Abstract

Ternary metal oxide, Zn2GeO4, In2Ge2O7, have potential applications in many research areas. Using a single chemical vapor deposition method, high-quality single crystalline Zn2GeO4 nanowire (NW) mats and In2Ge2O7 NW mats were synthesized on a large scale. Nanowires mats based ultraviolet photodetectors were fabricated on rigid silicon substrates. By simply transferring the nanowire mats to a transparent adhesive PET tape, flexible photodetectors were also fabricated. Both the rigid and flexible photodetectors exhibited excellent photoconductive performance in terms of high sensitivity to the UV light, excellent stability and reproducibility, and fast response and recovery time.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Monroy, F. Omnès, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18(4), R33–R51 (2003).
    [CrossRef]
  2. L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5145–5149 (2010).
    [CrossRef]
  3. H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.) 14(2), 158–160 (2002).
    [CrossRef]
  4. Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 15(20), 1754–1757 (2003).
    [CrossRef]
  5. C.-H. Lin, T.-T. Chen, and Y.-F. Chen, “Photocurrent enhancement of SnO2 nanowires through Au-nanoparticles decoration,” Opt. Express 16(21), 16916–16922 (2008).
    [CrossRef] [PubMed]
  6. D. Zhang, C. Li, S. Han, X. Liu, T. Tang, W. Jin, and C. W. Zhou, “Ultraviolet photodetection properties of indium oxide nanowires,” Appl. Phys., A Mater. Sci. Process. 77(1), 163–166 (2003).
    [CrossRef]
  7. J. H. Huang, K. N. Ding, Y. D. Hou, X. C. Wang, and X. Z. Fu, “Synthesis and photocatalytic activity of Zn2GeO4 nanorods for the degradation of organic pollutants in water,” ChemSusChem 1(12), 1011–1019 (2008).
    [CrossRef] [PubMed]
  8. Q. Liu, Y. Zhou, J. H. Kou, X. Y. Chen, Z. P. Tian, J. Gao, S. C. Yan, and Z. G. Zou, “High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel,” J. Am. Chem. Soc. 132(41), 14385–14387 (2010).
    [CrossRef] [PubMed]
  9. Z. S. Liu, X. P. Jing, and L. X. Wang, “Luminescence of native defects in Zn2GeO4,” J. Electrochem. Soc. 154(6), H500–H506 (2007).
    [CrossRef]
  10. J. K. Feng, M. O. Lai, and L. Lu, “Zn2GeO4 nanorods synthesized by low-temperature hydrothermal growth for high-capacity anode of lithium battery,” Electrochem. Commun. 13(3), 287–289 (2011).
    [CrossRef]
  11. Y. Su, S. Li, L. Xu, Y. Q. Chen, Q. T. Zhou, B. Peng, S. Yin, X. Meng, X. M. Liang, and Y. Feng, “Synthesis and photoluminescence properties of In2Ge2O7 nanobelts,” Nanotechnology 17(24), 6007–6010 (2006).
    [CrossRef]
  12. C. Y. Yan, N. D. Singh, and P. S. Lee, “Wide-bandgap Zn2GeO4 nanowire networks as efficient ultraviolet photodetectors with fast response and recovery time,” Appl. Phys. Lett. 96(5), 053108 (2010).
    [CrossRef]
  13. C. Li, Y. Bando, M. Y. Liao, Y. Koide, and D. Golberg, “Visible-blind deep-ultraviolet schottky photodetector with a photocurrent gain based on individual Zn2GeO4 nanowire,” Appl. Phys. Lett. 97(16), 161102 (2010).
    [CrossRef]
  14. L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5145–5149 (2010).
    [CrossRef]
  15. G. Eda, G. Fanchini, and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material,” Nat. Nanotechnol. 3(5), 270–274 (2008).
    [CrossRef] [PubMed]
  16. G. Z. Shen, P.-C. Chen, K. Ryu, and C. W. Zhou, “Devices and chemical sensing applications of metal oxide nanowires,” J. Mater. Chem. 19(7), 828–839 (2009).
    [CrossRef]
  17. D.-J. Xue, J.-J. Wang, Y.-Q. Wang, S. Xin, Y.-G. Guo, and L.-J. Wan, “Facile synthesis of germanium nanocrystals and their application in organic-inorganic hybrid photodetectors,” Adv. Mater. (Deerfield Beach Fla.) 23(32), 3704–3707 (2011).
    [CrossRef] [PubMed]
  18. X. J. Zhang, J. S. Jie, W. F. Zhang, C. Y. Zhang, L. B. Luo, Z. B. He, X. H. Zhang, W. J. Zhang, C. S. Lee, and S. T. Lee, “Photoconductivity of a single small-molecule organic nanowire,” Adv. Mater. (Deerfield Beach Fla.) 20(12), 2427–2432 (2008).
    [CrossRef]
  19. L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. W. Zhou, “Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics,” ACS Nano 4(5), 2865–2873 (2010).
    [CrossRef] [PubMed]
  20. Z. R. Wang, H. Wang, B. Liu, W. Z. Qiu, J. Zhang, S. H. Ran, H. T. Huang, J. Xu, H. W. Han, D. Chen, and G. Z. Shen, “Transferable and flexible nanorod-assembled TiO₂ cloths for dye-sensitized solar cells, photodetectors, and photocatalysts,” ACS Nano 5(10), 8412–8419 (2011).
    [CrossRef] [PubMed]
  21. M. C. McAlpine, H. Ahmad, D. Wang, and J. R. Heath, “Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors,” Nat. Mater. 6(5), 379–384 (2007).
    [CrossRef] [PubMed]
  22. M. Chen, L. F. Hu, J. X. Xu, M. Y. Liao, L. M. Wu, and X. S. Fang, “ZnO hollow-sphere nanofilm-based high-performance and low-cost photodetector,” Small 7, 2449–2453 (2011).
    [PubMed]

2011 (4)

J. K. Feng, M. O. Lai, and L. Lu, “Zn2GeO4 nanorods synthesized by low-temperature hydrothermal growth for high-capacity anode of lithium battery,” Electrochem. Commun. 13(3), 287–289 (2011).
[CrossRef]

D.-J. Xue, J.-J. Wang, Y.-Q. Wang, S. Xin, Y.-G. Guo, and L.-J. Wan, “Facile synthesis of germanium nanocrystals and their application in organic-inorganic hybrid photodetectors,” Adv. Mater. (Deerfield Beach Fla.) 23(32), 3704–3707 (2011).
[CrossRef] [PubMed]

