Abstract

We investigate both optical and electrical properties of organic solar cells (OSCs) incorporating 2D periodic metallic back grating as an anode. Using a unified finite-difference approach, the multiphysics modeling framework for plasmonic OSCs is established to seamlessly connect the photon absorption with carrier transport and collection by solving the Maxwell’s equations and semiconductor equations (Poisson, continuity, and drift-diffusion equations). Due to the excited surface plasmon resonance, the significantly nonuniform and extremely high exciton generation rate near the metallic grating are strongly confirmed by our theoretical model. Remarkably, the nonuniform exciton generation indeed does not induce more recombination loss or smaller open-circuit voltage compared to 1D multilayer standard OSC device. The increased open-circuit voltage and reduced recombination loss by the plasmonic OSC are attributed to direct hole collections at the metallic grating anode with a short transport path. The work provides an important multiphysics understanding for plasmonic organic photovoltaics.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. J. Jia, and S. P. Williams, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. 22, 3839–3856 (2010).
    [CrossRef] [PubMed]
  2. C. Deibel and V. Dyakonov, “Polymer-fullerene bulk heterojunction solar cells,” Rep. Prog. Phys. 73, 096401 (2010).
    [CrossRef]
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  4. X. H. Chen, C. C. Zhao, L. Rothberg, and M. K. Ng, “Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification,” Appl. Phys. Lett. 93, 123302 (2008).
    [CrossRef]
  5. F. C. Chen, J. L. Wu, C. L. Lee, Y. Hong, C. H. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95, 013305 (2009).
    [CrossRef]
  6. J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. L. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5, 959–967 (2011).
    [CrossRef] [PubMed]
  7. J. Yang, J. B. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. R. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano 5, 6210–6217 (2011).
    [CrossRef] [PubMed]
  8. D. D. S. Fung, L. F. Qiao, W. C. H. Choy, C. D. Wang, W. E. I. Sha, F. X. Xie, and S. L. He, “Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT-PSS layer,” J. Mater. Chem. 21, 16349–16356 (2011).
    [CrossRef]
  9. F. X. Xie, W. C. H. Choy, C. C. D. Wang, W. E. I. Sha, and D. D. S. Fung, “Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers,” Appl. Phys. Lett. 99, 153304 (2011).
    [CrossRef]
  10. C. C. D. Wang, W. C. H. Choy, C. Duan, D. D. S. Fung, W. E. I. Sha, F. X. Xie, F. Huang, and Y. Cao, “Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells,” J. Mater. Chem. 22, 1206–1211 (2011).
    [CrossRef]
  11. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008).
    [CrossRef] [PubMed]
  12. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
    [CrossRef]
  13. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [CrossRef] [PubMed]
  14. W. E. I. Sha, W. C. H. Choy, and W. C. Chew, “Angular response of thin-film organic solar cells with periodic metal back nanostrips,” Opt. Lett. 36, 478–480 (2011).
    [CrossRef] [PubMed]
  15. W. E. I. Sha, W. C. H. Choy, Y. P. P. Chen, and W. C. Chew, “Optical design of organic solar cell with hybrid plasmonic system,” Opt. Express 19, 15908–15918 (2011).
    [CrossRef] [PubMed]
  16. W. E. I. Sha, W. C. H. Choy, Y. G. Liu, and W. C. Chew, “Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic solar cells,” Appl. Phys. Lett. 99, 113304 (2011).
    [CrossRef]
  17. T. A. Davis and I. S. Duff, “An unsymmetric-pattern multifrontal method for sparse LU factorization,” SIAM J. Matrix Anal. Appl. 18, 140–158 (1997).
    [CrossRef]
  18. W. E. I. Sha, W. C. H. Choy, and W. C. Chew, “A comprehensive study for the plasmonic thin-film solar cell with periodic structure,” Opt. Express 18, 5993–6007 (2010).
    [CrossRef] [PubMed]
  19. S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer, 1984).
    [CrossRef]
  20. L. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, and P. W. M. Blom, “Device model for the operation of polymer/fullerene bulk heterojunction solar cells,” Phys. Rev. B 72, 085205 (2005).
    [CrossRef]
  21. D. W. Sievers, V. Shrotriya, and Y. Yang, “Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells,” J. Appl. Phys. 100, 114509 (2006).
    [CrossRef]
  22. J. Y. Wang, F. J. Tsai, J. J. Huang, C. Y. Chen, N. Li, Y. W. Kiang, and C. C. Yang, “Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer,” Opt. Express 18, 2682–2694 (2010).
    [CrossRef] [PubMed]
  23. X. F. Li, N. P. Hylton, V. Giannini, K. H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells,” Opt. Express 19, A888–A896 (2011).
    [CrossRef] [PubMed]
  24. P. Langevin, “Recombinaison et mobilites des ions dans les gaz,” Ann. Chim. Phys 28, 433–530 (1903).
  25. L. Onsager, “Initial recombination of ions,” Phys. Rev. 54, 554–557 (1938).
    [CrossRef]
  26. C. L. Braun, “Electric-field assisted dissociation of charge-transfer states as a mechanism of photocarrier production,” J. Chem. Phys. 80, 4157–4161 (1984).
    [CrossRef]
  27. P. Boland, K. Lee, J. Dean, and G. Namkoong, “Design of organic tandem solar cells using low- and high-bandgap polymer:fullerene composites,” Sol. Energy Mater. Sol. Cells 94, 2170–2175 (2010).
    [CrossRef]
  28. Y. M. Nam, J. Huh, and W. H. Jo, “A computational study on optimal design for organic tandem solar cells,” Sol. Energy Mater. Sol. Cells 95, 1095–1101 (2011).
    [CrossRef]

