Abstract

We report an electro-optically tunable photonic crystal linear cavity etched on a 200 nm lithium niobate waveguide ridge. The photonic crystal cavity and the ridge are both fabricated on a 1 μm thin film of lithium niobate obtained by smart-cut technology. The photonic crystal, of area 4x0.8 μm2, has been engineered to work in a slow light configuration so that the electro-optic effect is 20 times more important than in bulk material.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3(4), 211–219 (2004).
    [CrossRef] [PubMed]
  2. F. Lacour, N. Coujal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
    [CrossRef]
  3. M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89(24), 241110 (2006).
    [CrossRef]
  4. M. Roussey, F. I. Baida, and M.-P. Bernal, “Experimental and theoretical observations of the slow-light effects on a tunable photonic crystal,” J. Opt. Soc. Am. B 24(6), 1416–1422 (2007).
    [CrossRef]
  5. J. Amet, G. Ulliac, F. I. Baida, and M.-P. Bernal, “Experimental evidence of enhanced electro-optic control on a lithium niobate photonic crystal superprism,” Appl. Phys. Lett. 96(10), 103111 (2010).
    [CrossRef]
  6. M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
    [CrossRef]
  7. A. M. Radojevic, M. Levy, H. Kwak, and R. M. Osgood., “Strong nonlinear optical response in epitaxial liftoff single-crystal LiNbO3 films,” Appl. Phys. Lett. 75(19), 2888–2890 (1999).
    [CrossRef]
  8. D. W. Ward, E. R. Statz, K. A. Nelson, R. M. Roth, and R. M. Osgood, “Terahertz wave generation and propagation in thin-film lithium niobate produced by crystal ion slicing,” Appl. Phys. Lett. 86(2), 022908 (2005).
    [CrossRef]
  9. D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
    [CrossRef]
  10. A. M. Radojevic, M. Levy, R. M. Osgood, D. H. Jundt, A. Kumar, and H. Bakhru, “Second-order optical nonlinearity of 10-mum-thick periodically poled LiNbO(3) films,” Opt. Lett. 25(14), 1034–1036 (2000).
    [CrossRef] [PubMed]
  11. T. Izuhara, R. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Low-voltage tunable TE/TM converter on ion-sliced lithium niobate thin film,” Electron. Lett. 39(15), 1118–1119 (2003).
    [CrossRef]
  12. P. Rabiei and P. Günter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
    [CrossRef]
  13. G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater. 31(7), 1054–1058 (2009).
    [CrossRef]
  14. F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, “Photonic crystal structures in ion-sliced lithium niobate thin films,” Opt. Express 17(22), 20291–20300 (2009).
    [CrossRef] [PubMed]
  15. R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
    [CrossRef]
  16. W. Liu, D. Zhan, X. Ma, Z. Song, and S. Feng, “Fabrication of single-crystalline LiTaO3 film on silicon substrate using thin film transfer technology,” J. Vac. Sci. Technol. B 26(1), 206 (2008).
    [CrossRef]
  17. P. Muralt, “Micro machined infrared detectors based on pyroelectric thin films,” Rep. Prog. Phys. 64(10), 1339–1388 (2001).
    [CrossRef]
  18. N. Chandrasekaran, T. Soga, and T. Jimbo, “GaAs film on Si substrate transplanted from GaAs/Ge structure by direct bonding,” Appl. Phys. Lett. 82(22), 3892–3894 (2003).
    [CrossRef]
  19. P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
    [CrossRef]
  20. T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett. 76(11), 1407–1409 (2000).
    [CrossRef]

2010 (2)

J. Amet, G. Ulliac, F. I. Baida, and M.-P. Bernal, “Experimental evidence of enhanced electro-optic control on a lithium niobate photonic crystal superprism,” Appl. Phys. Lett. 96(10), 103111 (2010).
[CrossRef]

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[CrossRef]

2009 (2)

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater. 31(7), 1054–1058 (2009).
[CrossRef]