Z. R. Wang, H. Wang, B. Liu, W. Z. Qiu, J. Zhang, S. H. Ran, H. T. Huang, J. Xu, H. W. Han, D. Chen, and G. Z. Shen, “Transferable and flexible nanorod-assembled TiO₂ cloths for dye-sensitized solar cells, photodetectors, and photocatalysts,” ACS Nano 5(10), 8412–8419 (2011).
[CrossRef] [PubMed]

M. Chen, L. F. Hu, J. X. Xu, M. Y. Liao, L. M. Wu, and X. S. Fang, “ZnO hollow-sphere nanofilm-based high-performance and low-cost photodetector,” Small 7, 2449–2453 (2011).
[PubMed]

2010 (6)

L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. W. Zhou, “Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics,” ACS Nano 4(5), 2865–2873 (2010).
[CrossRef] [PubMed]

C. Y. Yan, N. D. Singh, and P. S. Lee, “Wide-bandgap Zn2GeO4 nanowire networks as efficient ultraviolet photodetectors with fast response and recovery time,” Appl. Phys. Lett. 96(5), 053108 (2010).
[CrossRef]

C. Li, Y. Bando, M. Y. Liao, Y. Koide, and D. Golberg, “Visible-blind deep-ultraviolet schottky photodetector with a photocurrent gain based on individual Zn2GeO4 nanowire,” Appl. Phys. Lett. 97(16), 161102 (2010).
[CrossRef]

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5145–5149 (2010).
[CrossRef]

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5145–5149 (2010).
[CrossRef]

Q. Liu, Y. Zhou, J. H. Kou, X. Y. Chen, Z. P. Tian, J. Gao, S. C. Yan, and Z. G. Zou, “High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel,” J. Am. Chem. Soc. 132(41), 14385–14387 (2010).
[CrossRef] [PubMed]

2009 (1)

G. Z. Shen, P.-C. Chen, K. Ryu, and C. W. Zhou, “Devices and chemical sensing applications of metal oxide nanowires,” J. Mater. Chem. 19(7), 828–839 (2009).
[CrossRef]

2008 (4)

J. H. Huang, K. N. Ding, Y. D. Hou, X. C. Wang, and X. Z. Fu, “Synthesis and photocatalytic activity of Zn2GeO4 nanorods for the degradation of organic pollutants in water,” ChemSusChem 1(12), 1011–1019 (2008).
[CrossRef] [PubMed]

G. Eda, G. Fanchini, and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material,” Nat. Nanotechnol. 3(5), 270–274 (2008).
[CrossRef] [PubMed]

C.-H. Lin, T.-T. Chen, and Y.-F. Chen, “Photocurrent enhancement of SnO2 nanowires through Au-nanoparticles decoration,” Opt. Express 16(21), 16916–16922 (2008).
[CrossRef] [PubMed]

X. J. Zhang, J. S. Jie, W. F. Zhang, C. Y. Zhang, L. B. Luo, Z. B. He, X. H. Zhang, W. J. Zhang, C. S. Lee, and S. T. Lee, “Photoconductivity of a single small-molecule organic nanowire,” Adv. Mater. (Deerfield Beach Fla.) 20(12), 2427–2432 (2008).
[CrossRef]

2007 (2)

M. C. McAlpine, H. Ahmad, D. Wang, and J. R. Heath, “Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors,” Nat. Mater. 6(5), 379–384 (2007).
[CrossRef] [PubMed]

Z. S. Liu, X. P. Jing, and L. X. Wang, “Luminescence of native defects in Zn2GeO4,” J. Electrochem. Soc. 154(6), H500–H506 (2007).
[CrossRef]

2006 (1)

Y. Su, S. Li, L. Xu, Y. Q. Chen, Q. T. Zhou, B. Peng, S. Yin, X. Meng, X. M. Liang, and Y. Feng, “Synthesis and photoluminescence properties of In2Ge2O7 nanobelts,” Nanotechnology 17(24), 6007–6010 (2006).
[CrossRef]

2003 (3)

D. Zhang, C. Li, S. Han, X. Liu, T. Tang, W. Jin, and C. W. Zhou, “Ultraviolet photodetection properties of indium oxide nanowires,” Appl. Phys., A Mater. Sci. Process. 77(1), 163–166 (2003).
[CrossRef]

E. Monroy, F. Omnès, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18(4), R33–R51 (2003).
[CrossRef]

Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 15(20), 1754–1757 (2003).
[CrossRef]

2002 (1)

H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.) 14(2), 158–160 (2002).
[CrossRef]

Ahmad, H.

M. C. McAlpine, H. Ahmad, D. Wang, and J. R. Heath, “Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors,” Nat. Mater. 6(5), 379–384 (2007).
[CrossRef] [PubMed]

Bando, Y.

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5145–5149 (2010).
[CrossRef]

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5145–5149 (2010).
[CrossRef]

C. Li, Y. Bando, M. Y. Liao, Y. Koide, and D. Golberg, “Visible-blind deep-ultraviolet schottky photodetector with a photocurrent gain based on individual Zn2GeO4 nanowire,” Appl. Phys. Lett. 97(16), 161102 (2010).
[CrossRef]

Calle, F.

E. Monroy, F. Omnès, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18(4), R33–R51 (2003).
[CrossRef]

Chen, D.

Z. R. Wang, H. Wang, B. Liu, W. Z. Qiu, J. Zhang, S. H. Ran, H. T. Huang, J. Xu, H. W. Han, D. Chen, and G. Z. Shen, “Transferable and flexible nanorod-assembled TiO₂ cloths for dye-sensitized solar cells, photodetectors, and photocatalysts,” ACS Nano 5(10), 8412–8419 (2011).
[CrossRef] [PubMed]

Chen, M.

M. Chen, L. F. Hu, J. X. Xu, M. Y. Liao, L. M. Wu, and X. S. Fang, “ZnO hollow-sphere nanofilm-based high-performance and low-cost photodetector,” Small 7, 2449–2453 (2011).
[PubMed]

Chen, P.-C.

G. Z. Shen, P.-C. Chen, K. Ryu, and C. W. Zhou, “Devices and chemical sensing applications of metal oxide nanowires,” J. Mater. Chem. 19(7), 828–839 (2009).
[CrossRef]

Chen, T.-T.

Chen, X. Y.

