Abstract

A moiré grating is a basic optical component used in various moiré methods for deformation measurement. In this study, nanoimprint lithography (NIL) was proposed to produce high frequency moiré gratings on metal samples. A new type of NIL mold and a hot embossing system were developed to overcome the poor flatness and roughness of metal samples. This three-layer mold based on nickel grating was unbreakable, and the self-developed hot embossing system used a bellows cylinder to satisfy the parallelism requirement of grating fabrication on metal samples. In order to generate high quality moiré patterns, the grating profile of the mold was optimized. Then, 1200-3000 lines/mm frequency gratings were successfully fabricated on the different materials such as SiO2, aluminum and stainless steel. In order to evaluate the quality of the replication, the distortion in the fabricated SiO2 grating was analyzed by an inverse moiré method. As an application, the replicated grating on the aluminum sample in combination with the moiré interferometry was used to measure the tensile deformation of the sample. The successful experimental results demonstrate the feasibility and reliability of nanoimprint lithography to produce gratings on metal samples.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Weller and B. M. Shepherd, “Displacement measurement by mechanical interferometry,” Proc. Soc. Exp. Stress Anal. 6(1), 35–38 (1948).
  2. D. Post, B. Han, and P. Ifju, High Sensitivity Moiré: Experimental Analysis for Mechanics and Materials (Springer-Verlag, New York, 1994), Chap.4.
  3. A. Assa, J. Politch, and A. A. Betser, “Slope and curvature measurement by a double-frequency-grating shearing interferometer,” Exp. Mech. 19(4), 129–137 (1979).
    [CrossRef]
  4. S. Kishimoto, M. Egashira, and N. Shinya, “Observation of micro-deformation by moiré method using a scanning electron microscope,” J. Soc. Mat. Sci. 40(452), 637–641 (1991).
    [CrossRef]
  5. B. Pan, H. M. Xie, S. Kishimoto, and Y. Xing, “Experimental study of moiré method in laser scanning confocal microscopy,” Rev. Sci. Instrum. 77(4), 043101 (2006).
    [CrossRef]
  6. H. Chen, D. Liu, and A. Lee, “Moiré in atomic force microscope,” Exp. Mech. 24(1), 31–32 (2000).
  7. E. H. Anderson, C. M. Horwitz, and H. I. Smith, “Holographic lithography with thick photoresist,” Appl. Phys. Lett. 43(9), 874–875 (1983).
    [CrossRef]
  8. S. Kishimoto, M. Egashira, and N. Shinya, “Microcreep deformation measurements by a moiré method using electron beam lithography and electron beam scan,” Opt. Eng. 32(3), 522–526 (1993).
    [CrossRef]
  9. D. Yan, J. Cheng, and A. Apsel, “Fabrication of SOI-based nano-gratings for Moiré measurement using focused ion beam,” Sens. Actuators A Phys. 115(1), 60–66 (2004).
    [CrossRef]
  10. J. McKelvie, D. Pritty, and C. A. Walker, “An automatic fringe analysis interferometer for rapid Moiré stress analysis,” in 4th European Electro-Optics Conference (SPIE, Bellingham, 1979), pp. 175–188.
  11. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
    [CrossRef]
  12. I. Amidror, The Theory of the Moiré Phenomenon (Springer-Verlag, London, 2009), Chap.2.
  13. L. S. Kong, S. Cai, Z. X. Li, G. Jin, S. Huang, K. Xu, and T. Wang, “Interpretation of moiré phenomenon in the image domain,” Opt. Express 19(19), 18399–18409 (2011).
    [CrossRef] [PubMed]
  14. Z. G. Xu, H. K. Taylor, D. S. Boning, S. F. Yoon, and K. Youcef-Toumi, “Large-area and high-resolution distortion measurement based on moiré fringe method for hot embossing process,” Opt. Express 17(21), 18394–18407 (2009).
    [CrossRef] [PubMed]
  15. H. M. Xie, Q. H. Wang, S. Kishimoto, and F. Dai, “Characterization of planar periodic structure using inverse laser scanning confocal microscopy moiré method and its application in the structure of butterfly wing,” J. Appl. Phys. 101(10), 103511 (2007).
    [CrossRef]

2011 (1)

2009 (1)

2007 (1)

H. M. Xie, Q. H. Wang, S. Kishimoto, and F. Dai, “Characterization of planar periodic structure using inverse laser scanning confocal microscopy moiré method and its application in the structure of butterfly wing,” J. Appl. Phys. 101(10), 103511 (2007).
[CrossRef]

2006 (1)

B. Pan, H. M. Xie, S. Kishimoto, and Y. Xing, “Experimental study of moiré method in laser scanning confocal microscopy,” Rev. Sci. Instrum. 77(4), 043101 (2006).
[CrossRef]

2004 (1)