F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, “Photonic crystal structures in ion-sliced lithium niobate thin films,” Opt. Express 17(22), 20291–20300 (2009).
[CrossRef] [PubMed]

2008 (1)

W. Liu, D. Zhan, X. Ma, Z. Song, and S. Feng, “Fabrication of single-crystalline LiTaO3 film on silicon substrate using thin film transfer technology,” J. Vac. Sci. Technol. B 26(1), 206 (2008).
[CrossRef]

2007 (2)

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
[CrossRef]

M. Roussey, F. I. Baida, and M.-P. Bernal, “Experimental and theoretical observations of the slow-light effects on a tunable photonic crystal,” J. Opt. Soc. Am. B 24(6), 1416–1422 (2007).
[CrossRef]

2006 (1)

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89(24), 241110 (2006).
[CrossRef]

2005 (3)

F. Lacour, N. Coujal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
[CrossRef]

D. W. Ward, E. R. Statz, K. A. Nelson, R. M. Roth, and R. M. Osgood, “Terahertz wave generation and propagation in thin-film lithium niobate produced by crystal ion slicing,” Appl. Phys. Lett. 86(2), 022908 (2005).
[CrossRef]

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
[CrossRef]

2004 (2)

P. Rabiei and P. Günter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
[CrossRef]

M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3(4), 211–219 (2004).
[CrossRef] [PubMed]

2003 (2)

T. Izuhara, R. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Low-voltage tunable TE/TM converter on ion-sliced lithium niobate thin film,” Electron. Lett. 39(15), 1118–1119 (2003).
[CrossRef]

N. Chandrasekaran, T. Soga, and T. Jimbo, “GaAs film on Si substrate transplanted from GaAs/Ge structure by direct bonding,” Appl. Phys. Lett. 82(22), 3892–3894 (2003).
[CrossRef]

2001 (1)

P. Muralt, “Micro machined infrared detectors based on pyroelectric thin films,” Rep. Prog. Phys. 64(10), 1339–1388 (2001).
[CrossRef]

2000 (2)

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett. 76(11), 1407–1409 (2000).
[CrossRef]

A. M. Radojevic, M. Levy, R. M. Osgood, D. H. Jundt, A. Kumar, and H. Bakhru, “Second-order optical nonlinearity of 10-mum-thick periodically poled LiNbO(3) films,” Opt. Lett. 25(14), 1034–1036 (2000).
[CrossRef] [PubMed]

1999 (1)

A. M. Radojevic, M. Levy, H. Kwak, and R. M. Osgood., “Strong nonlinear optical response in epitaxial liftoff single-crystal LiNbO3 films,” Appl. Phys. Lett. 75(19), 2888–2890 (1999).
[CrossRef]

1998 (1)

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[CrossRef]

Amet, J.

J. Amet, G. Ulliac, F. I. Baida, and M.-P. Bernal, “Experimental evidence of enhanced electro-optic control on a lithium niobate photonic crystal superprism,” Appl. Phys. Lett. 96(10), 103111 (2010).
[CrossRef]

Baida, F. I.

J. Amet, G. Ulliac, F. I. Baida, and M.-P. Bernal, “Experimental evidence of enhanced electro-optic control on a lithium niobate photonic crystal superprism,” Appl. Phys. Lett. 96(10), 103111 (2010).
[CrossRef]

M. Roussey, F. I. Baida, and M.-P. Bernal, “Experimental and theoretical observations of the slow-light effects on a tunable photonic crystal,” J. Opt. Soc. Am. B 24(6), 1416–1422 (2007).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89(24), 241110 (2006).
[CrossRef]

Bainier, C.