Q. Liu, Y. Zhou, J. H. Kou, X. Y. Chen, Z. P. Tian, J. Gao, S. C. Yan, and Z. G. Zou, “High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel,” J. Am. Chem. Soc. 132(41), 14385–14387 (2010).
[CrossRef] [PubMed]

Chen, Y. Q.

Y. Su, S. Li, L. Xu, Y. Q. Chen, Q. T. Zhou, B. Peng, S. Yin, X. Meng, X. M. Liang, and Y. Feng, “Synthesis and photoluminescence properties of In2Ge2O7 nanobelts,” Nanotechnology 17(24), 6007–6010 (2006).
[CrossRef]

Chen, Y.-F.

Chhowalla, M.

G. Eda, G. Fanchini, and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material,” Nat. Nanotechnol. 3(5), 270–274 (2008).
[CrossRef] [PubMed]

Ding, K. N.

J. H. Huang, K. N. Ding, Y. D. Hou, X. C. Wang, and X. Z. Fu, “Synthesis and photocatalytic activity of Zn2GeO4 nanorods for the degradation of organic pollutants in water,” ChemSusChem 1(12), 1011–1019 (2008).
[CrossRef] [PubMed]

Eda, G.

G. Eda, G. Fanchini, and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material,” Nat. Nanotechnol. 3(5), 270–274 (2008).
[CrossRef] [PubMed]

Fanchini, G.

G. Eda, G. Fanchini, and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material,” Nat. Nanotechnol. 3(5), 270–274 (2008).
[CrossRef] [PubMed]

Fang, X. S.

M. Chen, L. F. Hu, J. X. Xu, M. Y. Liao, L. M. Wu, and X. S. Fang, “ZnO hollow-sphere nanofilm-based high-performance and low-cost photodetector,” Small 7, 2449–2453 (2011).
[PubMed]

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5145–5149 (2010).
[CrossRef]

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5145–5149 (2010).
[CrossRef]

Feng, J. K.

J. K. Feng, M. O. Lai, and L. Lu, “Zn2GeO4 nanorods synthesized by low-temperature hydrothermal growth for high-capacity anode of lithium battery,” Electrochem. Commun. 13(3), 287–289 (2011).
[CrossRef]

Feng, Y.

Y. Su, S. Li, L. Xu, Y. Q. Chen, Q. T. Zhou, B. Peng, S. Yin, X. Meng, X. M. Liang, and Y. Feng, “Synthesis and photoluminescence properties of In2Ge2O7 nanobelts,” Nanotechnology 17(24), 6007–6010 (2006).
[CrossRef]

Fu, X. Z.

J. H. Huang, K. N. Ding, Y. D. Hou, X. C. Wang, and X. Z. Fu, “Synthesis and photocatalytic activity of Zn2GeO4 nanorods for the degradation of organic pollutants in water,” ChemSusChem 1(12), 1011–1019 (2008).
[CrossRef] [PubMed]

Gao, J.

Q. Liu, Y. Zhou, J. H. Kou, X. Y. Chen, Z. P. Tian, J. Gao, S. C. Yan, and Z. G. Zou, “High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel,” J. Am. Chem. Soc. 132(41), 14385–14387 (2010).
[CrossRef] [PubMed]

Golberg, D.

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5145–5149 (2010).
[CrossRef]

C. Li, Y. Bando, M. Y. Liao, Y. Koide, and D. Golberg, “Visible-blind deep-ultraviolet schottky photodetector with a photocurrent gain based on individual Zn2GeO4 nanowire,” Appl. Phys. Lett. 97(16), 161102 (2010).
[CrossRef]

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5145–5149 (2010).
[CrossRef]

Gomez De Arco, L.

L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. W. Zhou, “Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics,” ACS Nano 4(5), 2865–2873 (2010).
[CrossRef] [PubMed]

Guo, Y.-G.

D.-J. Xue, J.-J. Wang, Y.-Q. Wang, S. Xin, Y.-G. Guo, and L.-J. Wan, “Facile synthesis of germanium nanocrystals and their application in organic-inorganic hybrid photodetectors,” Adv. Mater. (Deerfield Beach Fla.) 23(32), 3704–3707 (2011).
[CrossRef] [PubMed]

Han, H. W.

Z. R. Wang, H. Wang, B. Liu, W. Z. Qiu, J. Zhang, S. H. Ran, H. T. Huang, J. Xu, H. W. Han, D. Chen, and G. Z. Shen, “Transferable and flexible nanorod-assembled TiO₂ cloths for dye-sensitized solar cells, photodetectors, and photocatalysts,” ACS Nano 5(10), 8412–8419 (2011).
[CrossRef] [PubMed]

Han, S.

D. Zhang, C. Li, S. Han, X. Liu, T. Tang, W. Jin, and C. W. Zhou, “Ultraviolet photodetection properties of indium oxide nanowires,” Appl. Phys., A Mater. Sci. Process. 77(1), 163–166 (2003).
[CrossRef]

Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 15(20), 1754–1757 (2003).
[CrossRef]

He, Z. B.

X. J. Zhang, J. S. Jie, W. F. Zhang, C. Y. Zhang, L. B. Luo, Z. B. He, X. H. Zhang, W. J. Zhang, C. S. Lee, and S. T. Lee, “Photoconductivity of a single small-molecule organic nanowire,” Adv. Mater. (Deerfield Beach Fla.) 20(12), 2427–2432 (2008).
[CrossRef]

Heath, J. R.

M. C. McAlpine, H. Ahmad, D. Wang, and J. R. Heath, “Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors,” Nat. Mater. 6(5), 379–384 (2007).
[CrossRef] [PubMed]

Hou, Y. D.

J. H. Huang, K. N. Ding, Y. D. Hou, X. C. Wang, and X. Z. Fu, “Synthesis and photocatalytic activity of Zn2GeO4 nanorods for the degradation of organic pollutants in water,” ChemSusChem 1(12), 1011–1019 (2008).
[CrossRef] [PubMed]

Hu, L. F.

M. Chen, L. F. Hu, J. X. Xu, M. Y. Liao, L. M. Wu, and X. S. Fang, “ZnO hollow-sphere nanofilm-based high-performance and low-cost photodetector,” Small 7, 2449–2453 (2011).
[PubMed]

Huang, H. T.

Z. R. Wang, H. Wang, B. Liu, W. Z. Qiu, J. Zhang, S. H. Ran, H. T. Huang, J. Xu, H. W. Han, D. Chen, and G. Z. Shen, “Transferable and flexible nanorod-assembled TiO₂ cloths for dye-sensitized solar cells, photodetectors, and photocatalysts,” ACS Nano 5(10), 8412–8419 (2011).
[CrossRef] [PubMed]

Huang, J. H.

