Abstract

We analyze nonlinear effects in optically driven arrays of nonlinear metallic nanoparticles. We demonstrate that such plasmonic systems are characterized by a bistable response, and they can support the propagation of dissipative switching waves (or plasmonic kinks) connecting the states with different polarization. We study numerically the properties of such plasmonic kinks which are characterized by a subwavelength extent and a tunable velocity.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. I. Brongersma and P. G. Krik, eds. Surface Plasmon Nanophotonics (Spinger, 2007), p. 268.
  2. S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), p. 219.
  3. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
    [CrossRef]
  4. J. Takahara, S. Yamagishi, H. Taki, A. Moromoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475–477 (1997).
    [CrossRef] [PubMed]
  5. K. Li, M. Stockman, and D. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
    [CrossRef] [PubMed]
  6. N. C. Panoiu and R. M. Osgood, “Subwavelength nonlinear plasmonic nanowire,” Nano Lett. 4, 2427–2430 (2004).
    [CrossRef]
  7. W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
    [CrossRef]
  8. J. A. H. van Nieuwstadt, M. Sandke, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
    [CrossRef] [PubMed]
  9. G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97, 057402 (2006).
    [CrossRef] [PubMed]
  10. A. A. Zharov, R. E. Noskov, and M. V. Tsarev, “Plasmon-induced terahertz radiation generation due to symmetry breaking in a nonlinear metallic nanodimer,” J. Appl. Phys. 106, 073104 (2009).
    [CrossRef]
  11. R. E. Noskov, A. A. Zharov, and M. V. Tsarev, “Generation of widely tunable continuous-wave terahertz radiation using a two-dimensional lattice of nonlinear metallic nanodimers,” Phys. Rev. B 82, 073404 (2010).
    [CrossRef]
  12. Y. Liu, G. Bartal, D. A. Genov, and X. Zhang, “Subwavelength discrete solitons in nonlinear metamaterials,” Phys. Rev. Lett. 99, 153901 (2007).
    [CrossRef] [PubMed]
  13. A. Marini, D. V. Skryabin, and B. Malomed, “Stable spatial plasmon solitons in a dielectric-metal-dielectric geometry with gain and loss,” Opt. Express 19, 6616 (2011).
    [CrossRef] [PubMed]
  14. A. Marini, A. V. Gorbach, and D. V. Skryabin, “Coupled-mode approach to surface plasmon polaritons in nonlinear periodic structures,” Opt. Lett. 35, 3532 (2010).
    [CrossRef] [PubMed]
  15. F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu, “Subwavelength plasmonic lattice solitons in arrays of metallic nanowires,” Phys. Rev. Lett. 104, 106802 (2010).
    [CrossRef] [PubMed]
  16. K. M. Leung, “Optical bistability in the scattering and absorption of light from nonlinear microparticles,” Phys. Rev. A 33, 2461 (1986).
    [CrossRef] [PubMed]
  17. S. Yong and D. Stroud, “Surface-plasmon dispersion relations in chains of metallic nanoparticles: an exact quasistatic calculation,” Phys. Rev. B 69, 125418 (2004).
    [CrossRef]
  18. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 9, 4370 (1972).
    [CrossRef]
  19. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  20. V. P. Drachev, A. K. Buin, H. Nakotte, and V. M. Shalaev, “Size dependent χ(3) for conduction electrons in Ag nanoparticles,” Nano Lett. 4, 1535 (2004).
    [CrossRef]
  21. M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).
  22. I. V. Shadrivov, A. A. Zharov, N. A. Zharova, and Y. S. Kivshar, “Nonlinear magnetoinductive waves and domain walls in composite metamaterials,” Photonics Nanostruct. Fundam. Appl. 4, 69 (2006).
    [CrossRef]
  23. N. N. Rosanov, N. V. Vysotina, A. N. Shatsev, I. V. Shadrivov, and Y. S. Kivshar, “Hysteresis of switching waves and dissipative solitons in nonlinear magnetic metamaterials,” JETP Lett. 93, 743 (2011).
    [CrossRef]
  24. O. M. Braun and Yu.S. Kivshar, The Frenkel-Kontorova Model: Concepts, Methods, and Applications (Springer-Heidelberg, 2004), p. 498.

