Abstract

We demonstrate mode-division multiplexed WDM transmission over 50-km of few-mode fiber using the fiber’s LP01 and two degenerate LP11 modes. A few-mode EDFA is used to boost the power of the output signal before a few-mode coherent receiver. A 6×6 time-domain MIMO equalizer is used to recover the transmitted data. We also experimentally characterize the 50-km few-mode fiber and the few-mode EDFA.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM transmission over 3×55-km SSMF using pilot-based phase noise mitigation,” in Proc. OFC (Los Angeles, CA, USA 2011). Paper PDPB5.
  2. J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7×97×172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km heterogeneous multi-core fiber,” in Proc. OFC (Los Angeles, CA, USA 2011). Paper PDPB6.
  3. R. Ryf, A. Sierra, R.-J. Essiambre, A. H. Gnauck, S. Randel, M. Esmaeelpour, S. Mumtaz, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, T. Hayashi, T. Taru, and T. Sasaki, “Coherent 1200-km 6×6 MIMO mode-multiplexed transmission over 3-core microstructured fiber,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.C.1.
  4. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
    [CrossRef] [PubMed]
  5. E. Ip, N. Bai, Y. Huang, E. Mateo, F. Yaman, S. Bickham, H. Tam, C. Lu, M. Li, S. Ten, A. P. T. Lau, V. Tse, G. Peng, C. Montero, X. Prieto, and G. Li, “88×3×112-Gb/s WDM Transmission over 50-km of Three-Mode Fiber with Inline Multimode Fiber Amplifier,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.C.2.
  6. N. Bai, E. Ip, T. Wang, and G. Li, “Multimode fiber amplifier with tunable modal gain using a reconfigurable multimode pump,” Opt. Express 19(17), 16601–16611 (2011).
    [CrossRef] [PubMed]
  7. Y. Yung, S. Alam, Z. Li, A. Dhar, D. Giles, I. Giles, J. Sahu, L. Grüner-Nielsen, F. Poletti, and D. Richardson, “First demonstration of multimode amplifier for spatial division multiplexed transmission systems,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.K.4.
  8. R. Ryf, A. Sierra, R. Essiambre, S. Randel, A. Gnauck, C. A. Bolle, M. Esmaeelpour, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, D. Peckham, A. McCurdy, and R. Lingle, “Mode-Equalized Distributed Raman Amplification in 137-km Few-Mode Fiber,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.K.5.
  9. J. Liñares, C. Montero, V. Moreno, M. C. Nistal, X. Prieto, J. R. Salgueiro, and D. Sotelo, “Glass processing by ion exchange to fabricate integrated optical planar components: applications,” Proc. SPIE 3936, 227–238 (2000).
    [CrossRef]
  10. J. R. Salgueiro, V. Moreno, and J. Liñares, “Model of linewidth for laser writing on a photoresist,” Appl. Opt. 41(5), 895–901 (2002).
    [CrossRef] [PubMed]
  11. E. Ip and J. M. Kahn, “Digital equalization of chromatic dispersion and polarization mode dispersion,” J. Lightwave Technol. 25(8), 2033–2043 (2007).
    [CrossRef]

2011 (2)

2007 (1)

2002 (1)

2000 (1)

J. Liñares, C. Montero, V. Moreno, M. C. Nistal, X. Prieto, J. R. Salgueiro, and D. Sotelo, “Glass processing by ion exchange to fabricate integrated optical planar components: applications,” Proc. SPIE 3936, 227–238 (2000).
[CrossRef]

Bai, N.

Bolle, C. A.

Essiambre, R. J.

Gnauck, A. H.

Ip, E.

Kahn, J. M.

Li, G.

Liñares, J.

J. R. Salgueiro, V. Moreno, and J. Liñares, “Model of linewidth for laser writing on a photoresist,” Appl. Opt. 41(5), 895–901 (2002).
[CrossRef] [PubMed]

J. Liñares, C. Montero, V. Moreno, M. C. Nistal, X. Prieto, J. R. Salgueiro, and D. Sotelo, “Glass processing by ion exchange to fabricate integrated optical planar components: applications,” Proc. SPIE 3936, 227–238 (2000).
[CrossRef]

Lingle, R.

McCurdy, A.

Montero, C.

J. Liñares, C. Montero, V. Moreno, M. C. Nistal, X. Prieto, J. R. Salgueiro, and D. Sotelo, “Glass processing by ion exchange to fabricate integrated optical planar components: applications,” Proc. SPIE 3936, 227–238 (2000).
[CrossRef]

Moreno, V.

J. R. Salgueiro, V. Moreno, and J. Liñares, “Model of linewidth for laser writing on a photoresist,” Appl. Opt. 41(5), 895–901 (2002).
[CrossRef] [PubMed]

J. Liñares, C. Montero, V. Moreno, M. C. Nistal, X. Prieto, J. R. Salgueiro, and D. Sotelo, “Glass processing by ion exchange to fabricate integrated optical planar components: applications,” Proc. SPIE 3936, 227–238 (2000).
[CrossRef]

Nistal, M. C.

J. Liñares, C. Montero, V. Moreno, M. C. Nistal, X. Prieto, J. R. Salgueiro, and D. Sotelo, “Glass processing by ion exchange to fabricate integrated optical planar components: applications,” Proc. SPIE 3936, 227–238 (2000).
[CrossRef]

Peckham, D. W.