J. H. Huang, K. N. Ding, Y. D. Hou, X. C. Wang, and X. Z. Fu, “Synthesis and photocatalytic activity of Zn2GeO4 nanorods for the degradation of organic pollutants in water,” ChemSusChem 1(12), 1011–1019 (2008).
[CrossRef] [PubMed]

Jie, J. S.

X. J. Zhang, J. S. Jie, W. F. Zhang, C. Y. Zhang, L. B. Luo, Z. B. He, X. H. Zhang, W. J. Zhang, C. S. Lee, and S. T. Lee, “Photoconductivity of a single small-molecule organic nanowire,” Adv. Mater. (Deerfield Beach Fla.) 20(12), 2427–2432 (2008).
[CrossRef]

Jin, W.

Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 15(20), 1754–1757 (2003).
[CrossRef]

D. Zhang, C. Li, S. Han, X. Liu, T. Tang, W. Jin, and C. W. Zhou, “Ultraviolet photodetection properties of indium oxide nanowires,” Appl. Phys., A Mater. Sci. Process. 77(1), 163–166 (2003).
[CrossRef]

Jing, X. P.

Z. S. Liu, X. P. Jing, and L. X. Wang, “Luminescence of native defects in Zn2GeO4,” J. Electrochem. Soc. 154(6), H500–H506 (2007).
[CrossRef]

Kind, H.

H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.) 14(2), 158–160 (2002).
[CrossRef]

Koide, Y.

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5145–5149 (2010).
[CrossRef]

C. Li, Y. Bando, M. Y. Liao, Y. Koide, and D. Golberg, “Visible-blind deep-ultraviolet schottky photodetector with a photocurrent gain based on individual Zn2GeO4 nanowire,” Appl. Phys. Lett. 97(16), 161102 (2010).
[CrossRef]

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5145–5149 (2010).
[CrossRef]

Kou, J. H.

Q. Liu, Y. Zhou, J. H. Kou, X. Y. Chen, Z. P. Tian, J. Gao, S. C. Yan, and Z. G. Zou, “High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel,” J. Am. Chem. Soc. 132(41), 14385–14387 (2010).
[CrossRef] [PubMed]

Lai, M. O.

J. K. Feng, M. O. Lai, and L. Lu, “Zn2GeO4 nanorods synthesized by low-temperature hydrothermal growth for high-capacity anode of lithium battery,” Electrochem. Commun. 13(3), 287–289 (2011).
[CrossRef]

Law, M.

H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.) 14(2), 158–160 (2002).
[CrossRef]

Lee, C. S.

X. J. Zhang, J. S. Jie, W. F. Zhang, C. Y. Zhang, L. B. Luo, Z. B. He, X. H. Zhang, W. J. Zhang, C. S. Lee, and S. T. Lee, “Photoconductivity of a single small-molecule organic nanowire,” Adv. Mater. (Deerfield Beach Fla.) 20(12), 2427–2432 (2008).
[CrossRef]

Lee, P. S.

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5145–5149 (2010).
[CrossRef]

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5145–5149 (2010).
[CrossRef]

C. Y. Yan, N. D. Singh, and P. S. Lee, “Wide-bandgap Zn2GeO4 nanowire networks as efficient ultraviolet photodetectors with fast response and recovery time,” Appl. Phys. Lett. 96(5), 053108 (2010).
[CrossRef]

Lee, S. T.

X. J. Zhang, J. S. Jie, W. F. Zhang, C. Y. Zhang, L. B. Luo, Z. B. He, X. H. Zhang, W. J. Zhang, C. S. Lee, and S. T. Lee, “Photoconductivity of a single small-molecule organic nanowire,” Adv. Mater. (Deerfield Beach Fla.) 20(12), 2427–2432 (2008).
[CrossRef]

Lei, B.

Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 15(20), 1754–1757 (2003).
[CrossRef]

Li, C.

C. Li, Y. Bando, M. Y. Liao, Y. Koide, and D. Golberg, “Visible-blind deep-ultraviolet schottky photodetector with a photocurrent gain based on individual Zn2GeO4 nanowire,” Appl. Phys. Lett. 97(16), 161102 (2010).
[CrossRef]

Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 15(20), 1754–1757 (2003).
[CrossRef]

D. Zhang, C. Li, S. Han, X. Liu, T. Tang, W. Jin, and C. W. Zhou, “Ultraviolet photodetection properties of indium oxide nanowires,” Appl. Phys., A Mater. Sci. Process. 77(1), 163–166 (2003).
[CrossRef]

Li, L.

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5145–5149 (2010).
[CrossRef]

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5145–5149 (2010).
[CrossRef]

Li, S.

Y. Su, S. Li, L. Xu, Y. Q. Chen, Q. T. Zhou, B. Peng, S. Yin, X. Meng, X. M. Liang, and Y. Feng, “Synthesis and photoluminescence properties of In2Ge2O7 nanobelts,” Nanotechnology 17(24), 6007–6010 (2006).
[CrossRef]

Liang, X. M.

Y. Su, S. Li, L. Xu, Y. Q. Chen, Q. T. Zhou, B. Peng, S. Yin, X. Meng, X. M. Liang, and Y. Feng, “Synthesis and photoluminescence properties of In2Ge2O7 nanobelts,” Nanotechnology 17(24), 6007–6010 (2006).
[CrossRef]

Liao, M. Y.

M. Chen, L. F. Hu, J. X. Xu, M. Y. Liao, L. M. Wu, and X. S. Fang, “ZnO hollow-sphere nanofilm-based high-performance and low-cost photodetector,” Small 7, 2449–2453 (2011).
[PubMed]

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5145–5149 (2010).
[CrossRef]

C. Li, Y. Bando, M. Y. Liao, Y. Koide, and D. Golberg, “Visible-blind deep-ultraviolet schottky photodetector with a photocurrent gain based on individual Zn2GeO4 nanowire,” Appl. Phys. Lett. 97(16), 161102 (2010).
[CrossRef]

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5145–5149 (2010).
[CrossRef]

Lin, C.-H.

Liu, B.