2011 (2)

N. N. Rosanov, N. V. Vysotina, A. N. Shatsev, I. V. Shadrivov, and Y. S. Kivshar, “Hysteresis of switching waves and dissipative solitons in nonlinear magnetic metamaterials,” JETP Lett. 93, 743 (2011).
[CrossRef]

A. Marini, D. V. Skryabin, and B. Malomed, “Stable spatial plasmon solitons in a dielectric-metal-dielectric geometry with gain and loss,” Opt. Express 19, 6616 (2011).
[CrossRef] [PubMed]

2010 (4)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

A. Marini, A. V. Gorbach, and D. V. Skryabin, “Coupled-mode approach to surface plasmon polaritons in nonlinear periodic structures,” Opt. Lett. 35, 3532 (2010).
[CrossRef] [PubMed]

R. E. Noskov, A. A. Zharov, and M. V. Tsarev, “Generation of widely tunable continuous-wave terahertz radiation using a two-dimensional lattice of nonlinear metallic nanodimers,” Phys. Rev. B 82, 073404 (2010).
[CrossRef]

F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu, “Subwavelength plasmonic lattice solitons in arrays of metallic nanowires,” Phys. Rev. Lett. 104, 106802 (2010).
[CrossRef] [PubMed]

2009 (1)

A. A. Zharov, R. E. Noskov, and M. V. Tsarev, “Plasmon-induced terahertz radiation generation due to symmetry breaking in a nonlinear metallic nanodimer,” J. Appl. Phys. 106, 073104 (2009).
[CrossRef]

2007 (1)

Y. Liu, G. Bartal, D. A. Genov, and X. Zhang, “Subwavelength discrete solitons in nonlinear metamaterials,” Phys. Rev. Lett. 99, 153901 (2007).
[CrossRef] [PubMed]

2006 (4)

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[CrossRef]

J. A. H. van Nieuwstadt, M. Sandke, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97, 057402 (2006).
[CrossRef] [PubMed]

I. V. Shadrivov, A. A. Zharov, N. A. Zharova, and Y. S. Kivshar, “Nonlinear magnetoinductive waves and domain walls in composite metamaterials,” Photonics Nanostruct. Fundam. Appl. 4, 69 (2006).
[CrossRef]

2004 (3)

V. P. Drachev, A. K. Buin, H. Nakotte, and V. M. Shalaev, “Size dependent χ(3) for conduction electrons in Ag nanoparticles,” Nano Lett. 4, 1535 (2004).
[CrossRef]

S. Yong and D. Stroud, “Surface-plasmon dispersion relations in chains of metallic nanoparticles: an exact quasistatic calculation,” Phys. Rev. B 69, 125418 (2004).
[CrossRef]

N. C. Panoiu and R. M. Osgood, “Subwavelength nonlinear plasmonic nanowire,” Nano Lett. 4, 2427–2430 (2004).
[CrossRef]

2003 (1)

K. Li, M. Stockman, and D. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

1997 (1)

1986 (1)

K. M. Leung, “Optical bistability in the scattering and absorption of light from nonlinear microparticles,” Phys. Rev. A 33, 2461 (1986).
[CrossRef] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 9, 4370 (1972).
[CrossRef]

Abdenour, A.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[CrossRef]

Bartal, G.

Y. Liu, G. Bartal, D. A. Genov, and X. Zhang, “Subwavelength discrete solitons in nonlinear metamaterials,” Phys. Rev. Lett. 99, 153901 (2007).
[CrossRef] [PubMed]

Bergman, D.

