Abstract

Dual-beam-scan Doppler optical coherence angiography (DB-OCA) enables high-speed, high-sensitivity blood flow imaging. However, birefringence of biological tissues is an obstacle to vasculature imaging. Here, the influence of polarization and birefringence on DB-OCA imaging was analyzed. A DB-OCA system without birefringence artifact has been developed by introducing a Faraday rotator. The performance was confirmed in vitro using chicken muscle and in vivo using the human eye. Birefringence artifacts due to birefringent tissues were suppressed. Micro-vasculatures in the lamina cribrosa and nerve fiber layer of human eyes were visualized in vivo. High-speed and high-sensitivity micro-vasculature imaging involving birefringent tissues is available with polarization multiplexing DB-OCA.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Drexler and J. G. Fujimoto, eds., Optical Coherence Tomography: Technology and Applications, Biological and Medical Physics, Biomedical Engineering (Springer, 2008).
    [CrossRef]
  2. Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1119–1121 (1997).
    [CrossRef] [PubMed]
  3. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439–1441 (1997).
    [CrossRef]
  4. R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11, 3116–3121 (2003).
    [CrossRef] [PubMed]
  5. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography,” Opt. Express 11, 3490–3497 (2003).
    [CrossRef] [PubMed]
  6. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006).
    [CrossRef] [PubMed]
  7. R. K. Wang and S. Hurst, “Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by optical micro-angiography at 1.3 μm wavelength,” Opt. Express 15, 11402–11412 (2007).
    [CrossRef] [PubMed]
  8. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time domain optical coherence tomography,” Opt. Express 16, 6008–6025 (2008).
    [CrossRef] [PubMed]
  9. Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified hilbert transform,” Opt. Express 16, 12350–12361 (2008).
    [CrossRef] [PubMed]
  10. B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
    [CrossRef] [PubMed]
  11. I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express 17, 23736–23754 (2009).
    [CrossRef]
  12. J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17, 22190–22200 (2009).
    [CrossRef] [PubMed]
  13. R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35, 1467–1469 (2010).
    [CrossRef] [PubMed]
  14. D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, and R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express 2, 1504–1513 (2011).
    [CrossRef] [PubMed]
  15. S. Makita, F. Jaillon, M. Yamanari, M. Miura, and Y. Yasuno, “Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography,” Opt. Express 19, 1271–1283 (2011).
    [CrossRef] [PubMed]
  16. S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express 19, 1217–1227 (2011).
    [CrossRef] [PubMed]
  17. F. Jaillon, S. Makita, E. J. Min, B. H. Lee, and Y. Yasuno, “Enhanced imaging of choroidal vasculature by high-penetration and dual-velocity optical coherence angiography,” Biomed. Opt. Express 2, 1147–1158 (2011).
    [CrossRef] [PubMed]
  18. Q. Zhou and R. W. Knighton, “Light scattering and form birefringence of parallel cylindrical arrays that represent cellular organelles of the retinal nerve fiber layer,” Appl. Opt. 36, 2273–2285 (1997).
    [CrossRef] [PubMed]
  19. R. W. Knighton and X. R. Huang, “Linear birefringence of the central human cornea,” Invest. Ophthalmol. Vis. Sci. 43, 82–86 (2002).
    [PubMed]
  20. J. T. Oh, S. W. Lee, Y. S. Kim, K. B. Suhr, and B. M. Kim, “Quantification of the wound healing using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 11, 041124 (2006).
    [CrossRef] [PubMed]
  21. S. Michels, M. Pircher, W. Geitzenauer, C. Simader, E. Gotzinger, O. Findl, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Value of polarisation-sensitive optical coherence tomography in diseases affecting the retinal pigment epithelium,” Br. J. Ophthalmol. 92, 204–209 (2008).
    [CrossRef] [PubMed]
  22. M. Yamanari, S. Makita, V. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method,” Opt. Express 14, 6502–6515 (2006).
    [CrossRef] [PubMed]
  23. S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7, 350–358 (2002).
    [CrossRef] [PubMed]
  24. Y. J. Hong, S. Makita, F. Jaillon, M. J. Ju, B. H. Lee, M. Itoh, M. Miura, and Y. Yasuno, Computational Optics Group in the University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305–8573, Japan, are preparing a manuscript to be called “High-penetration swept source Doppler optical coherence angiography by fully numerical phase stabilization.”
  25. A. Szkulmowska, M. Szkulmowski, A. Kowalczyk, and M. Wojtkowski, “Phase-resolved Doppler optical coherence tomography—limitations and improvements,” Opt. Lett. 33, 1425–1427 (2008).
    [CrossRef] [PubMed]
  26. A. L. Kornzweig, I. Eliasoph, and M. Feldstein, “Selective atrophy of the radial peripapillary capillaries in chronic glaucoma,” Arch. Ophthalmol. 80, 696–702 (1968).
    [CrossRef] [PubMed]
  27. M. Alterman and P. Henkind, “Radial peripapillary capillaries of the retina. II. Possible role in Bjerrum scotoma,” Br. J. Ophthalmol. 52, 26–31 (1968).
    [CrossRef] [PubMed]
  28. D. S. Greenfield, R. W. Knighton, and X. R. Huang, “Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry,” Am. J. Ophthalmol. 129, 715–722 (2000).
    [CrossRef] [PubMed]
  29. C. K. Hitzenberger and A. F. Fercher, “Differential phase contrast in optical coherence tomography,” Opt. Lett. 24, 622–624 (1999).
    [CrossRef]
  30. D. P. Davé and T. E. Milner, “Optical low-coherence reflectometer for differential phase measurement,” Opt. Lett. 25, 227–229 (2000).
    [CrossRef]
  31. S. A. Telenkov, D. P. Dave, S. Sethuraman, T. Akkin, and T. E. Milner, “Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue,” Phys. Med. Biol. 49, 111–119 (2004).
    [CrossRef] [PubMed]
  32. S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, M. Bonesi, and C. K. Hitzenberger, “Sample motion-insensitive, full-range, complex, spectral-domain optical-coherence tomography,” Opt. Lett. 35, 3913–3915 (2010).
    [CrossRef] [PubMed]