Z. R. Wang, H. Wang, B. Liu, W. Z. Qiu, J. Zhang, S. H. Ran, H. T. Huang, J. Xu, H. W. Han, D. Chen, and G. Z. Shen, “Transferable and flexible nanorod-assembled TiO₂ cloths for dye-sensitized solar cells, photodetectors, and photocatalysts,” ACS Nano 5(10), 8412–8419 (2011).
[CrossRef] [PubMed]

Liu, Q.

Q. Liu, Y. Zhou, J. H. Kou, X. Y. Chen, Z. P. Tian, J. Gao, S. C. Yan, and Z. G. Zou, “High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel,” J. Am. Chem. Soc. 132(41), 14385–14387 (2010).
[CrossRef] [PubMed]

Liu, X.

D. Zhang, C. Li, S. Han, X. Liu, T. Tang, W. Jin, and C. W. Zhou, “Ultraviolet photodetection properties of indium oxide nanowires,” Appl. Phys., A Mater. Sci. Process. 77(1), 163–166 (2003).
[CrossRef]

Liu, X. L.

Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 15(20), 1754–1757 (2003).
[CrossRef]

Liu, Z. Q.

Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 15(20), 1754–1757 (2003).
[CrossRef]

Liu, Z. S.

Z. S. Liu, X. P. Jing, and L. X. Wang, “Luminescence of native defects in Zn2GeO4,” J. Electrochem. Soc. 154(6), H500–H506 (2007).
[CrossRef]

Lu, L.

J. K. Feng, M. O. Lai, and L. Lu, “Zn2GeO4 nanorods synthesized by low-temperature hydrothermal growth for high-capacity anode of lithium battery,” Electrochem. Commun. 13(3), 287–289 (2011).
[CrossRef]

Luo, L. B.

X. J. Zhang, J. S. Jie, W. F. Zhang, C. Y. Zhang, L. B. Luo, Z. B. He, X. H. Zhang, W. J. Zhang, C. S. Lee, and S. T. Lee, “Photoconductivity of a single small-molecule organic nanowire,” Adv. Mater. (Deerfield Beach Fla.) 20(12), 2427–2432 (2008).
[CrossRef]

McAlpine, M. C.

M. C. McAlpine, H. Ahmad, D. Wang, and J. R. Heath, “Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors,” Nat. Mater. 6(5), 379–384 (2007).
[CrossRef] [PubMed]

Meng, X.

Y. Su, S. Li, L. Xu, Y. Q. Chen, Q. T. Zhou, B. Peng, S. Yin, X. Meng, X. M. Liang, and Y. Feng, “Synthesis and photoluminescence properties of In2Ge2O7 nanobelts,” Nanotechnology 17(24), 6007–6010 (2006).
[CrossRef]

Messer, B.

H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.) 14(2), 158–160 (2002).
[CrossRef]

Monroy, E.

E. Monroy, F. Omnès, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18(4), R33–R51 (2003).
[CrossRef]

Omnès, F.

E. Monroy, F. Omnès, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18(4), R33–R51 (2003).
[CrossRef]

Peng, B.

Y. Su, S. Li, L. Xu, Y. Q. Chen, Q. T. Zhou, B. Peng, S. Yin, X. Meng, X. M. Liang, and Y. Feng, “Synthesis and photoluminescence properties of In2Ge2O7 nanobelts,” Nanotechnology 17(24), 6007–6010 (2006).
[CrossRef]

Qiu, W. Z.

Z. R. Wang, H. Wang, B. Liu, W. Z. Qiu, J. Zhang, S. H. Ran, H. T. Huang, J. Xu, H. W. Han, D. Chen, and G. Z. Shen, “Transferable and flexible nanorod-assembled TiO₂ cloths for dye-sensitized solar cells, photodetectors, and photocatalysts,” ACS Nano 5(10), 8412–8419 (2011).
[CrossRef] [PubMed]

Ran, S. H.

Z. R. Wang, H. Wang, B. Liu, W. Z. Qiu, J. Zhang, S. H. Ran, H. T. Huang, J. Xu, H. W. Han, D. Chen, and G. Z. Shen, “Transferable and flexible nanorod-assembled TiO₂ cloths for dye-sensitized solar cells, photodetectors, and photocatalysts,” ACS Nano 5(10), 8412–8419 (2011).
[CrossRef] [PubMed]

Ryu, K.

L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. W. Zhou, “Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics,” ACS Nano 4(5), 2865–2873 (2010).
[CrossRef] [PubMed]

G. Z. Shen, P.-C. Chen, K. Ryu, and C. W. Zhou, “Devices and chemical sensing applications of metal oxide nanowires,” J. Mater. Chem. 19(7), 828–839 (2009).
[CrossRef]

Schlenker, C. W.

L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. W. Zhou, “Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics,” ACS Nano 4(5), 2865–2873 (2010).
[CrossRef] [PubMed]

Shen, G. Z.

Z. R. Wang, H. Wang, B. Liu, W. Z. Qiu, J. Zhang, S. H. Ran, H. T. Huang, J. Xu, H. W. Han, D. Chen, and G. Z. Shen, “Transferable and flexible nanorod-assembled TiO₂ cloths for dye-sensitized solar cells, photodetectors, and photocatalysts,” ACS Nano 5(10), 8412–8419 (2011).
[CrossRef] [PubMed]

G. Z. Shen, P.-C. Chen, K. Ryu, and C. W. Zhou, “Devices and chemical sensing applications of metal oxide nanowires,” J. Mater. Chem. 19(7), 828–839 (2009).
[CrossRef]

Singh, N. D.

C. Y. Yan, N. D. Singh, and P. S. Lee, “Wide-bandgap Zn2GeO4 nanowire networks as efficient ultraviolet photodetectors with fast response and recovery time,” Appl. Phys. Lett. 96(5), 053108 (2010).
[CrossRef]

Su, Y.

Y. Su, S. Li, L. Xu, Y. Q. Chen, Q. T. Zhou, B. Peng, S. Yin, X. Meng, X. M. Liang, and Y. Feng, “Synthesis and photoluminescence properties of In2Ge2O7 nanobelts,” Nanotechnology 17(24), 6007–6010 (2006).
[CrossRef]

Tang, T.

Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 15(20), 1754–1757 (2003).
[CrossRef]

D. Zhang, C. Li, S. Han, X. Liu, T. Tang, W. Jin, and C. W. Zhou, “Ultraviolet photodetection properties of indium oxide nanowires,” Appl. Phys., A Mater. Sci. Process. 77(1), 163–166 (2003).
[CrossRef]

Thompson, M. E.