K. Li, M. Stockman, and D. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Braun, O. M.

O. M. Braun and Yu.S. Kivshar, The Frenkel-Kontorova Model: Concepts, Methods, and Applications (Springer-Heidelberg, 2004), p. 498.

Brueck, S. R. J.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[CrossRef]

Buin, A. K.

V. P. Drachev, A. K. Buin, H. Nakotte, and V. M. Shalaev, “Size dependent χ(3) for conduction electrons in Ag nanoparticles,” Nano Lett. 4, 1535 (2004).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 9, 4370 (1972).
[CrossRef]

Drachev, V. P.

V. P. Drachev, A. K. Buin, H. Nakotte, and V. M. Shalaev, “Size dependent χ(3) for conduction electrons in Ag nanoparticles,” Nano Lett. 4, 1535 (2004).
[CrossRef]

Enoch, S.

J. A. H. van Nieuwstadt, M. Sandke, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

Fan, W.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[CrossRef]

Genov, D. A.

Y. Liu, G. Bartal, D. A. Genov, and X. Zhang, “Subwavelength discrete solitons in nonlinear metamaterials,” Phys. Rev. Lett. 99, 153901 (2007).
[CrossRef] [PubMed]

Gorbach, A. V.

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Hu, B.

F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu, “Subwavelength plasmonic lattice solitons in arrays of metallic nanowires,” Phys. Rev. Lett. 104, 106802 (2010).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 9, 4370 (1972).
[CrossRef]

Kivshar, Y. S.

N. N. Rosanov, N. V. Vysotina, A. N. Shatsev, I. V. Shadrivov, and Y. S. Kivshar, “Hysteresis of switching waves and dissipative solitons in nonlinear magnetic metamaterials,” JETP Lett. 93, 743 (2011).
[CrossRef]

I. V. Shadrivov, A. A. Zharov, N. A. Zharova, and Y. S. Kivshar, “Nonlinear magnetoinductive waves and domain walls in composite metamaterials,” Photonics Nanostruct. Fundam. Appl. 4, 69 (2006).
[CrossRef]

Kivshar, Yu.S.

O. M. Braun and Yu.S. Kivshar, The Frenkel-Kontorova Model: Concepts, Methods, and Applications (Springer-Heidelberg, 2004), p. 498.

Kobayashi, T.

Krishna, S.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[CrossRef]

Kuipers, L.

J. A. H. van Nieuwstadt, M. Sandke, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

Leung, K. M.

K. M. Leung, “Optical bistability in the scattering and absorption of light from nonlinear microparticles,” Phys. Rev. A 33, 2461 (1986).
[CrossRef] [PubMed]

Li, K.

K. Li, M. Stockman, and D. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Liu, Y.

Y. Liu, G. Bartal, D. A. Genov, and X. Zhang, “Subwavelength discrete solitons in nonlinear metamaterials,” Phys. Rev. Lett. 99, 153901 (2007).
[CrossRef] [PubMed]

Maier, S.

S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), p. 219.

Malloy, K. J.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[CrossRef]

Malomed, B.

Marini, A.

Mihalache, D.

F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu, “Subwavelength plasmonic lattice solitons in arrays of metallic nanowires,” Phys. Rev. Lett. 104, 106802 (2010).
[CrossRef] [PubMed]

Moromoto, A.

Nakotte, H.

V. P. Drachev, A. K. Buin, H. Nakotte, and V. M. Shalaev, “Size dependent χ(3) for conduction electrons in Ag nanoparticles,” Nano Lett. 4, 1535 (2004).
[CrossRef]

Noskov, R. E.