2011

2010

2009

2008

2007

2006

2004

S. A. Telenkov, D. P. Dave, S. Sethuraman, T. Akkin, and T. E. Milner, “Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue,” Phys. Med. Biol. 49, 111–119 (2004).
[CrossRef] [PubMed]

2003

2002

R. W. Knighton and X. R. Huang, “Linear birefringence of the central human cornea,” Invest. Ophthalmol. Vis. Sci. 43, 82–86 (2002).
[PubMed]

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7, 350–358 (2002).
[CrossRef] [PubMed]

2000

D. P. Davé and T. E. Milner, “Optical low-coherence reflectometer for differential phase measurement,” Opt. Lett. 25, 227–229 (2000).
[CrossRef]

D. S. Greenfield, R. W. Knighton, and X. R. Huang, “Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry,” Am. J. Ophthalmol. 129, 715–722 (2000).
[CrossRef] [PubMed]

1999

1997

1968

A. L. Kornzweig, I. Eliasoph, and M. Feldstein, “Selective atrophy of the radial peripapillary capillaries in chronic glaucoma,” Arch. Ophthalmol. 80, 696–702 (1968).
[CrossRef] [PubMed]

M. Alterman and P. Henkind, “Radial peripapillary capillaries of the retina. II. Possible role in Bjerrum scotoma,” Br. J. Ophthalmol. 52, 26–31 (1968).
[CrossRef] [PubMed]

Akkin, T.

S. A. Telenkov, D. P. Dave, S. Sethuraman, T. Akkin, and T. E. Milner, “Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue,” Phys. Med. Biol. 49, 111–119 (2004).
[CrossRef] [PubMed]

Alterman, M.

M. Alterman and P. Henkind, “Radial peripapillary capillaries of the retina. II. Possible role in Bjerrum scotoma,” Br. J. Ophthalmol. 52, 26–31 (1968).
[CrossRef] [PubMed]

An, L.

Bajraszewski, T.

Bartlett, L. A.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Barton, J. K.

Bonesi, M.

Bouma, B. E.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography,” Opt. Express 11, 3490–3497 (2003).
[CrossRef] [PubMed]

Cense, B.

Chen, T. C.

Chen, Z.

Dave, D. P.

S. A. Telenkov, D. P. Dave, S. Sethuraman, T. Akkin, and T. E. Milner, “Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue,” Phys. Med. Biol. 49, 111–119 (2004).
[CrossRef] [PubMed]

Davé, D. P.

Davis, A. M.

de Boer, J. F.

Drexler, W.

Eliasoph, I.

A. L. Kornzweig, I. Eliasoph, and M. Feldstein, “Selective atrophy of the radial peripapillary capillaries in chronic glaucoma,” Arch. Ophthalmol. 80, 696–702 (1968).
[CrossRef] [PubMed]

Feldstein, M.

