Abstract

An incomplete modeling of the scattering forces on a Rayleigh particle without taking into account the light spin forces in “Trapping metallic Rayleigh particles with radial polarization” by Q. Zhan, leads to erroneous statements on the advantages of using radial polarization to trap metallic particles.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994).
    [CrossRef] [PubMed]
  2. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-15-3377 .
    [CrossRef] [PubMed]
  3. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1–57 (2009).
    [CrossRef]
  4. S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
    [CrossRef] [PubMed]
  5. I. Iglesias and J. J. Sáenz, “Scattering forces in the focal volume of high numerical aperture microscope objectives,” Opt. Commun. 284(10-11), 2430–2436 (2011).
    [CrossRef]
  6. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).

2011 (1)

I. Iglesias and J. J. Sáenz, “Scattering forces in the focal volume of high numerical aperture microscope objectives,” Opt. Commun. 284(10-11), 2430–2436 (2011).
[CrossRef]

2009 (2)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1–57 (2009).
[CrossRef]

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[CrossRef] [PubMed]

2004 (1)

1994 (1)

Albaladejo, S.

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[CrossRef] [PubMed]

Block, S. M.

Iglesias, I.

I. Iglesias and J. J. Sáenz, “Scattering forces in the focal volume of high numerical aperture microscope objectives,” Opt. Commun. 284(10-11), 2430–2436 (2011).
[CrossRef]

Laroche, M.

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[CrossRef] [PubMed]

Marqués, M. I.

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[CrossRef] [PubMed]

Sáenz, J. J.

I. Iglesias and J. J. Sáenz, “Scattering forces in the focal volume of high numerical aperture microscope objectives,” Opt. Commun. 284(10-11), 2430–2436 (2011).
[CrossRef]

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[CrossRef] [PubMed]

Svoboda, K.

Zhan, Q.

Adv. Opt. Photon. (1)

Opt. Commun. (1)

I. Iglesias and J. J. Sáenz, “Scattering forces in the focal volume of high numerical aperture microscope objectives,” Opt. Commun. 284(10-11), 2430–2436 (2011).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[CrossRef] [PubMed]

Other (1)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

(a) Normalized amplitude distribution of the axial radiation pressure component for a radial polarization beam on the transversal focal plane (x,y); (b) axial component of the spin density force; (c), the total axial scattering force; (d) comparison between the total axial scattering force for the radial (solid line) and linear polarization along the beam polarization direction (doted line) for the same NA.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F= n 2 2 ( α ε 0 2 | E | 2 + α k 0 c 0 { E× H * }+ α ε 0 ×{ E× E * } )

Metrics