F. Lacour, N. Coujal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
[CrossRef]

Bakhru, H.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
[CrossRef]

T. Izuhara, R. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Low-voltage tunable TE/TM converter on ion-sliced lithium niobate thin film,” Electron. Lett. 39(15), 1118–1119 (2003).
[CrossRef]

A. M. Radojevic, M. Levy, R. M. Osgood, D. H. Jundt, A. Kumar, and H. Bakhru, “Second-order optical nonlinearity of 10-mum-thick periodically poled LiNbO(3) films,” Opt. Lett. 25(14), 1034–1036 (2000).
[CrossRef] [PubMed]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[CrossRef]

Bakhru, S.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
[CrossRef]

T. Izuhara, R. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Low-voltage tunable TE/TM converter on ion-sliced lithium niobate thin film,” Electron. Lett. 39(15), 1118–1119 (2003).
[CrossRef]

Bernal, M.-P.

J. Amet, G. Ulliac, F. I. Baida, and M.-P. Bernal, “Experimental evidence of enhanced electro-optic control on a lithium niobate photonic crystal superprism,” Appl. Phys. Lett. 96(10), 103111 (2010).
[CrossRef]

M. Roussey, F. I. Baida, and M.-P. Bernal, “Experimental and theoretical observations of the slow-light effects on a tunable photonic crystal,” J. Opt. Soc. Am. B 24(6), 1416–1422 (2007).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89(24), 241110 (2006).
[CrossRef]

F. Lacour, N. Coujal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
[CrossRef]

Cargill, G. S.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[CrossRef]

Cerda-Pons, G.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
[CrossRef]

Chandrasekaran, N.

N. Chandrasekaran, T. Soga, and T. Jimbo, “GaAs film on Si substrate transplanted from GaAs/Ge structure by direct bonding,” Appl. Phys. Lett. 82(22), 3892–3894 (2003).
[CrossRef]

Coujal, N.

F. Lacour, N. Coujal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
[CrossRef]

Courjal, N.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89(24), 241110 (2006).
[CrossRef]

Cross, L. E.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[CrossRef]

Diziain, S.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[CrossRef]

Djukic, D.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
[CrossRef]

Etrich, C.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[CrossRef]

Feng, S.

W. Liu, D. Zhan, X. Ma, Z. Song, and S. Feng, “Fabrication of single-crystalline LiTaO3 film on silicon substrate using thin film transfer technology,” J. Vac. Sci. Technol. B 26(1), 206 (2008).
[CrossRef]

Geiss, R.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[CrossRef]

Guarino, A.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater. 31(7), 1054–1058 (2009).
[CrossRef]

Günter, P.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater. 31(7), 1054–1058 (2009).
[CrossRef]

F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, “Photonic crystal structures in ion-sliced lithium niobate thin films,” Opt. Express 17(22), 20291–20300 (2009).
[CrossRef] [PubMed]

P. Rabiei and P. Günter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
[CrossRef]

Hajfler, J.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater. 31(7), 1054–1058 (2009).
[CrossRef]

Hartung, H.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[CrossRef]

Iliew, R.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[CrossRef]

Izuhara, T.

T. Izuhara, R. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Low-voltage tunable TE/TM converter on ion-sliced lithium niobate thin film,” Electron. Lett. 39(15), 1118–1119 (2003).
[CrossRef]

Janunts, N.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[CrossRef]

Jimbo, T.

N. Chandrasekaran, T. Soga, and T. Jimbo, “GaAs film on Si substrate transplanted from GaAs/Ge structure by direct bonding,” Appl. Phys. Lett. 82(22), 3892–3894 (2003).
[CrossRef]

Joannopoulos, J. D.

M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3(4), 211–219 (2004).
[CrossRef] [PubMed]

Jundt, D. H.

Kley, E.-B.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[CrossRef]

Koechlin, M.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater. 31(7), 1054–1058 (2009).
[CrossRef]

F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, “Photonic crystal structures in ion-sliced lithium niobate thin films,” Opt. Express 17(22), 20291–20300 (2009).
[CrossRef] [PubMed]

Kumar, A.