A. L. Kornzweig, I. Eliasoph, and M. Feldstein, “Selective atrophy of the radial peripapillary capillaries in chronic glaucoma,” Arch. Ophthalmol. 80, 696–702 (1968).
[CrossRef] [PubMed]

Fercher, A.

Fercher, A. F.

Findl, O.

S. Michels, M. Pircher, W. Geitzenauer, C. Simader, E. Gotzinger, O. Findl, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Value of polarisation-sensitive optical coherence tomography in diseases affecting the retinal pigment epithelium,” Br. J. Ophthalmol. 92, 204–209 (2008).
[CrossRef] [PubMed]

Fingler, J.

Francis, P.

Fraser, S. E.

Fukumura, D.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Geitzenauer, W.

S. Michels, M. Pircher, W. Geitzenauer, C. Simader, E. Gotzinger, O. Findl, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Value of polarisation-sensitive optical coherence tomography in diseases affecting the retinal pigment epithelium,” Br. J. Ophthalmol. 92, 204–209 (2008).
[CrossRef] [PubMed]

Gorczynska, I.

Gotzinger, E.

S. Michels, M. Pircher, W. Geitzenauer, C. Simader, E. Gotzinger, O. Findl, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Value of polarisation-sensitive optical coherence tomography in diseases affecting the retinal pigment epithelium,” Br. J. Ophthalmol. 92, 204–209 (2008).
[CrossRef] [PubMed]

Götzinger, E.

Greenfield, D. S.

D. S. Greenfield, R. W. Knighton, and X. R. Huang, “Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry,” Am. J. Ophthalmol. 129, 715–722 (2000).
[CrossRef] [PubMed]

Grulkowski, I.

Henkind, P.

M. Alterman and P. Henkind, “Radial peripapillary capillaries of the retina. II. Possible role in Bjerrum scotoma,” Br. J. Ophthalmol. 52, 26–31 (1968).
[CrossRef] [PubMed]

Hitzenberger, C. K.

Hong, Y.

Hong, Y. J.

Y. J. Hong, S. Makita, F. Jaillon, M. J. Ju, B. H. Lee, M. Itoh, M. Miura, and Y. Yasuno, Computational Optics Group in the University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305–8573, Japan, are preparing a manuscript to be called “High-penetration swept source Doppler optical coherence angiography by fully numerical phase stabilization.”

Huang, X. R.

R. W. Knighton and X. R. Huang, “Linear birefringence of the central human cornea,” Invest. Ophthalmol. Vis. Sci. 43, 82–86 (2002).
[PubMed]

D. S. Greenfield, R. W. Knighton, and X. R. Huang, “Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry,” Am. J. Ophthalmol. 129, 715–722 (2000).
[CrossRef] [PubMed]

Hurst, S.

Itoh, M.

Y. J. Hong, S. Makita, F. Jaillon, M. J. Ju, B. H. Lee, M. Itoh, M. Miura, and Y. Yasuno, Computational Optics Group in the University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305–8573, Japan, are preparing a manuscript to be called “High-penetration swept source Doppler optical coherence angiography by fully numerical phase stabilization.”

Izatt, J. A.

Jaillon, F.

F. Jaillon, S. Makita, E. J. Min, B. H. Lee, and Y. Yasuno, “Enhanced imaging of choroidal vasculature by high-penetration and dual-velocity optical coherence angiography,” Biomed. Opt. Express 2, 1147–1158 (2011).
[CrossRef] [PubMed]

S. Makita, F. Jaillon, M. Yamanari, M. Miura, and Y. Yasuno, “Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography,” Opt. Express 19, 1271–1283 (2011).
[CrossRef] [PubMed]

Y. J. Hong, S. Makita, F. Jaillon, M. J. Ju, B. H. Lee, M. Itoh, M. Miura, and Y. Yasuno, Computational Optics Group in the University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305–8573, Japan, are preparing a manuscript to be called “High-penetration swept source Doppler optical coherence angiography by fully numerical phase stabilization.”

Jain, R. K.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Jiao, S.

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7, 350–358 (2002).
[CrossRef] [PubMed]

Ju, M. J.

Y. J. Hong, S. Makita, F. Jaillon, M. J. Ju, B. H. Lee, M. Itoh, M. Miura, and Y. Yasuno, Computational Optics Group in the University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305–8573, Japan, are preparing a manuscript to be called “High-penetration swept source Doppler optical coherence angiography by fully numerical phase stabilization.”