2011

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. L. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5, 959–967 (2011).
[CrossRef] [PubMed]

J. Yang, J. B. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. R. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano 5, 6210–6217 (2011).
[CrossRef] [PubMed]

D. D. S. Fung, L. F. Qiao, W. C. H. Choy, C. D. Wang, W. E. I. Sha, F. X. Xie, and S. L. He, “Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT-PSS layer,” J. Mater. Chem. 21, 16349–16356 (2011).
[CrossRef]

F. X. Xie, W. C. H. Choy, C. C. D. Wang, W. E. I. Sha, and D. D. S. Fung, “Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers,” Appl. Phys. Lett. 99, 153304 (2011).
[CrossRef]

C. C. D. Wang, W. C. H. Choy, C. Duan, D. D. S. Fung, W. E. I. Sha, F. X. Xie, F. Huang, and Y. Cao, “Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells,” J. Mater. Chem. 22, 1206–1211 (2011).
[CrossRef]

W. E. I. Sha, W. C. H. Choy, and W. C. Chew, “Angular response of thin-film organic solar cells with periodic metal back nanostrips,” Opt. Lett. 36, 478–480 (2011).
[CrossRef] [PubMed]

W. E. I. Sha, W. C. H. Choy, Y. P. P. Chen, and W. C. Chew, “Optical design of organic solar cell with hybrid plasmonic system,” Opt. Express 19, 15908–15918 (2011).
[CrossRef] [PubMed]

W. E. I. Sha, W. C. H. Choy, Y. G. Liu, and W. C. Chew, “Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic solar cells,” Appl. Phys. Lett. 99, 113304 (2011).
[CrossRef]

X. F. Li, N. P. Hylton, V. Giannini, K. H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells,” Opt. Express 19, A888–A896 (2011).
[CrossRef] [PubMed]

Y. M. Nam, J. Huh, and W. H. Jo, “A computational study on optimal design for organic tandem solar cells,” Sol. Energy Mater. Sol. Cells 95, 1095–1101 (2011).
[CrossRef]