D. Yan, J. Cheng, and A. Apsel, “Fabrication of SOI-based nano-gratings for Moiré measurement using focused ion beam,” Sens. Actuators A Phys. 115(1), 60–66 (2004).
[CrossRef]

2000 (1)

H. Chen, D. Liu, and A. Lee, “Moiré in atomic force microscope,” Exp. Mech. 24(1), 31–32 (2000).

1995 (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[CrossRef]

1993 (1)

S. Kishimoto, M. Egashira, and N. Shinya, “Microcreep deformation measurements by a moiré method using electron beam lithography and electron beam scan,” Opt. Eng. 32(3), 522–526 (1993).
[CrossRef]

1991 (1)

S. Kishimoto, M. Egashira, and N. Shinya, “Observation of micro-deformation by moiré method using a scanning electron microscope,” J. Soc. Mat. Sci. 40(452), 637–641 (1991).
[CrossRef]

1983 (1)

E. H. Anderson, C. M. Horwitz, and H. I. Smith, “Holographic lithography with thick photoresist,” Appl. Phys. Lett. 43(9), 874–875 (1983).
[CrossRef]

1979 (1)

A. Assa, J. Politch, and A. A. Betser, “Slope and curvature measurement by a double-frequency-grating shearing interferometer,” Exp. Mech. 19(4), 129–137 (1979).
[CrossRef]

1948 (1)

R. Weller and B. M. Shepherd, “Displacement measurement by mechanical interferometry,” Proc. Soc. Exp. Stress Anal. 6(1), 35–38 (1948).

Anderson, E. H.

E. H. Anderson, C. M. Horwitz, and H. I. Smith, “Holographic lithography with thick photoresist,” Appl. Phys. Lett. 43(9), 874–875 (1983).
[CrossRef]

Apsel, A.

D. Yan, J. Cheng, and A. Apsel, “Fabrication of SOI-based nano-gratings for Moiré measurement using focused ion beam,” Sens. Actuators A Phys. 115(1), 60–66 (2004).
[CrossRef]

Assa, A.

A. Assa, J. Politch, and A. A. Betser, “Slope and curvature measurement by a double-frequency-grating shearing interferometer,” Exp. Mech. 19(4), 129–137 (1979).
[CrossRef]

Betser, A. A.

A. Assa, J. Politch, and A. A. Betser, “Slope and curvature measurement by a double-frequency-grating shearing interferometer,” Exp. Mech. 19(4), 129–137 (1979).
[CrossRef]

Boning, D. S.

Cai, S.

Chen, H.

H. Chen, D. Liu, and A. Lee, “Moiré in atomic force microscope,” Exp. Mech. 24(1), 31–32 (2000).

Cheng, J.

D. Yan, J. Cheng, and A. Apsel, “Fabrication of SOI-based nano-gratings for Moiré measurement using focused ion beam,” Sens. Actuators A Phys. 115(1), 60–66 (2004).
[CrossRef]

Chou, S. Y.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[CrossRef]

Dai, F.

H. M. Xie, Q. H. Wang, S. Kishimoto, and F. Dai, “Characterization of planar periodic structure using inverse laser scanning confocal microscopy moiré method and its application in the structure of butterfly wing,” J. Appl. Phys. 101(10), 103511 (2007).
[CrossRef]

Egashira, M.

S. Kishimoto, M. Egashira, and N. Shinya, “Microcreep deformation measurements by a moiré method using electron beam lithography and electron beam scan,” Opt. Eng. 32(3), 522–526 (1993).
[CrossRef]

S. Kishimoto, M. Egashira, and N. Shinya, “Observation of micro-deformation by moiré method using a scanning electron microscope,” J. Soc. Mat. Sci. 40(452), 637–641 (1991).
[CrossRef]

Horwitz, C. M.

E. H. Anderson, C. M. Horwitz, and H. I. Smith, “Holographic lithography with thick photoresist,” Appl. Phys. Lett. 43(9), 874–875 (1983).
[CrossRef]

Huang, S.

Jin, G.

Kishimoto, S.

H. M. Xie, Q. H. Wang, S. Kishimoto, and F. Dai, “Characterization of planar periodic structure using inverse laser scanning confocal microscopy moiré method and its application in the structure of butterfly wing,” J. Appl. Phys. 101(10), 103511 (2007).
[CrossRef]

B. Pan, H. M. Xie, S. Kishimoto, and Y. Xing, “Experimental study of moiré method in laser scanning confocal microscopy,” Rev. Sci. Instrum. 77(4), 043101 (2006).
[CrossRef]

S. Kishimoto, M. Egashira, and N. Shinya, “Microcreep deformation measurements by a moiré method using electron beam lithography and electron beam scan,” Opt. Eng. 32(3), 522–526 (1993).
[CrossRef]

S. Kishimoto, M. Egashira, and N. Shinya, “Observation of micro-deformation by moiré method using a scanning electron microscope,” J. Soc. Mat. Sci. 40(452), 637–641 (1991).
[CrossRef]

Kong, L. S.

