Abstract

A heterodyne interference system was developed for position measurement. A stabilized optical-frequency comb is used as the laser source. The preliminary experiment to measure a distance of 22.478 m shows a drift of 1.6 μm in 20 minutes after the temperature compensation. Comparison and frequency shift experiments have been done for a distance of about 7.493 m. The experimental results show that the drift is mainly caused by environmental condition changes and the vibration of the table and floor also has some effects. It was verified that the absolute distance measurement can be realized by fringe scanning and frequency-shifting methods.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
    [CrossRef]
  2. S.-W. Kim and Y.-J. Kim, “Advanced optical metrology using ultrashort pulse lasers,” Rev. Laser Eng. 36(APLS), 1254–1257 (2008).
    [CrossRef]
  3. N. Schuhler, Y. Salvadé, S. Lévêque, R. Dändliker, and R. Holzwarth, “Frequency-comb-referenced two-wavelength source for absolute distance measurement,” Opt. Lett. 31(21), 3101–3103 (2006).
    [CrossRef] [PubMed]
  4. S. Hyun, Y.-J. Kim, Y. Kim, and S.-W. Kim, “Absolute distance measurement using the frequency comb of a femtosecond laser,” CIRP Ann. Manuf. Technol. 59(1), 555–558 (2010).
    [CrossRef]
  5. J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett. 29(10), 1153–1155 (2004).
    [CrossRef] [PubMed]
  6. J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C. S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14(13), 5968–5974 (2006).
    [CrossRef] [PubMed]
  7. K.-N. Joo and S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
    [CrossRef] [PubMed]
  8. K.-N. Joo, Y. Kim, and S.-W. Kim, “Distance measurements by combined method based on a femtosecond pulse laser,” Opt. Express 16(24), 19799–19806 (2008).
    [CrossRef] [PubMed]
  9. Y. Salvadé, N. Schuhler, S. Lévêque, and S. Le Floch, “High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source,” Appl. Opt. 47(14), 2715–2720 (2008).
    [CrossRef] [PubMed]
  10. P. Balling, P. Kren, P. Masika, and S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express 17(11), 9300–9313 (2009).
    [CrossRef] [PubMed]
  11. S. Yokoyama, T. Yokoyama, Y. Hagihara, T. Araki, and T. Yasui, “A distance meter using a terahertz intermode beat in an optical frequency comb,” Opt. Express 17(20), 17324–17337 (2009).
    [CrossRef] [PubMed]
  12. D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, “Analysis of the temporal coherence function of a femtosecond optical frequency comb,” Opt. Express 17(9), 7011–7018 (2009).
    [CrossRef] [PubMed]
  13. S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
    [CrossRef]
  14. N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
    [CrossRef]
  15. H. Takahashi, Z. He, and K. Hotate, “Optical coherence domain reflectometry by use of optical frequency comb with arbitrary-waveform phase modulation,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC), (2010), pp. 1–3.

2010 (2)

S. Hyun, Y.-J. Kim, Y. Kim, and S.-W. Kim, “Absolute distance measurement using the frequency comb of a femtosecond laser,” CIRP Ann. Manuf. Technol. 59(1), 555–558 (2010).
[CrossRef]

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[CrossRef]

2009 (5)

2008 (3)

2006 (3)

2004 (1)

Abou-Zeid, A.

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[CrossRef]

Araki, T.

Balling, P.

Coddington, I.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Dändliker, R.

Doloca, N. R.

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[CrossRef]

Hagihara, Y.

Holzwarth, R.

Hyun, S.

S. Hyun, Y.-J. Kim, Y. Kim, and S.-W. Kim, “Absolute distance measurement using the frequency comb of a femtosecond laser,” CIRP Ann. Manuf. Technol. 59(1), 555–558 (2010).
[CrossRef]

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[CrossRef]

Jin, J.

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[CrossRef]

J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C. S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14(13), 5968–5974 (2006).
[CrossRef] [PubMed]

Joo, K.-N.

Kang, C. S.

Kim, S.-W.

S. Hyun, Y.-J. Kim, Y. Kim, and S.-W. Kim, “Absolute distance measurement using the frequency comb of a femtosecond laser,” CIRP Ann. Manuf. Technol. 59(1), 555–558 (2010).
[CrossRef]

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[CrossRef]

S.-W. Kim and Y.-J. Kim, “Advanced optical metrology using ultrashort pulse lasers,” Rev. Laser Eng. 36(APLS), 1254–1257 (2008).
[CrossRef]

K.-N. Joo, Y. Kim, and S.-W. Kim, “Distance measurements by combined method based on a femtosecond pulse laser,” Opt. Express 16(24), 19799–19806 (2008).
[CrossRef] [PubMed]

J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C. S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14(13), 5968–5974 (2006).
[CrossRef] [PubMed]

K.-N. Joo and S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
[CrossRef] [PubMed]

Kim, Y.