2010

P. Boland, K. Lee, J. Dean, and G. Namkoong, “Design of organic tandem solar cells using low- and high-bandgap polymer:fullerene composites,” Sol. Energy Mater. Sol. Cells 94, 2170–2175 (2010).
[CrossRef]

J. Y. Wang, F. J. Tsai, J. J. Huang, C. Y. Chen, N. Li, Y. W. Kiang, and C. C. Yang, “Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer,” Opt. Express 18, 2682–2694 (2010).
[CrossRef] [PubMed]

W. E. I. Sha, W. C. H. Choy, and W. C. Chew, “A comprehensive study for the plasmonic thin-film solar cell with periodic structure,” Opt. Express 18, 5993–6007 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. J. Jia, and S. P. Williams, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. 22, 3839–3856 (2010).
[CrossRef] [PubMed]

C. Deibel and V. Dyakonov, “Polymer-fullerene bulk heterojunction solar cells,” Rep. Prog. Phys. 73, 096401 (2010).
[CrossRef]

2009

F. C. Chen, J. L. Wu, C. L. Lee, Y. Hong, C. H. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95, 013305 (2009).
[CrossRef]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[CrossRef]

2008

X. H. Chen, C. C. Zhao, L. Rothberg, and M. K. Ng, “Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification,” Appl. Phys. Lett. 93, 123302 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008).
[CrossRef] [PubMed]

2006

D. W. Sievers, V. Shrotriya, and Y. Yang, “Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells,” J. Appl. Phys. 100, 114509 (2006).
[CrossRef]

2005

L. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, and P. W. M. Blom, “Device model for the operation of polymer/fullerene bulk heterojunction solar cells,” Phys. Rev. B 72, 085205 (2005).
[CrossRef]

1997

T. A. Davis and I. S. Duff, “An unsymmetric-pattern multifrontal method for sparse LU factorization,” SIAM J. Matrix Anal. Appl. 18, 140–158 (1997).
[CrossRef]

1984

C. L. Braun, “Electric-field assisted dissociation of charge-transfer states as a mechanism of photocarrier production,” J. Chem. Phys. 80, 4157–4161 (1984).
[CrossRef]

1938

L. Onsager, “Initial recombination of ions,” Phys. Rev. 54, 554–557 (1938).
[CrossRef]

1903

P. Langevin, “Recombinaison et mobilites des ions dans les gaz,” Ann. Chim. Phys 28, 433–530 (1903).

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[CrossRef]

Blom, P. W. M.

L. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, and P. W. M. Blom, “Device model for the operation of polymer/fullerene bulk heterojunction solar cells,” Phys. Rev. B 72, 085205 (2005).
[CrossRef]

Boland, P.

P. Boland, K. Lee, J. Dean, and G. Namkoong, “Design of organic tandem solar cells using low- and high-bandgap polymer:fullerene composites,” Sol. Energy Mater. Sol. Cells 94, 2170–2175 (2010).
[CrossRef]

Brabec, C. J.

C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. J. Jia, and S. P. Williams, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. 22, 3839–3856 (2010).
[CrossRef] [PubMed]

Braun, C. L.

C. L. Braun, “Electric-field assisted dissociation of charge-transfer states as a mechanism of photocarrier production,” J. Chem. Phys. 80, 4157–4161 (1984).
[CrossRef]

Brongersma, M. L.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[CrossRef]

Cao, Y.

C. C. D. Wang, W. C. H. Choy, C. Duan, D. D. S. Fung, W. E. I. Sha, F. X. Xie, F. Huang, and Y. Cao, “Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells,” J. Mater. Chem. 22, 1206–1211 (2011).
[CrossRef]

Catchpole, K. R.

Chen, C. C.

J. Yang, J. B. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. R. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano 5, 6210–6217 (2011).
[CrossRef] [PubMed]

Chen, C. Y.