Krauss, P. R.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[CrossRef]

Lee, A.

H. Chen, D. Liu, and A. Lee, “Moiré in atomic force microscope,” Exp. Mech. 24(1), 31–32 (2000).

Li, Z. X.

Liu, D.

H. Chen, D. Liu, and A. Lee, “Moiré in atomic force microscope,” Exp. Mech. 24(1), 31–32 (2000).

Pan, B.

B. Pan, H. M. Xie, S. Kishimoto, and Y. Xing, “Experimental study of moiré method in laser scanning confocal microscopy,” Rev. Sci. Instrum. 77(4), 043101 (2006).
[CrossRef]

Politch, J.

A. Assa, J. Politch, and A. A. Betser, “Slope and curvature measurement by a double-frequency-grating shearing interferometer,” Exp. Mech. 19(4), 129–137 (1979).
[CrossRef]

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[CrossRef]

Shepherd, B. M.

R. Weller and B. M. Shepherd, “Displacement measurement by mechanical interferometry,” Proc. Soc. Exp. Stress Anal. 6(1), 35–38 (1948).

Shinya, N.

S. Kishimoto, M. Egashira, and N. Shinya, “Microcreep deformation measurements by a moiré method using electron beam lithography and electron beam scan,” Opt. Eng. 32(3), 522–526 (1993).
[CrossRef]

S. Kishimoto, M. Egashira, and N. Shinya, “Observation of micro-deformation by moiré method using a scanning electron microscope,” J. Soc. Mat. Sci. 40(452), 637–641 (1991).
[CrossRef]

Smith, H. I.

E. H. Anderson, C. M. Horwitz, and H. I. Smith, “Holographic lithography with thick photoresist,” Appl. Phys. Lett. 43(9), 874–875 (1983).
[CrossRef]

Taylor, H. K.

Wang, Q. H.

H. M. Xie, Q. H. Wang, S. Kishimoto, and F. Dai, “Characterization of planar periodic structure using inverse laser scanning confocal microscopy moiré method and its application in the structure of butterfly wing,” J. Appl. Phys. 101(10), 103511 (2007).
[CrossRef]

Wang, T.

Weller, R.

R. Weller and B. M. Shepherd, “Displacement measurement by mechanical interferometry,” Proc. Soc. Exp. Stress Anal. 6(1), 35–38 (1948).

Xie, H. M.

H. M. Xie, Q. H. Wang, S. Kishimoto, and F. Dai, “Characterization of planar periodic structure using inverse laser scanning confocal microscopy moiré method and its application in the structure of butterfly wing,” J. Appl. Phys. 101(10), 103511 (2007).
[CrossRef]

B. Pan, H. M. Xie, S. Kishimoto, and Y. Xing, “Experimental study of moiré method in laser scanning confocal microscopy,” Rev. Sci. Instrum. 77(4), 043101 (2006).
[CrossRef]

Xing, Y.

B. Pan, H. M. Xie, S. Kishimoto, and Y. Xing, “Experimental study of moiré method in laser scanning confocal microscopy,” Rev. Sci. Instrum. 77(4), 043101 (2006).
[CrossRef]

Xu, K.

Xu, Z. G.

Yan, D.

D. Yan, J. Cheng, and A. Apsel, “Fabrication of SOI-based nano-gratings for Moiré measurement using focused ion beam,” Sens. Actuators A Phys. 115(1), 60–66 (2004).
[CrossRef]

Yoon, S. F.

Youcef-Toumi, K.

Appl. Phys. Lett. (2)

E. H. Anderson, C. M. Horwitz, and H. I. Smith, “Holographic lithography with thick photoresist,” Appl. Phys. Lett. 43(9), 874–875 (1983).
[CrossRef]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[CrossRef]

Exp. Mech. (2)

H. Chen, D. Liu, and A. Lee, “Moiré in atomic force microscope,” Exp. Mech. 24(1), 31–32 (2000).

A. Assa, J. Politch, and A. A. Betser, “Slope and curvature measurement by a double-frequency-grating shearing interferometer,” Exp. Mech. 19(4), 129–137 (1979).
[CrossRef]

J. Appl. Phys. (1)

H. M. Xie, Q. H. Wang, S. Kishimoto, and F. Dai, “Characterization of planar periodic structure using inverse laser scanning confocal microscopy moiré method and its application in the structure of butterfly wing,” J. Appl. Phys. 101(10), 103511 (2007).
[CrossRef]

J. Soc. Mat. Sci. (1)

S. Kishimoto, M. Egashira, and N. Shinya, “Observation of micro-deformation by moiré method using a scanning electron microscope,” J. Soc. Mat. Sci. 40(452), 637–641 (1991).
[CrossRef]

Opt. Eng. (1)

S. Kishimoto, M. Egashira, and N. Shinya, “Microcreep deformation measurements by a moiré method using electron beam lithography and electron beam scan,” Opt. Eng. 32(3), 522–526 (1993).
[CrossRef]

Opt. Express (2)

Proc. Soc. Exp. Stress Anal. (1)

R. Weller and B. M. Shepherd, “Displacement measurement by mechanical interferometry,” Proc. Soc. Exp. Stress Anal. 6(1), 35–38 (1948).