Kim, B. M.

J. T. Oh, S. W. Lee, Y. S. Kim, K. B. Suhr, and B. M. Kim, “Quantification of the wound healing using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 11, 041124 (2006).
[CrossRef] [PubMed]

Kim, D. Y.

Kim, Y. S.

J. T. Oh, S. W. Lee, Y. S. Kim, K. B. Suhr, and B. M. Kim, “Quantification of the wound healing using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 11, 041124 (2006).
[CrossRef] [PubMed]

Knighton, R. W.

R. W. Knighton and X. R. Huang, “Linear birefringence of the central human cornea,” Invest. Ophthalmol. Vis. Sci. 43, 82–86 (2002).
[PubMed]

D. S. Greenfield, R. W. Knighton, and X. R. Huang, “Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry,” Am. J. Ophthalmol. 129, 715–722 (2000).
[CrossRef] [PubMed]

Q. Zhou and R. W. Knighton, “Light scattering and form birefringence of parallel cylindrical arrays that represent cellular organelles of the retinal nerve fiber layer,” Appl. Opt. 36, 2273–2285 (1997).
[CrossRef] [PubMed]

Kornzweig, A. L.

A. L. Kornzweig, I. Eliasoph, and M. Feldstein, “Selective atrophy of the radial peripapillary capillaries in chronic glaucoma,” Arch. Ophthalmol. 80, 696–702 (1968).
[CrossRef] [PubMed]

Kowalczyk, A.

Kulkarni, M. D.

Lanning, R. M.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Lee, B. H.

F. Jaillon, S. Makita, E. J. Min, B. H. Lee, and Y. Yasuno, “Enhanced imaging of choroidal vasculature by high-penetration and dual-velocity optical coherence angiography,” Biomed. Opt. Express 2, 1147–1158 (2011).
[CrossRef] [PubMed]

Y. J. Hong, S. Makita, F. Jaillon, M. J. Ju, B. H. Lee, M. Itoh, M. Miura, and Y. Yasuno, Computational Optics Group in the University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305–8573, Japan, are preparing a manuscript to be called “High-penetration swept source Doppler optical coherence angiography by fully numerical phase stabilization.”

Lee, S. W.

J. T. Oh, S. W. Lee, Y. S. Kim, K. B. Suhr, and B. M. Kim, “Quantification of the wound healing using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 11, 041124 (2006).
[CrossRef] [PubMed]

Leitgeb, R.

Leitgeb, R. A.

Madjarova, V.

Makita, S.

Malekafzali, A.

Michels, S.

S. Michels, M. Pircher, W. Geitzenauer, C. Simader, E. Gotzinger, O. Findl, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Value of polarisation-sensitive optical coherence tomography in diseases affecting the retinal pigment epithelium,” Br. J. Ophthalmol. 92, 204–209 (2008).
[CrossRef] [PubMed]

Milner, T. E.

Min, E. J.

Miura, M.

S. Makita, F. Jaillon, M. Yamanari, M. Miura, and Y. Yasuno, “Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography,” Opt. Express 19, 1271–1283 (2011).
[CrossRef] [PubMed]

Y. J. Hong, S. Makita, F. Jaillon, M. J. Ju, B. H. Lee, M. Itoh, M. Miura, and Y. Yasuno, Computational Optics Group in the University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305–8573, Japan, are preparing a manuscript to be called “High-penetration swept source Doppler optical coherence angiography by fully numerical phase stabilization.”

Munn, L. L.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Nassif, N.

Nelson, J. S.

Oh, J. T.

J. T. Oh, S. W. Lee, Y. S. Kim, K. B. Suhr, and B. M. Kim, “Quantification of the wound healing using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 11, 041124 (2006).
[CrossRef] [PubMed]

Padera, T. P.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Park, B. H.

Pierce, M. C.

Pircher, M.

Schmetterer, L.

Schmidt-Erfurth, U.

S. Michels, M. Pircher, W. Geitzenauer, C. Simader, E. Gotzinger, O. Findl, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Value of polarisation-sensitive optical coherence tomography in diseases affecting the retinal pigment epithelium,” Br. J. Ophthalmol. 92, 204–209 (2008).
[CrossRef] [PubMed]

Schwartz, D.

Schwartz, D. M.

Sethuraman, S.

S. A. Telenkov, D. P. Dave, S. Sethuraman, T. Akkin, and T. E. Milner, “Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue,” Phys. Med. Biol. 49, 111–119 (2004).
[CrossRef] [PubMed]

Simader, C.