A. M. Radojevic, M. Levy, R. M. Osgood, D. H. Jundt, A. Kumar, and H. Bakhru, “Second-order optical nonlinearity of 10-mum-thick periodically poled LiNbO(3) films,” Opt. Lett. 25(14), 1034–1036 (2000).
[CrossRef] [PubMed]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[CrossRef]

Kwak, H.

A. M. Radojevic, M. Levy, H. Kwak, and R. M. Osgood., “Strong nonlinear optical response in epitaxial liftoff single-crystal LiNbO3 films,” Appl. Phys. Lett. 75(19), 2888–2890 (1999).
[CrossRef]

Lacour, F.

F. Lacour, N. Coujal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
[CrossRef]

Lederer, F.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[CrossRef]

Levy, M.

A. M. Radojevic, M. Levy, R. M. Osgood, D. H. Jundt, A. Kumar, and H. Bakhru, “Second-order optical nonlinearity of 10-mum-thick periodically poled LiNbO(3) films,” Opt. Lett. 25(14), 1034–1036 (2000).
[CrossRef] [PubMed]

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett. 76(11), 1407–1409 (2000).
[CrossRef]

A. M. Radojevic, M. Levy, H. Kwak, and R. M. Osgood., “Strong nonlinear optical response in epitaxial liftoff single-crystal LiNbO3 films,” Appl. Phys. Lett. 75(19), 2888–2890 (1999).
[CrossRef]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[CrossRef]

Liu, R.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[CrossRef]

Liu, W.

W. Liu, D. Zhan, X. Ma, Z. Song, and S. Feng, “Fabrication of single-crystalline LiTaO3 film on silicon substrate using thin film transfer technology,” J. Vac. Sci. Technol. B 26(1), 206 (2008).
[CrossRef]

Ma, X.

W. Liu, D. Zhan, X. Ma, Z. Song, and S. Feng, “Fabrication of single-crystalline LiTaO3 film on silicon substrate using thin film transfer technology,” J. Vac. Sci. Technol. B 26(1), 206 (2008).
[CrossRef]

Muralt, P.

P. Muralt, “Micro machined infrared detectors based on pyroelectric thin films,” Rep. Prog. Phys. 64(10), 1339–1388 (2001).
[CrossRef]

Nelson, K. A.

D. W. Ward, E. R. Statz, K. A. Nelson, R. M. Roth, and R. M. Osgood, “Terahertz wave generation and propagation in thin-film lithium niobate produced by crystal ion slicing,” Appl. Phys. Lett. 86(2), 022908 (2005).
[CrossRef]

Osgood, R. M.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
[CrossRef]

D. W. Ward, E. R. Statz, K. A. Nelson, R. M. Roth, and R. M. Osgood, “Terahertz wave generation and propagation in thin-film lithium niobate produced by crystal ion slicing,” Appl. Phys. Lett. 86(2), 022908 (2005).
[CrossRef]

T. Izuhara, R. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Low-voltage tunable TE/TM converter on ion-sliced lithium niobate thin film,” Electron. Lett. 39(15), 1118–1119 (2003).
[CrossRef]

A. M. Radojevic, M. Levy, R. M. Osgood, D. H. Jundt, A. Kumar, and H. Bakhru, “Second-order optical nonlinearity of 10-mum-thick periodically poled LiNbO(3) films,” Opt. Lett. 25(14), 1034–1036 (2000).
[CrossRef] [PubMed]

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett. 76(11), 1407–1409 (2000).
[CrossRef]

A. M. Radojevic, M. Levy, H. Kwak, and R. M. Osgood., “Strong nonlinear optical response in epitaxial liftoff single-crystal LiNbO3 films,” Appl. Phys. Lett. 75(19), 2888–2890 (1999).
[CrossRef]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[CrossRef]

Pertsch, T.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[CrossRef]

Poberaj, G.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater. 31(7), 1054–1058 (2009).
[CrossRef]

F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, “Photonic crystal structures in ion-sliced lithium niobate thin films,” Opt. Express 17(22), 20291–20300 (2009).
[CrossRef] [PubMed]

Rabiei, P.