Chen, F. C.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. L. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5, 959–967 (2011).
[CrossRef] [PubMed]

F. C. Chen, J. L. Wu, C. L. Lee, Y. Hong, C. H. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95, 013305 (2009).
[CrossRef]

Chen, P. L.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. L. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5, 959–967 (2011).
[CrossRef] [PubMed]

Chen, X. H.

X. H. Chen, C. C. Zhao, L. Rothberg, and M. K. Ng, “Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification,” Appl. Phys. Lett. 93, 123302 (2008).
[CrossRef]

Chen, Y. P. P.

Chew, W. C.

Chien, F. C.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. L. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5, 959–967 (2011).
[CrossRef] [PubMed]

Choy, W. C. H.

W. E. I. Sha, W. C. H. Choy, and W. C. Chew, “Angular response of thin-film organic solar cells with periodic metal back nanostrips,” Opt. Lett. 36, 478–480 (2011).
[CrossRef] [PubMed]

W. E. I. Sha, W. C. H. Choy, Y. P. P. Chen, and W. C. Chew, “Optical design of organic solar cell with hybrid plasmonic system,” Opt. Express 19, 15908–15918 (2011).
[CrossRef] [PubMed]

D. D. S. Fung, L. F. Qiao, W. C. H. Choy, C. D. Wang, W. E. I. Sha, F. X. Xie, and S. L. He, “Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT-PSS layer,” J. Mater. Chem. 21, 16349–16356 (2011).
[CrossRef]

F. X. Xie, W. C. H. Choy, C. C. D. Wang, W. E. I. Sha, and D. D. S. Fung, “Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers,” Appl. Phys. Lett. 99, 153304 (2011).
[CrossRef]

C. C. D. Wang, W. C. H. Choy, C. Duan, D. D. S. Fung, W. E. I. Sha, F. X. Xie, F. Huang, and Y. Cao, “Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells,” J. Mater. Chem. 22, 1206–1211 (2011).
[CrossRef]

W. E. I. Sha, W. C. H. Choy, Y. G. Liu, and W. C. Chew, “Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic solar cells,” Appl. Phys. Lett. 99, 113304 (2011).
[CrossRef]

W. E. I. Sha, W. C. H. Choy, and W. C. Chew, “A comprehensive study for the plasmonic thin-film solar cell with periodic structure,” Opt. Express 18, 5993–6007 (2010).
[CrossRef] [PubMed]

Davis, T. A.

T. A. Davis and I. S. Duff, “An unsymmetric-pattern multifrontal method for sparse LU factorization,” SIAM J. Matrix Anal. Appl. 18, 140–158 (1997).
[CrossRef]

Dean, J.

P. Boland, K. Lee, J. Dean, and G. Namkoong, “Design of organic tandem solar cells using low- and high-bandgap polymer:fullerene composites,” Sol. Energy Mater. Sol. Cells 94, 2170–2175 (2010).
[CrossRef]

Deibel, C.

C. Deibel and V. Dyakonov, “Polymer-fullerene bulk heterojunction solar cells,” Rep. Prog. Phys. 73, 096401 (2010).
[CrossRef]

Duan, C.

C. C. D. Wang, W. C. H. Choy, C. Duan, D. D. S. Fung, W. E. I. Sha, F. X. Xie, F. Huang, and Y. Cao, “Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells,” J. Mater. Chem. 22, 1206–1211 (2011).
[CrossRef]

Duff, I. S.

T. A. Davis and I. S. Duff, “An unsymmetric-pattern multifrontal method for sparse LU factorization,” SIAM J. Matrix Anal. Appl. 18, 140–158 (1997).
[CrossRef]

Dyakonov, V.

C. Deibel and V. Dyakonov, “Polymer-fullerene bulk heterojunction solar cells,” Rep. Prog. Phys. 73, 096401 (2010).
[CrossRef]

Ekins-Daukes, N. J.

Fung, D. D. S.