S. Michels, M. Pircher, W. Geitzenauer, C. Simader, E. Gotzinger, O. Findl, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Value of polarisation-sensitive optical coherence tomography in diseases affecting the retinal pigment epithelium,” Br. J. Ophthalmol. 92, 204–209 (2008).
[CrossRef] [PubMed]

Srinivas, S.

Stylianopoulos, T.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Suhr, K. B.

J. T. Oh, S. W. Lee, Y. S. Kim, K. B. Suhr, and B. M. Kim, “Quantification of the wound healing using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 11, 041124 (2006).
[CrossRef] [PubMed]

Szkulmowska, A.

Szkulmowski, M.

Szlag, D.

Tao, Y. K.

Tearney, G. J.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography,” Opt. Express 11, 3490–3497 (2003).
[CrossRef] [PubMed]

Telenkov, S. A.

S. A. Telenkov, D. P. Dave, S. Sethuraman, T. Akkin, and T. E. Milner, “Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue,” Phys. Med. Biol. 49, 111–119 (2004).
[CrossRef] [PubMed]

Torzicky, T.

Tyrrell, J. A.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Vakoc, B. J.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

van Gemert, M. J. C.

Wang, L. V.

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7, 350–358 (2002).
[CrossRef] [PubMed]

Wang, R. K.

Wang, X.

Welch, A. J.

Werner, J. S.

White, B. R.

Wilson, D. J.

Wojtkowski, M.

Yamanari, M.

Yasuno, Y.

Yatagai, T.

Yazdanfar, S.

Zawadzki, R.

Zawadzki, R. J.

Zhou, Q.

Zotter, S.

Am. J. Ophthalmol.

D. S. Greenfield, R. W. Knighton, and X. R. Huang, “Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry,” Am. J. Ophthalmol. 129, 715–722 (2000).
[CrossRef] [PubMed]

Appl. Opt.

Arch. Ophthalmol.

A. L. Kornzweig, I. Eliasoph, and M. Feldstein, “Selective atrophy of the radial peripapillary capillaries in chronic glaucoma,” Arch. Ophthalmol. 80, 696–702 (1968).
[CrossRef] [PubMed]

Biomed. Opt. Express

Br. J. Ophthalmol.

S. Michels, M. Pircher, W. Geitzenauer, C. Simader, E. Gotzinger, O. Findl, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Value of polarisation-sensitive optical coherence tomography in diseases affecting the retinal pigment epithelium,” Br. J. Ophthalmol. 92, 204–209 (2008).
[CrossRef] [PubMed]

M. Alterman and P. Henkind, “Radial peripapillary capillaries of the retina. II. Possible role in Bjerrum scotoma,” Br. J. Ophthalmol. 52, 26–31 (1968).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci.

R. W. Knighton and X. R. Huang, “Linear birefringence of the central human cornea,” Invest. Ophthalmol. Vis. Sci. 43, 82–86 (2002).
[PubMed]

J. Biomed. Opt.

J. T. Oh, S. W. Lee, Y. S. Kim, K. B. Suhr, and B. M. Kim, “Quantification of the wound healing using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 11, 041124 (2006).
[CrossRef] [PubMed]

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7, 350–358 (2002).
[CrossRef] [PubMed]

Nat. Med.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Opt. Express

R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11, 3116–3121 (2003).
[CrossRef] [PubMed]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography,” Opt. Express 11, 3490–3497 (2003).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method,” Opt. Express 14, 6502–6515 (2006).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006).
[CrossRef] [PubMed]

R. K. Wang and S. Hurst, “Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by optical micro-angiography at 1.3 μm wavelength,” Opt. Express 15, 11402–11412 (2007).
[CrossRef] [PubMed]

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time domain optical coherence tomography,” Opt. Express 16, 6008–6025 (2008).
[CrossRef] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express 19, 1217–1227 (2011).
[CrossRef] [PubMed]

S. Makita, F. Jaillon, M. Yamanari, M. Miura, and Y. Yasuno, “Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography,” Opt. Express 19, 1271–1283 (2011).
[CrossRef] [PubMed]

Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified hilbert transform,” Opt. Express 16, 12350–12361 (2008).
[CrossRef] [PubMed]

J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17, 22190–22200 (2009).
[CrossRef] [PubMed]

I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express 17, 23736–23754 (2009).
[CrossRef]

Opt. Lett.

Phys. Med. Biol.