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
[CrossRef]

P. Rabiei and P. Günter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
[CrossRef]

Radojevic, A. M.

A. M. Radojevic, M. Levy, R. M. Osgood, D. H. Jundt, A. Kumar, and H. Bakhru, “Second-order optical nonlinearity of 10-mum-thick periodically poled LiNbO(3) films,” Opt. Lett. 25(14), 1034–1036 (2000).
[CrossRef] [PubMed]

A. M. Radojevic, M. Levy, H. Kwak, and R. M. Osgood., “Strong nonlinear optical response in epitaxial liftoff single-crystal LiNbO3 films,” Appl. Phys. Lett. 75(19), 2888–2890 (1999).
[CrossRef]

Ramadan, T. A.

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett. 76(11), 1407–1409 (2000).
[CrossRef]

Roth, R.

T. Izuhara, R. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Low-voltage tunable TE/TM converter on ion-sliced lithium niobate thin film,” Electron. Lett. 39(15), 1118–1119 (2003).
[CrossRef]

Roth, R. M.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
[CrossRef]

D. W. Ward, E. R. Statz, K. A. Nelson, R. M. Roth, and R. M. Osgood, “Terahertz wave generation and propagation in thin-film lithium niobate produced by crystal ion slicing,” Appl. Phys. Lett. 86(2), 022908 (2005).
[CrossRef]

Roussey, M.

M. Roussey, F. I. Baida, and M.-P. Bernal, “Experimental and theoretical observations of the slow-light effects on a tunable photonic crystal,” J. Opt. Soc. Am. B 24(6), 1416–1422 (2007).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89(24), 241110 (2006).
[CrossRef]

Sabac, A.

F. Lacour, N. Coujal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
[CrossRef]

Salut, R.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89(24), 241110 (2006).
[CrossRef]

Schrempel, F.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[CrossRef]

Soga, T.

N. Chandrasekaran, T. Soga, and T. Jimbo, “GaAs film on Si substrate transplanted from GaAs/Ge structure by direct bonding,” Appl. Phys. Lett. 82(22), 3892–3894 (2003).
[CrossRef]

Soljacic, M.

M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3(4), 211–219 (2004).
[CrossRef] [PubMed]

Song, Z.

W. Liu, D. Zhan, X. Ma, Z. Song, and S. Feng, “Fabrication of single-crystalline LiTaO3 film on silicon substrate using thin film transfer technology,” J. Vac. Sci. Technol. B 26(1), 206 (2008).
[CrossRef]

Spajer, M.

F. Lacour, N. Coujal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
[CrossRef]

Statz, E. R.

D. W. Ward, E. R. Statz, K. A. Nelson, R. M. Roth, and R. M. Osgood, “Terahertz wave generation and propagation in thin-film lithium niobate produced by crystal ion slicing,” Appl. Phys. Lett. 86(2), 022908 (2005).
[CrossRef]

Steier, W. H.

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
[CrossRef]

Sulser, F.

F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, “Photonic crystal structures in ion-sliced lithium niobate thin films,” Opt. Express 17(22), 20291–20300 (2009).
[CrossRef] [PubMed]

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater. 31(7), 1054–1058 (2009).
[CrossRef]

Ulliac, G.

J. Amet, G. Ulliac, F. I. Baida, and M.-P. Bernal, “Experimental evidence of enhanced electro-optic control on a lithium niobate photonic crystal superprism,” Appl. Phys. Lett. 96(10), 103111 (2010).
[CrossRef]

Van Labeke, D.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89(24), 241110 (2006).
[CrossRef]

Ward, D. W.

D. W. Ward, E. R. Statz, K. A. Nelson, R. M. Roth, and R. M. Osgood, “Terahertz wave generation and propagation in thin-film lithium niobate produced by crystal ion slicing,” Appl. Phys. Lett. 86(2), 022908 (2005).
[CrossRef]

Zhan, D.