L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. W. Zhou, “Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics,” ACS Nano 4(5), 2865–2873 (2010).
[CrossRef] [PubMed]

Tian, Z. P.

Q. Liu, Y. Zhou, J. H. Kou, X. Y. Chen, Z. P. Tian, J. Gao, S. C. Yan, and Z. G. Zou, “High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel,” J. Am. Chem. Soc. 132(41), 14385–14387 (2010).
[CrossRef] [PubMed]

Wan, L.-J.

D.-J. Xue, J.-J. Wang, Y.-Q. Wang, S. Xin, Y.-G. Guo, and L.-J. Wan, “Facile synthesis of germanium nanocrystals and their application in organic-inorganic hybrid photodetectors,” Adv. Mater. (Deerfield Beach Fla.) 23(32), 3704–3707 (2011).
[CrossRef] [PubMed]

Wang, D.

M. C. McAlpine, H. Ahmad, D. Wang, and J. R. Heath, “Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors,” Nat. Mater. 6(5), 379–384 (2007).
[CrossRef] [PubMed]

Wang, H.

Z. R. Wang, H. Wang, B. Liu, W. Z. Qiu, J. Zhang, S. H. Ran, H. T. Huang, J. Xu, H. W. Han, D. Chen, and G. Z. Shen, “Transferable and flexible nanorod-assembled TiO₂ cloths for dye-sensitized solar cells, photodetectors, and photocatalysts,” ACS Nano 5(10), 8412–8419 (2011).
[CrossRef] [PubMed]

Wang, J.-J.

D.-J. Xue, J.-J. Wang, Y.-Q. Wang, S. Xin, Y.-G. Guo, and L.-J. Wan, “Facile synthesis of germanium nanocrystals and their application in organic-inorganic hybrid photodetectors,” Adv. Mater. (Deerfield Beach Fla.) 23(32), 3704–3707 (2011).
[CrossRef] [PubMed]

Wang, L. X.

Z. S. Liu, X. P. Jing, and L. X. Wang, “Luminescence of native defects in Zn2GeO4,” J. Electrochem. Soc. 154(6), H500–H506 (2007).
[CrossRef]

Wang, X. C.

J. H. Huang, K. N. Ding, Y. D. Hou, X. C. Wang, and X. Z. Fu, “Synthesis and photocatalytic activity of Zn2GeO4 nanorods for the degradation of organic pollutants in water,” ChemSusChem 1(12), 1011–1019 (2008).
[CrossRef] [PubMed]

Wang, Y.-Q.

D.-J. Xue, J.-J. Wang, Y.-Q. Wang, S. Xin, Y.-G. Guo, and L.-J. Wan, “Facile synthesis of germanium nanocrystals and their application in organic-inorganic hybrid photodetectors,” Adv. Mater. (Deerfield Beach Fla.) 23(32), 3704–3707 (2011).
[CrossRef] [PubMed]

Wang, Z. R.

Z. R. Wang, H. Wang, B. Liu, W. Z. Qiu, J. Zhang, S. H. Ran, H. T. Huang, J. Xu, H. W. Han, D. Chen, and G. Z. Shen, “Transferable and flexible nanorod-assembled TiO₂ cloths for dye-sensitized solar cells, photodetectors, and photocatalysts,” ACS Nano 5(10), 8412–8419 (2011).
[CrossRef] [PubMed]

Wu, L. M.

M. Chen, L. F. Hu, J. X. Xu, M. Y. Liao, L. M. Wu, and X. S. Fang, “ZnO hollow-sphere nanofilm-based high-performance and low-cost photodetector,” Small 7, 2449–2453 (2011).
[PubMed]

Xin, S.

D.-J. Xue, J.-J. Wang, Y.-Q. Wang, S. Xin, Y.-G. Guo, and L.-J. Wan, “Facile synthesis of germanium nanocrystals and their application in organic-inorganic hybrid photodetectors,” Adv. Mater. (Deerfield Beach Fla.) 23(32), 3704–3707 (2011).
[CrossRef] [PubMed]

Xu, J.

Z. R. Wang, H. Wang, B. Liu, W. Z. Qiu, J. Zhang, S. H. Ran, H. T. Huang, J. Xu, H. W. Han, D. Chen, and G. Z. Shen, “Transferable and flexible nanorod-assembled TiO₂ cloths for dye-sensitized solar cells, photodetectors, and photocatalysts,” ACS Nano 5(10), 8412–8419 (2011).
[CrossRef] [PubMed]

Xu, J. X.

M. Chen, L. F. Hu, J. X. Xu, M. Y. Liao, L. M. Wu, and X. S. Fang, “ZnO hollow-sphere nanofilm-based high-performance and low-cost photodetector,” Small 7, 2449–2453 (2011).
[PubMed]

Xu, L.

Y. Su, S. Li, L. Xu, Y. Q. Chen, Q. T. Zhou, B. Peng, S. Yin, X. Meng, X. M. Liang, and Y. Feng, “Synthesis and photoluminescence properties of In2Ge2O7 nanobelts,” Nanotechnology 17(24), 6007–6010 (2006).
[CrossRef]

Xue, D.-J.

D.-J. Xue, J.-J. Wang, Y.-Q. Wang, S. Xin, Y.-G. Guo, and L.-J. Wan, “Facile synthesis of germanium nanocrystals and their application in organic-inorganic hybrid photodetectors,” Adv. Mater. (Deerfield Beach Fla.) 23(32), 3704–3707 (2011).
[CrossRef] [PubMed]

Yan, C. Y.

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5145–5149 (2010).
[CrossRef]

C. Y. Yan, N. D. Singh, and P. S. Lee, “Wide-bandgap Zn2GeO4 nanowire networks as efficient ultraviolet photodetectors with fast response and recovery time,” Appl. Phys. Lett. 96(5), 053108 (2010).
[CrossRef]

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5145–5149 (2010).
[CrossRef]

Yan, H. Q.

H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.) 14(2), 158–160 (2002).
[CrossRef]

Yan, S. C.

Q. Liu, Y. Zhou, J. H. Kou, X. Y. Chen, Z. P. Tian, J. Gao, S. C. Yan, and Z. G. Zou, “High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel,” J. Am. Chem. Soc. 132(41), 14385–14387 (2010).
[CrossRef] [PubMed]

Yang, P. D.

H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.) 14(2), 158–160 (2002).
[CrossRef]

Yin, S.