S. A. Telenkov, D. P. Dave, S. Sethuraman, T. Akkin, and T. E. Milner, “Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue,” Phys. Med. Biol. 49, 111–119 (2004).
[CrossRef] [PubMed]

Other

W. Drexler and J. G. Fujimoto, eds., Optical Coherence Tomography: Technology and Applications, Biological and Medical Physics, Biomedical Engineering (Springer, 2008).
[CrossRef]

Y. J. Hong, S. Makita, F. Jaillon, M. J. Ju, B. H. Lee, M. Itoh, M. Miura, and Y. Yasuno, Computational Optics Group in the University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305–8573, Japan, are preparing a manuscript to be called “High-penetration swept source Doppler optical coherence angiography by fully numerical phase stabilization.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of probe arm in DB-OCA.

Fig. 2
Fig. 2

The schematic diagram of the birefringence artifact free dual-beam-scan Doppler optical coherence angiography system. SM, PM: single-mode and polarization-maintaining fiber; ISO: isolator; WP: Wollaston prism; FR: Faraday rotator; QW: quarter wave plate; PC: polarization controller; G: grating; PBS: polarization beam splitter; CCD: line-scan CCD camera; CAM: 2D camera for pupil monitor; T: laser emission diode for fixation.

Fig. 3
Fig. 3

Chicken muscle images (a, b) without and (c, d) with birefringence artifact removal. Cross-sectional morphology (a, c) and phase differences (b, d) are shown. The scan range is 2 mm (512 lines). Scale bars indicates 100 μm.

Fig. 4
Fig. 4

Vasculature in vivo images of human eye obtained using DB-OCA (a, c) without and (b, d) with birefringence artifact removal. The images were obtained in the same eye. The orange (c) and yellow (d) lines indicate the location of cross-sectional images in Fig. 5.

Fig. 5
Fig. 5

Cross-sectional DB-OCA images (a,b,c) without and (d,e,f) with birefringence artifact removal at the ONH indicated in Figs. 4(c) and (d). (a,d) OCT, (b,e) bi-directional Doppler and (c,f) squared Doppler flow images.

Fig. 6
Fig. 6

Depth-resolved vasculature images at the ONH ((a) and (c)). The color table assigned for the depth is shown in OCT cross sections ((b) and (d)).

Fig. 7
Fig. 7

Depth discriminated vasculature images in the peripapillary region. (a, c) Superficial retinal nerve fiber layer (∼ 62 μm thick from the surface); (b, d) from inner plexiform layer to outer nuclear layers. The superior (a, b) and inferior (c, d) to the ONH are shown.

Fig. 8
Fig. 8

Numerical simulation result for birefringence artifact removal error due to imperfect Faraday rotation. δ and θ are the round-trip phase retardation and the optic axis orientation of a sample.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

{ Γ p ( r , t ) = E out p J ( r ) E in p Γ f ( r , t + Δ T ) = E out f J ( r ) E in f e i Δ ϕ m ( r ) ,
J = [ j 11 j 12 j 21 j 22 ] , ( j 12 j 21 ) .
{ Γ p ( r , t ) j 11 ( r ) Γ f ( r , t + Δ T ) j 22 ( r ) e i ϕ m ( r ) .
Δ ϕ ( r ) = Arg [ Γ f ( r ) Γ p * ( r ) ] = Δ ϕ m ( r ) + Δ ϕ b ( r ) ,
M = R ( π / 4 ) Q T ( 0 ) J Q ( 0 ) R ( π / 4 ) = i 2 [ j 11 + j 22 j 11 i 2 j 12 j 22 j 11 i 2 j 12 + j 22 ( j 11 + j 22 ) ] ,
{ Γ p ( r , t ) = E out p M ( r ) E in p Γ f ( r , t + Δ T ) = E out f M ( r ) E in f e i Δ ϕ m ( r ) .
{ Γ p ( r , t ) i 2 [ j 11 ( r ) + j 22 ( r ) ] Γ f ( r , t + Δ T ) i 2 [ j 11 ( r ) + j 22 ( r ) ] e i ϕ m ( r ) .
Δ ϕ ( r ) = Arg [ Γ f ( r ) Γ p * ( r ) ] = Δ ϕ m ( r ) + π .
j 11 , 22 = cos δ 2 ± i cos 2 θ sin δ 2
| Γ p or f | 2 cos 2 δ 2 .
M = R ( π / 4 + σ ) Q T ( ψ ) J Q ( ψ ) R ( π / 4 + σ )
ψ = θ ± π 4 .

Metrics