Prieto, X.

J. Liñares, C. Montero, V. Moreno, M. C. Nistal, X. Prieto, J. R. Salgueiro, and D. Sotelo, “Glass processing by ion exchange to fabricate integrated optical planar components: applications,” Proc. SPIE 3936, 227–238 (2000).
[CrossRef]

Randel, S.

Ryf, R.

Salgueiro, J. R.

J. R. Salgueiro, V. Moreno, and J. Liñares, “Model of linewidth for laser writing on a photoresist,” Appl. Opt. 41(5), 895–901 (2002).
[CrossRef] [PubMed]

J. Liñares, C. Montero, V. Moreno, M. C. Nistal, X. Prieto, J. R. Salgueiro, and D. Sotelo, “Glass processing by ion exchange to fabricate integrated optical planar components: applications,” Proc. SPIE 3936, 227–238 (2000).
[CrossRef]

Sierra, A.

Sotelo, D.

J. Liñares, C. Montero, V. Moreno, M. C. Nistal, X. Prieto, J. R. Salgueiro, and D. Sotelo, “Glass processing by ion exchange to fabricate integrated optical planar components: applications,” Proc. SPIE 3936, 227–238 (2000).
[CrossRef]

Wang, T.

Winzer, P. J.

Appl. Opt. (1)

J. Lightwave Technol. (1)

Opt. Express (2)

Proc. SPIE (1)

J. Liñares, C. Montero, V. Moreno, M. C. Nistal, X. Prieto, J. R. Salgueiro, and D. Sotelo, “Glass processing by ion exchange to fabricate integrated optical planar components: applications,” Proc. SPIE 3936, 227–238 (2000).
[CrossRef]

Other (6)

E. Ip, N. Bai, Y. Huang, E. Mateo, F. Yaman, S. Bickham, H. Tam, C. Lu, M. Li, S. Ten, A. P. T. Lau, V. Tse, G. Peng, C. Montero, X. Prieto, and G. Li, “88×3×112-Gb/s WDM Transmission over 50-km of Three-Mode Fiber with Inline Multimode Fiber Amplifier,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.C.2.

D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM transmission over 3×55-km SSMF using pilot-based phase noise mitigation,” in Proc. OFC (Los Angeles, CA, USA 2011). Paper PDPB5.

J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7×97×172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km heterogeneous multi-core fiber,” in Proc. OFC (Los Angeles, CA, USA 2011). Paper PDPB6.

R. Ryf, A. Sierra, R.-J. Essiambre, A. H. Gnauck, S. Randel, M. Esmaeelpour, S. Mumtaz, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, T. Hayashi, T. Taru, and T. Sasaki, “Coherent 1200-km 6×6 MIMO mode-multiplexed transmission over 3-core microstructured fiber,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.C.1.

Y. Yung, S. Alam, Z. Li, A. Dhar, D. Giles, I. Giles, J. Sahu, L. Grüner-Nielsen, F. Poletti, and D. Richardson, “First demonstration of multimode amplifier for spatial division multiplexed transmission systems,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.K.4.

R. Ryf, A. Sierra, R. Essiambre, S. Randel, A. Gnauck, C. A. Bolle, M. Esmaeelpour, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, D. Peckham, A. McCurdy, and R. Lingle, “Mode-Equalized Distributed Raman Amplification in 137-km Few-Mode Fiber,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.K.5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

(a) Refractive index of MM-EDF, (b) Normalized radial intensity profiles of signal and pump modes.

Fig. 2
Fig. 2

Experiment setup.

Fig. 3
Fig. 3

Modal gain vs. Pump power when pumping forward in: (a) LP01,p, (b) LP21,p, and backward in(c) LP01,p (d) LP11,p

Fig. 4
Fig. 4

(a) Modal gain vs. signal wavelength, using LP21,p (forward) and LP11,p (backward) and (b) MDG vs. signal wavelength using forward pumps in LP01,p, LP21,p and backward pumps in LP01,p, LP11,p

Fig. 5
Fig. 5

Experimental setup.

Fig. 6
Fig. 6

(a) Intensity patterns at transmitter, (b) intensity patterns after 50-km FMF.

Fig. 7
Fig. 7

Digital signal processing architecture.

Fig. 8
Fig. 8

BER vs. OSNR.

Fig. 9
Fig. 9

Time-domain equalizer taps after convergence.

Fig. 10
Fig. 10

Training characteristic: Mean square error vs. adaptation period.

Fig. 11
Fig. 11

Q vs. Launch Power after transmission.

Fig. 12
Fig. 12

Measured BER for all WDM channels after transmission. Insets: Constellation diagrams of best and worst modes.

Fig. 13
Fig. 13

Q penalty vs. No. of taps per tributary of 6 × 6 equalizer.

Fig. 14
Fig. 14

Predicted (a) differential mode group delay and (b) chromatic dispersion.

Fig. 15
Fig. 15

Measured (a) differential MGD and (b) dispersion characteristic for experimental FMF.

Fig. 16
Fig. 16

Measured OTDR traces at different offset launch positions.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

x ^ k = W T y k , and
WW+2μ y k * ε k T .
W=[ W 11 W 1 N m W N m 1 W N m N m ]

Metrics