R. E. Noskov, A. A. Zharov, and M. V. Tsarev, “Generation of widely tunable continuous-wave terahertz radiation using a two-dimensional lattice of nonlinear metallic nanodimers,” Phys. Rev. B 82, 073404 (2010).
[CrossRef]

A. A. Zharov, R. E. Noskov, and M. V. Tsarev, “Plasmon-induced terahertz radiation generation due to symmetry breaking in a nonlinear metallic nanodimer,” J. Appl. Phys. 106, 073104 (2009).
[CrossRef]

Osgood, R. M.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[CrossRef]

N. C. Panoiu and R. M. Osgood, “Subwavelength nonlinear plasmonic nanowire,” Nano Lett. 4, 2427–2430 (2004).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Panoiu, N. C.

F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu, “Subwavelength plasmonic lattice solitons in arrays of metallic nanowires,” Phys. Rev. Lett. 104, 106802 (2010).
[CrossRef] [PubMed]

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[CrossRef]

N. C. Panoiu and R. M. Osgood, “Subwavelength nonlinear plasmonic nanowire,” Nano Lett. 4, 2427–2430 (2004).
[CrossRef]

Pollard, R.

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97, 057402 (2006).
[CrossRef] [PubMed]

Rosanov, N. N.

N. N. Rosanov, N. V. Vysotina, A. N. Shatsev, I. V. Shadrivov, and Y. S. Kivshar, “Hysteresis of switching waves and dissipative solitons in nonlinear magnetic metamaterials,” JETP Lett. 93, 743 (2011).
[CrossRef]

Sandke, M.

J. A. H. van Nieuwstadt, M. Sandke, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

Shadrivov, I. V.

N. N. Rosanov, N. V. Vysotina, A. N. Shatsev, I. V. Shadrivov, and Y. S. Kivshar, “Hysteresis of switching waves and dissipative solitons in nonlinear magnetic metamaterials,” JETP Lett. 93, 743 (2011).
[CrossRef]

I. V. Shadrivov, A. A. Zharov, N. A. Zharova, and Y. S. Kivshar, “Nonlinear magnetoinductive waves and domain walls in composite metamaterials,” Photonics Nanostruct. Fundam. Appl. 4, 69 (2006).
[CrossRef]

Shalaev, V. M.

V. P. Drachev, A. K. Buin, H. Nakotte, and V. M. Shalaev, “Size dependent χ(3) for conduction electrons in Ag nanoparticles,” Nano Lett. 4, 1535 (2004).
[CrossRef]

Shatsev, A. N.

N. N. Rosanov, N. V. Vysotina, A. N. Shatsev, I. V. Shadrivov, and Y. S. Kivshar, “Hysteresis of switching waves and dissipative solitons in nonlinear magnetic metamaterials,” JETP Lett. 93, 743 (2011).
[CrossRef]

Skryabin, D. V.

Stockman, M.

K. Li, M. Stockman, and D. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Stroud, D.

S. Yong and D. Stroud, “Surface-plasmon dispersion relations in chains of metallic nanoparticles: an exact quasistatic calculation,” Phys. Rev. B 69, 125418 (2004).
[CrossRef]

Takahara, J.

Taki, H.

Tsarev, M. V.

R. E. Noskov, A. A. Zharov, and M. V. Tsarev, “Generation of widely tunable continuous-wave terahertz radiation using a two-dimensional lattice of nonlinear metallic nanodimers,” Phys. Rev. B 82, 073404 (2010).
[CrossRef]

A. A. Zharov, R. E. Noskov, and M. V. Tsarev, “Plasmon-induced terahertz radiation generation due to symmetry breaking in a nonlinear metallic nanodimer,” J. Appl. Phys. 106, 073104 (2009).
[CrossRef]

van Nieuwstadt, J. A. H.

J. A. H. van Nieuwstadt, M. Sandke, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

Vysotina, N. V.

N. N. Rosanov, N. V. Vysotina, A. N. Shatsev, I. V. Shadrivov, and Y. S. Kivshar, “Hysteresis of switching waves and dissipative solitons in nonlinear magnetic metamaterials,” JETP Lett. 93, 743 (2011).
[CrossRef]

Weber, M. J.