S. Hyun, Y.-J. Kim, Y. Kim, and S.-W. Kim, “Absolute distance measurement using the frequency comb of a femtosecond laser,” CIRP Ann. Manuf. Technol. 59(1), 555–558 (2010).
[CrossRef]

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[CrossRef]

K.-N. Joo, Y. Kim, and S.-W. Kim, “Distance measurements by combined method based on a femtosecond pulse laser,” Opt. Express 16(24), 19799–19806 (2008).
[CrossRef] [PubMed]

J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C. S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14(13), 5968–5974 (2006).
[CrossRef] [PubMed]

Kim, Y.-J.

S. Hyun, Y.-J. Kim, Y. Kim, and S.-W. Kim, “Absolute distance measurement using the frequency comb of a femtosecond laser,” CIRP Ann. Manuf. Technol. 59(1), 555–558 (2010).
[CrossRef]

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[CrossRef]

S.-W. Kim and Y.-J. Kim, “Advanced optical metrology using ultrashort pulse lasers,” Rev. Laser Eng. 36(APLS), 1254–1257 (2008).
[CrossRef]

J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C. S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14(13), 5968–5974 (2006).
[CrossRef] [PubMed]

Kren, P.

Le Floch, S.

Lévêque, S.

Masika, P.

Matsumoto, H.

Meiners-Hagen, K.

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[CrossRef]

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Newbury, N. R.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Pollinger, F.

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[CrossRef]

Salvadé, Y.

Schuhler, N.

Swann, W. C.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Takahashi, S.

Takamasu, K.

van den Berg, S. A.

Wedde, M.

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[CrossRef]

Wei, D.

Yasui, T.

Ye, J.

Yokoyama, S.

Yokoyama, T.

Appl. Opt. (1)

CIRP Ann. Manuf. Technol. (1)

S. Hyun, Y.-J. Kim, Y. Kim, and S.-W. Kim, “Absolute distance measurement using the frequency comb of a femtosecond laser,” CIRP Ann. Manuf. Technol. 59(1), 555–558 (2010).
[CrossRef]

Meas. Sci. Technol. (2)

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[CrossRef]

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[CrossRef]

Nat. Photonics (1)

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Rev. Laser Eng. (1)

S.-W. Kim and Y.-J. Kim, “Advanced optical metrology using ultrashort pulse lasers,” Rev. Laser Eng. 36(APLS), 1254–1257 (2008).
[CrossRef]

Other (1)

H. Takahashi, Z. He, and K. Hotate, “Optical coherence domain reflectometry by use of optical frequency comb with arbitrary-waveform phase modulation,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC), (2010), pp. 1–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Unbalanced-arm interferometer; temporal coherence interference occurs at discrete positions

Fig. 2
Fig. 2

Schematic of the heterodyne interference system.

Fig. 3
Fig. 3

The frequency shift of the optical comb and the heterodyne frequency fh.

Fig. 4
Fig. 4

The driver signal of PZT and the interference fringe envelope.

Fig. 5
Fig. 5

Photograph of the interference system.

Fig. 6
Fig. 6

Interference fringe recorded by lock-in amplifier and the fitted curve. (a) X-data output; (b) R-data output.

Fig. 7
Fig. 7

Experimental results of 22.478 m measurement. (a) Results in an hour without the air-condition compensation; (b) Results in 20 min with air-condition compensation

Fig. 8
Fig. 8

Comparison experiment. (a) The schematic of the two interference systems; (b) Experimental results over an hour.

Fig. 9
Fig. 9

(a) The interference fringe; (b) The experimental result when Δfr is changed from 0 to 200 Hz; (c) The experimental results when Δfr is 0 and 1 kHz.

Tables (1)

Tables Icon

Table 1 The value of Δfr and the theoretical value of Δl

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

OPD=mc/n f r ,
Δl l = Δ f r f r .
f N ' = f ceo +N· f r +Δ= f ceo +( N+1 )· f r + f h = f N +1 + f h .
l= l 1 + l 2 = 1 2 m c n f r ±L t T .
l 2 =L( U m )L( U 0 )L t T L U m U 0 U ,

Metrics