Relationship Between Electrical Bandwidth and FEC Overhead in a 100 GbE Digital Coherent Receiver,” in Proceedings ECOC 2010, Torino, Italy, 2010, Paper P3.19.

S. Dave, L. Esker, F. Mo, W. Thesling, J. Keszenheimer, and R. Fuerst, “Soft-decision Forward Error Correction in a 40-nm ASIC for 100-Gbps OTN Applications,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JWA014.

J. Cai, Y. Cai, C. R. Davidson, A. Lucero, H. Zhang, D. G. Foursa, O. V. Sinkin, W. W. Patterson, A. Pilipetskii, G. Mohs, and N. Bergano, “20 Tbit/s Capacity Transmission Over 6,860 km,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB4.

J. Yu, X. Zhou, D. Qian, M. Huang, P. N. Ji, and G. Zhang, “20x112Gbit/s, 50GHz spaced, PolMux-RZ-QPSK straight-line transmission over 1540km of SSMF employing digital coherent detection and pure EDFA amplification,” in Proceedings ECOC 2008, Brussels, Belgium, 2008, Paper Th.2.A.2.

J. Downie, J. E. Hurley, J. Cartledge, S. R. Bickham, and S. Mishra, “Transmission of 112 Gb/s PM-QPSK Signals over 7200 km of Optical Fiber with Very Large Effective Area and Ultra-Low Loss in 100 km Spans with EDFAs Only,” in Optical Fiber Communications Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMI6.

G. Charlet, M. Salsi, P. Tran, M. Bertolini, H. Mardoyan, J. Renaudier, O. Bertran-Pardo, and S. Bigo, “72x100Gb/s transmission over transoceanic distance, using large effective area fiber, hybrid Raman-Erbium amplification and coherent detection,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper PDPB6.

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Fibre Nonlinearities in WDM-Systems with Reduced Channel-Spacing and Symbol-Rate,” in Proceedings ECOC 2010, Torino, Italy, 2010, Paper P4.20.

G. Bosco, A. Carena, R. Cigliutti, V. Curri, P. Poggiolini, and F. Forghieri, “Performance prediction for WDM PM-QPSK transmission over uncompensated links,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThO7.

C. Xia and D. van den Borne, “Impact of the Channel Count on the Nonlinear Tolerance in Coherently-detected POLMUX-QPSK modulation,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWO1.

M. Salsi, C. Koebele, P. Tran, H. Mardoyan, S. Bigo, and G. Charlet, “80x100Gbit/s transmission over 9000km using erbium-doped fibre repeaters only,” in Proceedings ECOC 2010, Torino, Italy, 2010, Paper We.7.C.3.

A. Bononi, N. Rossi, and P. Serena, “Transmission Limitations due to Fiber Nonlinearity,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWO7.

I. Lyubomirsky, A. Nilsson, M. Mitchell, and D. Welch, “Signal Chirp Design for Supression of Nonlinear Polarization Scattering in DP-QPSK Transmission,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThF3.

B. Châtelain, C. Laperle, K. Roberts, X. Xu, M. Chagnon, A. Borowiec, F. Gagnon, J. Cartedge, and D. V. Plant, “Optimized Pulse Shaping for Intra-channel Nonlinearities Mitigation in a 10 Gbaud Dual-Polarization 16-QAM System,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWO5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Reported reach results taken from 18 experiments utilizing a diverse range of network characteristics.

Fig. 2
Fig. 2

Normalization results for the 18 experiments in Fig. 1, assuming 20 dB spans of 80 km SSMF, with 5 dB amplifier Nf. Ideal lines correspond to the expected performance achievable using ideal transceiver performance on the same optical line system.

Fig. 3
Fig. 3

Relative distance to Shannon limit, vs spectral efficiency. Optimal reach vs. SE trade-off appears around 15% overhead.

Tables (3)

Tables Icon

Table 1 Sample of optical transmission reach results from recent literature

Tables Icon

Table 2 Example experimental vs. nominal network parameters

Tables Icon

Table 3 Comparison of idealized reach vs. normalized reach clusters

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

SNR= P ch P ASE + P NL
P ASE = N s A s N f hf B n
P XPM ~ γ 2 L eff SE | D |
P NL = κ NL N s γ 2 L eff SE | D | ( P ch B n ) 3
SNR= ( P ch B n ) N s ( A s N f hf+ κ NL γ 2 LeffSE | D | ( P ch B n ) 3 )
P ch,opt B n = [ A s N f hfD 2 κ NL γ 2 L eff SE ] 1/3
SN R opt = 1 N s ( A s N f hf ) 2/3 ( | D | 2 κ NL γ 2 L eff SE ) 1/3
N s,N N s,E =(SN R E SN R N )(ΔB2 B N ΔB2 B E ) 2 3 ( A s,N A s,E ) 2 3 ( N f,N N f,E )+ 1 3 ( D N D E ) 2 3 ( γ N γ E ) 1 3 ( L eff,N L eff,E ) 1 3 ( S E N S E E )
N s,N N s,E =6.7dB
N s,N =10log(62)+(NECG9.6)ΔB2BM 2 3 ( A s,N 20 ) 2 3 ( N f,N 5 )+ 1 3 ( 10log( D N 16.7 ) ) 2 3 10log( γ N 1.31 ) 1 3 10log( L eff,N 19.7 ) 1 3 10log( SE 2 )
N s,N =10log(13)+(NECG9.6)ΔB2BM 2 3 ( A s,N 20 ) 2 3 ( N f,N 5 )+ 1 3 ( 10log( D N 16.7 ) ) 2 3 10log( γ N 1.31 ) 1 3 10log( L eff,N 19.7 ) 1 3 10log( SE 4 )
N s,N =10log(3)+(NECG9.6)ΔB2BM 2 3 ( A s,N 20 ) 2 3 ( N f,N 5 )+ 1 3 ( 10log( D N 16.7 ) ) 2 3 10log( γ N 1.31 ) 1 3 10log( L eff,N 19.7 ) 1 3 10log( SE 6 )

Metrics