M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).

Wurtz, G. A.

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97, 057402 (2006).
[CrossRef] [PubMed]

Yamagishi, S.

Ye, F.

F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu, “Subwavelength plasmonic lattice solitons in arrays of metallic nanowires,” Phys. Rev. Lett. 104, 106802 (2010).
[CrossRef] [PubMed]

Yong, S.

S. Yong and D. Stroud, “Surface-plasmon dispersion relations in chains of metallic nanoparticles: an exact quasistatic calculation,” Phys. Rev. B 69, 125418 (2004).
[CrossRef]

Zayats, A. V.

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97, 057402 (2006).
[CrossRef] [PubMed]

Zhang, S.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[CrossRef]

Zhang, X.

Y. Liu, G. Bartal, D. A. Genov, and X. Zhang, “Subwavelength discrete solitons in nonlinear metamaterials,” Phys. Rev. Lett. 99, 153901 (2007).
[CrossRef] [PubMed]

Zharov, A. A.

R. E. Noskov, A. A. Zharov, and M. V. Tsarev, “Generation of widely tunable continuous-wave terahertz radiation using a two-dimensional lattice of nonlinear metallic nanodimers,” Phys. Rev. B 82, 073404 (2010).
[CrossRef]

A. A. Zharov, R. E. Noskov, and M. V. Tsarev, “Plasmon-induced terahertz radiation generation due to symmetry breaking in a nonlinear metallic nanodimer,” J. Appl. Phys. 106, 073104 (2009).
[CrossRef]

I. V. Shadrivov, A. A. Zharov, N. A. Zharova, and Y. S. Kivshar, “Nonlinear magnetoinductive waves and domain walls in composite metamaterials,” Photonics Nanostruct. Fundam. Appl. 4, 69 (2006).
[CrossRef]

Zharova, N. A.

I. V. Shadrivov, A. A. Zharov, N. A. Zharova, and Y. S. Kivshar, “Nonlinear magnetoinductive waves and domain walls in composite metamaterials,” Photonics Nanostruct. Fundam. Appl. 4, 69 (2006).
[CrossRef]

J. Appl. Phys. (1)

A. A. Zharov, R. E. Noskov, and M. V. Tsarev, “Plasmon-induced terahertz radiation generation due to symmetry breaking in a nonlinear metallic nanodimer,” J. Appl. Phys. 106, 073104 (2009).
[CrossRef]

JETP Lett. (1)

N. N. Rosanov, N. V. Vysotina, A. N. Shatsev, I. V. Shadrivov, and Y. S. Kivshar, “Hysteresis of switching waves and dissipative solitons in nonlinear magnetic metamaterials,” JETP Lett. 93, 743 (2011).
[CrossRef]

Nano Lett. (3)

V. P. Drachev, A. K. Buin, H. Nakotte, and V. M. Shalaev, “Size dependent χ(3) for conduction electrons in Ag nanoparticles,” Nano Lett. 4, 1535 (2004).
[CrossRef]

N. C. Panoiu and R. M. Osgood, “Subwavelength nonlinear plasmonic nanowire,” Nano Lett. 4, 2427–2430 (2004).
[CrossRef]

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[CrossRef]

Nat. Photonics (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Photonics Nanostruct. Fundam. Appl. (1)

I. V. Shadrivov, A. A. Zharov, N. A. Zharova, and Y. S. Kivshar, “Nonlinear magnetoinductive waves and domain walls in composite metamaterials,” Photonics Nanostruct. Fundam. Appl. 4, 69 (2006).
[CrossRef]

Phys. Rev. A (1)

K. M. Leung, “Optical bistability in the scattering and absorption of light from nonlinear microparticles,” Phys. Rev. A 33, 2461 (1986).
[CrossRef] [PubMed]

Phys. Rev. B (3)