Rev. Sci. Instrum. (1)

B. Pan, H. M. Xie, S. Kishimoto, and Y. Xing, “Experimental study of moiré method in laser scanning confocal microscopy,” Rev. Sci. Instrum. 77(4), 043101 (2006).
[CrossRef]

Sens. Actuators A Phys. (1)

D. Yan, J. Cheng, and A. Apsel, “Fabrication of SOI-based nano-gratings for Moiré measurement using focused ion beam,” Sens. Actuators A Phys. 115(1), 60–66 (2004).
[CrossRef]

Other (3)

J. McKelvie, D. Pritty, and C. A. Walker, “An automatic fringe analysis interferometer for rapid Moiré stress analysis,” in 4th European Electro-Optics Conference (SPIE, Bellingham, 1979), pp. 175–188.

D. Post, B. Han, and P. Ifju, High Sensitivity Moiré: Experimental Analysis for Mechanics and Materials (Springer-Verlag, New York, 1994), Chap.4.

I. Amidror, The Theory of the Moiré Phenomenon (Springer-Verlag, London, 2009), Chap.2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Schematic diagram of the grating fabrication with HEL process.

Fig. 2
Fig. 2

(a) Self-developed hot embossing system; (b) Imprint chamber in hot embossing system.

Fig. 3
Fig. 3

Three layer mold in NIL.

Fig. 4
Fig. 4

Gratings (1024×1024 pixels, 20 pixels per period) with opening ratios of: (a) 0.5; (b) 0.75; (c) 0.25.

Fig. 5
Fig. 5

Moiré patterns (parallel moiré) generated by gratings with different opening ratios:1024 × 1024 pixels, 256 gray levels; (τ/T)s and (τ/T)r are the opening ratios of specimen grating and reference grating, respectively.

Fig. 6
Fig. 6

Moiré patterns generated by gratings with different forms.

Fig. 7
Fig. 7

The intensity profiles of the moiré generated by gratings with different forms (256 gray levels).

Fig. 8
Fig. 8

Two types of optimized grating structures in the NIL molds.

Fig. 9
Fig. 9

Two nickel molds: (a) a sine-wave grid mold, 1200 lines/mm; (a′) AFM image of the sine-wave grid mold; (b) a square-wave grid mold, 2000 lines/mm; (b′) SEM image of the square-wave grid mold.

Fig. 10
Fig. 10

SiO2 grating fabricated by NIL after RIE process, 2000 lines/mm: (a) SiO2 grating; (b) LSCM moiré of the fabricated SiO2 grating in area 1; (c) LSCM moiré of the mold; view field: 513.74 μm × 513.74 μm, 1024 scanning lines, parallel moiré.

Fig. 11
Fig. 11

(a) AFM image of SiO2 grating fabricated by NIL; (b) Profile analysis by AFM of SiO2 grating.

Fig. 12
Fig. 12

Section analysis of fabricated gratings on aluminum substrates at different embossing conditions: No. 0 is the mold, 833 nm pitch.

Fig. 13
Fig. 13

Aluminum sample with grating fabricated on the surface in the color region (1200 lines/mm, cross type).

Fig. 14
Fig. 14

Moiré fringes of the aluminum sample under a moiré interferometer in loading experiment: (a) null-field moiré fringes, V field; (b) null-field moiré fringes, U field; (c) U field moiré fringes under load of 180 N; (d) U field moiré fringes under load of 300 N.

Fig. 15
Fig. 15

Stress-strain curves of aluminum samples using strain gauge method and Moiré interferometry based on the grating fabricated by NIL (the solid line and the dashed line are linear fitting curves).

Fig. 16
Fig. 16

Stainless steel sample for three-point bend test with grating fabricated by NIL (1200 lines/mm, cross type).

Fig. 17
Fig. 17

Aluminum sample with grating fabricated by NIL (3000 lines/mm).

Tables (3)

Tables Icon

Table 1 Frequency of the gratings used in moiré techniques

Tables Icon

Table 2 The distortion in the SiO2 grating fabricated by HEL

Tables Icon

Table 3 Parameter optimization by experiment

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λf<1.
p s = p m p r p m ± p r ,

Metrics