W. Liu, D. Zhan, X. Ma, Z. Song, and S. Feng, “Fabrication of single-crystalline LiTaO3 film on silicon substrate using thin film transfer technology,” J. Vac. Sci. Technol. B 26(1), 206 (2008).
[CrossRef]

Appl. Phys. Lett. (11)

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89(24), 241110 (2006).
[CrossRef]

J. Amet, G. Ulliac, F. I. Baida, and M.-P. Bernal, “Experimental evidence of enhanced electro-optic control on a lithium niobate photonic crystal superprism,” Appl. Phys. Lett. 96(10), 103111 (2010).
[CrossRef]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[CrossRef]

A. M. Radojevic, M. Levy, H. Kwak, and R. M. Osgood., “Strong nonlinear optical response in epitaxial liftoff single-crystal LiNbO3 films,” Appl. Phys. Lett. 75(19), 2888–2890 (1999).
[CrossRef]

D. W. Ward, E. R. Statz, K. A. Nelson, R. M. Roth, and R. M. Osgood, “Terahertz wave generation and propagation in thin-film lithium niobate produced by crystal ion slicing,” Appl. Phys. Lett. 86(2), 022908 (2005).
[CrossRef]

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
[CrossRef]

P. Rabiei and P. Günter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
[CrossRef]

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[CrossRef]

N. Chandrasekaran, T. Soga, and T. Jimbo, “GaAs film on Si substrate transplanted from GaAs/Ge structure by direct bonding,” Appl. Phys. Lett. 82(22), 3892–3894 (2003).
[CrossRef]

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
[CrossRef]

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett. 76(11), 1407–1409 (2000).
[CrossRef]

Electron. Lett. (1)

T. Izuhara, R. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Low-voltage tunable TE/TM converter on ion-sliced lithium niobate thin film,” Electron. Lett. 39(15), 1118–1119 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

W. Liu, D. Zhan, X. Ma, Z. Song, and S. Feng, “Fabrication of single-crystalline LiTaO3 film on silicon substrate using thin film transfer technology,” J. Vac. Sci. Technol. B 26(1), 206 (2008).
[CrossRef]

Nat. Mater. (1)

M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3(4), 211–219 (2004).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (2)

F. Lacour, N. Coujal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
[CrossRef]

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater. 31(7), 1054–1058 (2009).
[CrossRef]

Rep. Prog. Phys. (1)

P. Muralt, “Micro machined infrared detectors based on pyroelectric thin films,” Rep. Prog. Phys. 64(10), 1339–1388 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the simulated waveguide. Index profile of the guided mode for ridge waveguides of thicknesses 100 (b), 200 (c), 300 (d), and 400 nm (e) respectively. The BCB layer starts at vertical position 0 μm (continuous line) and the bottom surface of the ridge waveguide is delimited by the discontinuous line.

Fig. 2
Fig. 2

(a) Modeled supercell by the PWE method, and (b) dispersion relation of the photonic crystal.

Fig. 3
Fig. 3

Finite element numerical simulation of the electrostatic field distribution on the photonic crystal ridge wire waveguide.

Fig. 4
Fig. 4

Flow chart of the ridge waveguide and photonic crystal fabrication stages. Steps (a) to (d) show the ridge waveguide fabrication and steps (e), and (f) the photonic crystal and electrode fabrication.

Fig. 5
Fig. 5

SEM images of the wire waveguide without (a), and with the photonic crystal cavity (b).

Fig. 6
Fig. 6

(a) Experimental transmission spectrum for 0V (black line) and 30V (red line) for the transmission mode of the photonic crystal cavity. (b) FDTD calculation of the wavelength shift of the transmission band as a function of the refractive index variation.

Tables (1)

Tables Icon

Table 1 FDTD calculations of the transmission of the guided mode and optical local field factor as a function of the number of rows along the propagation direction

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δn= 1 2 n e 3 r 33 f opt 2 f el V L

Metrics