S. Yong and D. Stroud, “Surface-plasmon dispersion relations in chains of metallic nanoparticles: an exact quasistatic calculation,” Phys. Rev. B 69, 125418 (2004).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 9, 4370 (1972).
[CrossRef]

R. E. Noskov, A. A. Zharov, and M. V. Tsarev, “Generation of widely tunable continuous-wave terahertz radiation using a two-dimensional lattice of nonlinear metallic nanodimers,” Phys. Rev. B 82, 073404 (2010).
[CrossRef]

Phys. Rev. Lett. (5)

Y. Liu, G. Bartal, D. A. Genov, and X. Zhang, “Subwavelength discrete solitons in nonlinear metamaterials,” Phys. Rev. Lett. 99, 153901 (2007).
[CrossRef] [PubMed]

F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu, “Subwavelength plasmonic lattice solitons in arrays of metallic nanowires,” Phys. Rev. Lett. 104, 106802 (2010).
[CrossRef] [PubMed]

K. Li, M. Stockman, and D. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

J. A. H. van Nieuwstadt, M. Sandke, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97, 057402 (2006).
[CrossRef] [PubMed]

Other (5)

M. I. Brongersma and P. G. Krik, eds. Surface Plasmon Nanophotonics (Spinger, 2007), p. 268.

S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), p. 219.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).

O. M. Braun and Yu.S. Kivshar, The Frenkel-Kontorova Model: Concepts, Methods, and Applications (Springer-Heidelberg, 2004), p. 498.

Supplementary Material (3)

» Media 1: MPG (10336 KB)     
» Media 2: MPG (10344 KB)     
» Media 3: MPG (5487 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic sketch of an array of coupled metallic particles with a nonlinear response. Arrows indicate a profile of the polarizations for a typical kink configuration.

Fig. 2
Fig. 2

(a) Dependence | P 0 | 2 on | E 0 | 2 at Ω = −0.1. Middle branch inside the bistability loop corresponds to the solutions unstable with respect to small perturbations. Arrows show the transitions of the system’s state between the stable branches. (b) Profile of the function Re P n for the stationary kink obtained by numerical simulations of Eq. (1) at Ω = −0.1 and | E 0 | 2 = 5.22 × 10 5.

Fig. 3
Fig. 3

(a) ( Media 1) and (c) ( Media 2) demonstrate dynamics of Re P n obtained numerically from Eq. (1) at Ω = −0.1. (b,d) External light intensities corresponding to the cases (a) and (c), respectively. Dashed lines mark the bistability region.

Fig. 4
Fig. 4

Normalized kink velocity vs. the intensity of applied field | E 0 | 2 at Ω = −0.1.

Fig. 5
Fig. 5

Generation of a plasmon soliton via interaction of two kinks with the opposite polarities. (a) Initial condition used for numerical simulations of Eq. (1) at | E 0 | 2 = 9.27 × 10 5 and Ω = −0.1. (b) ( Media 3) The frozen frame of Re P n showing the profile of the subwavelength dissipative plasmon soliton formed by two interacting kinks.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

i d P n d τ + ( i γ + Ω + | P n | 2 ) P n + m n G n , m P m = E n , i d P n || d τ + ( i γ + Ω + | P n | 2 ) P n || + m n G n , m || P m || = E n || ,
G n , m = η 2 ( ( k 0 d ) 2 i k 0 d | n m | 1 | n m | 2 ) exp ( i k 0 d | n m | ) | n m |
G n , m || = η ( i k 0 d | n m | + 1 | n m | 2 ) exp ( i k 0 d | n m | ) | n m | ,
( i γ + Ω + j = 1 A j + | P 0 | 2 ) P 0 = E 0 ,
A j = η ( 1 j 3 i k 0 d j 2 + ( k 0 d ) 2 j ) exp ( i k 0 d j ) .
Ω < Re j = 1 A j 3 ( γ Im j = 1 A j ) ,

Metrics