Y. Su, S. Li, L. Xu, Y. Q. Chen, Q. T. Zhou, B. Peng, S. Yin, X. Meng, X. M. Liang, and Y. Feng, “Synthesis and photoluminescence properties of In2Ge2O7 nanobelts,” Nanotechnology 17(24), 6007–6010 (2006).
[CrossRef]

Zhai, T. Y.

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5145–5149 (2010).
[CrossRef]

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5145–5149 (2010).
[CrossRef]

Zhang, C. Y.

X. J. Zhang, J. S. Jie, W. F. Zhang, C. Y. Zhang, L. B. Luo, Z. B. He, X. H. Zhang, W. J. Zhang, C. S. Lee, and S. T. Lee, “Photoconductivity of a single small-molecule organic nanowire,” Adv. Mater. (Deerfield Beach Fla.) 20(12), 2427–2432 (2008).
[CrossRef]

Zhang, D.

D. Zhang, C. Li, S. Han, X. Liu, T. Tang, W. Jin, and C. W. Zhou, “Ultraviolet photodetection properties of indium oxide nanowires,” Appl. Phys., A Mater. Sci. Process. 77(1), 163–166 (2003).
[CrossRef]

Zhang, D. H.

Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 15(20), 1754–1757 (2003).
[CrossRef]

Zhang, J.

Z. R. Wang, H. Wang, B. Liu, W. Z. Qiu, J. Zhang, S. H. Ran, H. T. Huang, J. Xu, H. W. Han, D. Chen, and G. Z. Shen, “Transferable and flexible nanorod-assembled TiO₂ cloths for dye-sensitized solar cells, photodetectors, and photocatalysts,” ACS Nano 5(10), 8412–8419 (2011).
[CrossRef] [PubMed]

Zhang, W. F.

X. J. Zhang, J. S. Jie, W. F. Zhang, C. Y. Zhang, L. B. Luo, Z. B. He, X. H. Zhang, W. J. Zhang, C. S. Lee, and S. T. Lee, “Photoconductivity of a single small-molecule organic nanowire,” Adv. Mater. (Deerfield Beach Fla.) 20(12), 2427–2432 (2008).
[CrossRef]

Zhang, W. J.

X. J. Zhang, J. S. Jie, W. F. Zhang, C. Y. Zhang, L. B. Luo, Z. B. He, X. H. Zhang, W. J. Zhang, C. S. Lee, and S. T. Lee, “Photoconductivity of a single small-molecule organic nanowire,” Adv. Mater. (Deerfield Beach Fla.) 20(12), 2427–2432 (2008).
[CrossRef]

Zhang, X. H.

X. J. Zhang, J. S. Jie, W. F. Zhang, C. Y. Zhang, L. B. Luo, Z. B. He, X. H. Zhang, W. J. Zhang, C. S. Lee, and S. T. Lee, “Photoconductivity of a single small-molecule organic nanowire,” Adv. Mater. (Deerfield Beach Fla.) 20(12), 2427–2432 (2008).
[CrossRef]

Zhang, X. J.

X. J. Zhang, J. S. Jie, W. F. Zhang, C. Y. Zhang, L. B. Luo, Z. B. He, X. H. Zhang, W. J. Zhang, C. S. Lee, and S. T. Lee, “Photoconductivity of a single small-molecule organic nanowire,” Adv. Mater. (Deerfield Beach Fla.) 20(12), 2427–2432 (2008).
[CrossRef]

Zhang, Y.

L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. W. Zhou, “Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics,” ACS Nano 4(5), 2865–2873 (2010).
[CrossRef] [PubMed]

Zhou, C. W.

L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. W. Zhou, “Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics,” ACS Nano 4(5), 2865–2873 (2010).
[CrossRef] [PubMed]

G. Z. Shen, P.-C. Chen, K. Ryu, and C. W. Zhou, “Devices and chemical sensing applications of metal oxide nanowires,” J. Mater. Chem. 19(7), 828–839 (2009).
[CrossRef]

Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 15(20), 1754–1757 (2003).
[CrossRef]

D. Zhang, C. Li, S. Han, X. Liu, T. Tang, W. Jin, and C. W. Zhou, “Ultraviolet photodetection properties of indium oxide nanowires,” Appl. Phys., A Mater. Sci. Process. 77(1), 163–166 (2003).
[CrossRef]

Zhou, Q. T.

Y. Su, S. Li, L. Xu, Y. Q. Chen, Q. T. Zhou, B. Peng, S. Yin, X. Meng, X. M. Liang, and Y. Feng, “Synthesis and photoluminescence properties of In2Ge2O7 nanobelts,” Nanotechnology 17(24), 6007–6010 (2006).
[CrossRef]

Zhou, Y.

Q. Liu, Y. Zhou, J. H. Kou, X. Y. Chen, Z. P. Tian, J. Gao, S. C. Yan, and Z. G. Zou, “High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel,” J. Am. Chem. Soc. 132(41), 14385–14387 (2010).
[CrossRef] [PubMed]

Zou, Z. G.

Q. Liu, Y. Zhou, J. H. Kou, X. Y. Chen, Z. P. Tian, J. Gao, S. C. Yan, and Z. G. Zou, “High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel,” J. Am. Chem. Soc. 132(41), 14385–14387 (2010).
[CrossRef] [PubMed]

ACS Nano (2)

L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. W. Zhou, “Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics,” ACS Nano 4(5), 2865–2873 (2010).
[CrossRef] [PubMed]

Z. R. Wang, H. Wang, B. Liu, W. Z. Qiu, J. Zhang, S. H. Ran, H. T. Huang, J. Xu, H. W. Han, D. Chen, and G. Z. Shen, “Transferable and flexible nanorod-assembled TiO₂ cloths for dye-sensitized solar cells, photodetectors, and photocatalysts,” ACS Nano 5(10), 8412–8419 (2011).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (6)

D.-J. Xue, J.-J. Wang, Y.-Q. Wang, S. Xin, Y.-G. Guo, and L.-J. Wan, “Facile synthesis of germanium nanocrystals and their application in organic-inorganic hybrid photodetectors,” Adv. Mater. (Deerfield Beach Fla.) 23(32), 3704–3707 (2011).
[CrossRef] [PubMed]

X. J. Zhang, J. S. Jie, W. F. Zhang, C. Y. Zhang, L. B. Luo, Z. B. He, X. H. Zhang, W. J. Zhang, C. S. Lee, and S. T. Lee, “Photoconductivity of a single small-molecule organic nanowire,” Adv. Mater. (Deerfield Beach Fla.) 20(12), 2427–2432 (2008).
[CrossRef]

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5145–5149 (2010).
[CrossRef]

H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.) 14(2), 158–160 (2002).
[CrossRef]

Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 15(20), 1754–1757 (2003).
[CrossRef]

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5145–5149 (2010).
[CrossRef]

Appl. Phys. Lett. (2)

C. Y. Yan, N. D. Singh, and P. S. Lee, “Wide-bandgap Zn2GeO4 nanowire networks as efficient ultraviolet photodetectors with fast response and recovery time,” Appl. Phys. Lett. 96(5), 053108 (2010).
[CrossRef]

C. Li, Y. Bando, M. Y. Liao, Y. Koide, and D. Golberg, “Visible-blind deep-ultraviolet schottky photodetector with a photocurrent gain based on individual Zn2GeO4 nanowire,” Appl. Phys. Lett. 97(16), 161102 (2010).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

D. Zhang, C. Li, S. Han, X. Liu, T. Tang, W. Jin, and C. W. Zhou, “Ultraviolet photodetection properties of indium oxide nanowires,” Appl. Phys., A Mater. Sci. Process. 77(1), 163–166 (2003).
[CrossRef]

ChemSusChem (1)

J. H. Huang, K. N. Ding, Y. D. Hou, X. C. Wang, and X. Z. Fu, “Synthesis and photocatalytic activity of Zn2GeO4 nanorods for the degradation of organic pollutants in water,” ChemSusChem 1(12), 1011–1019 (2008).
[CrossRef] [PubMed]

Electrochem. Commun. (1)

J. K. Feng, M. O. Lai, and L. Lu, “Zn2GeO4 nanorods synthesized by low-temperature hydrothermal growth for high-capacity anode of lithium battery,” Electrochem. Commun. 13(3), 287–289 (2011).
[CrossRef]

J. Am. Chem. Soc. (1)

Q. Liu, Y. Zhou, J. H. Kou, X. Y. Chen, Z. P. Tian, J. Gao, S. C. Yan, and Z. G. Zou, “High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel,” J. Am. Chem. Soc. 132(41), 14385–14387 (2010).
[CrossRef] [PubMed]

J. Electrochem. Soc. (1)

Z. S. Liu, X. P. Jing, and L. X. Wang, “Luminescence of native defects in Zn2GeO4,” J. Electrochem. Soc. 154(6), H500–H506 (2007).
[CrossRef]

J. Mater. Chem. (1)

G. Z. Shen, P.-C. Chen, K. Ryu, and C. W. Zhou, “Devices and chemical sensing applications of metal oxide nanowires,” J. Mater. Chem. 19(7), 828–839 (2009).
[CrossRef]

Nanotechnology (1)

Y. Su, S. Li, L. Xu, Y. Q. Chen, Q. T. Zhou, B. Peng, S. Yin, X. Meng, X. M. Liang, and Y. Feng, “Synthesis and photoluminescence properties of In2Ge2O7 nanobelts,” Nanotechnology 17(24), 6007–6010 (2006).
[CrossRef]

Nat. Mater. (1)

M. C. McAlpine, H. Ahmad, D. Wang, and J. R. Heath, “Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors,” Nat. Mater. 6(5), 379–384 (2007).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

G. Eda, G. Fanchini, and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material,” Nat. Nanotechnol. 3(5), 270–274 (2008).
[CrossRef] [PubMed]

Opt. Express (1)

Semicond. Sci. Technol. (1)

E. Monroy, F. Omnès, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18(4), R33–R51 (2003).
[CrossRef]

Small (1)

M. Chen, L. F. Hu, J. X. Xu, M. Y. Liao, L. M. Wu, and X. S. Fang, “ZnO hollow-sphere nanofilm-based high-performance and low-cost photodetector,” Small 7, 2449–2453 (2011).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) XRD pattern, (b), (c) SEM images, (d) TEM images and (e), (f) HRTEM images of the as-grown Zn2GeO4 NW mats. Inset in (f) is the corresponding selected area electron diffraction pattern.

Fig. 2
Fig. 2

(a) XRD pattern of the In2Ge2O7 NW mats. (b) SEM images of as-grown In2Ge2O7 NW mats on silicon substrate.

Fig. 3
Fig. 3

(a) Schematic illustration of the rigid substrate photodetector based on Zn2GeO4 NW mats. (b) Typical I-V characters of the device measured in dark (black curve), upon 0.85 mWcm−2 365 nm (red curve) and 254 nm (blue curve) UV light illumination, respectively. (c) Temporal response of photocurrent of the device under 365 nm (red curve) and 254 nm (blue curve) UV light illumination. (d) Enlarged view of a single on/off cycle.

Fig. 4
Fig. 4

(a) Schematic diagram of Zn2GeO4 NW mats transfer and a device structure. (b) Photograph of flexible ultraviolet photodetector based on Zn2GeO4 NW mats. (c) Typical I-V characters of the device measured in dark (black curve), upon 0.85 mWcm−2 254 nm (blue curve) UV light illumination and after 100 cycles of bending (red curve), respectively. (d) Temporal response of photocurrent of the device under 254 nm UV light illumination. (e) Enlarged view of a single on/off cycle.

Fig. 5
Fig. 5

(a) Schematic illustration of the rigid substrate photodetector based on In2Ge2O7 NW mats. (b) Typical I-V characters of the device measured in dark (black curve), upon 0.85 mWcm−2 365 nm (red curve) and 254 nm (blue curve) UV light illumination, respectively. (c) Temporal response of photocurrent of the device under 365 nm (red curve) and 254 nm (blue curve) UV light illumination. (d) Enlarged view of a single on/off cycle.

Fig. 6
Fig. 6

(a) Photograph of In2Ge2O7 NW mats on a flexible ultraviolet photodetector. Inset is the corresponding SEM images of a selected area. (b) Typical I-V characters of the device measured in dark (black curve), upon 0.85 mWcm−2 254 nm (blue curve) UV light illumination and after 100 cycles of bending (red curve), respectively. (c) Temporal response of photocurrent of the device under 254 nm UV light illumination. (d) Enlarged view of a single on/off cycle.

Fig. 7
Fig. 7

Schematic illustration of (a) oxygen-adsorption process in the dark and oxygen-desorption process upon UV illumination of the nanowire mats, (b) the NW-NW junction barrier for electron transfer in the nanowire mats, showing a decrease in NW-NW junction barrier height from the light-off state to light-on state.

Metrics