C. C. D. Wang, W. C. H. Choy, C. Duan, D. D. S. Fung, W. E. I. Sha, F. X. Xie, F. Huang, and Y. Cao, “Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells,” J. Mater. Chem. 22, 1206–1211 (2011).
[CrossRef]

D. D. S. Fung, L. F. Qiao, W. C. H. Choy, C. D. Wang, W. E. I. Sha, F. X. Xie, and S. L. He, “Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT-PSS layer,” J. Mater. Chem. 21, 16349–16356 (2011).
[CrossRef]

F. X. Xie, W. C. H. Choy, C. C. D. Wang, W. E. I. Sha, and D. D. S. Fung, “Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers,” Appl. Phys. Lett. 99, 153304 (2011).
[CrossRef]

Giannini, V.

Gowrisanker, S.

C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. J. Jia, and S. P. Williams, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. 22, 3839–3856 (2010).
[CrossRef] [PubMed]

Halls, J. J. M.

C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. J. Jia, and S. P. Williams, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. 22, 3839–3856 (2010).
[CrossRef] [PubMed]

He, S. L.

D. D. S. Fung, L. F. Qiao, W. C. H. Choy, C. D. Wang, W. E. I. Sha, F. X. Xie, and S. L. He, “Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT-PSS layer,” J. Mater. Chem. 21, 16349–16356 (2011).
[CrossRef]

Hong, Y.

F. C. Chen, J. L. Wu, C. L. Lee, Y. Hong, C. H. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95, 013305 (2009).
[CrossRef]

Hong, Z. R.

J. Yang, J. B. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. R. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano 5, 6210–6217 (2011).
[CrossRef] [PubMed]

Hsiao, Y. S.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. L. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5, 959–967 (2011).
[CrossRef] [PubMed]

Hsu, C. S.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. L. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5, 959–967 (2011).
[CrossRef] [PubMed]

Hsu, W. C.

J. Yang, J. B. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. R. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano 5, 6210–6217 (2011).
[CrossRef] [PubMed]

Huang, F.

C. C. D. Wang, W. C. H. Choy, C. Duan, D. D. S. Fung, W. E. I. Sha, F. X. Xie, F. Huang, and Y. Cao, “Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells,” J. Mater. Chem. 22, 1206–1211 (2011).
[CrossRef]

Huang, J. J.

Huang, M. H.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. L. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5, 959–967 (2011).
[CrossRef] [PubMed]

F. C. Chen, J. L. Wu, C. L. Lee, Y. Hong, C. H. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95, 013305 (2009).
[CrossRef]

Huh, J.

Y. M. Nam, J. Huh, and W. H. Jo, “A computational study on optimal design for organic tandem solar cells,” Sol. Energy Mater. Sol. Cells 95, 1095–1101 (2011).
[CrossRef]

Hylton, N. P.

Jia, S. J.

C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. J. Jia, and S. P. Williams, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. 22, 3839–3856 (2010).
[CrossRef] [PubMed]

Jo, W. H.

Y. M. Nam, J. Huh, and W. H. Jo, “A computational study on optimal design for organic tandem solar cells,” Sol. Energy Mater. Sol. Cells 95, 1095–1101 (2011).
[CrossRef]

Kiang, Y. W.

Koster, L. J. A.

L. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, and P. W. M. Blom, “Device model for the operation of polymer/fullerene bulk heterojunction solar cells,” Phys. Rev. B 72, 085205 (2005).
[CrossRef]

Kuo, C. H.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. L. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5, 959–967 (2011).
[CrossRef] [PubMed]

F. C. Chen, J. L. Wu, C. L. Lee, Y. Hong, C. H. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95, 013305 (2009).
[CrossRef]

Laird, D.

C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. J. Jia, and S. P. Williams, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. 22, 3839–3856 (2010).
[CrossRef] [PubMed]

Langevin, P.

P. Langevin, “Recombinaison et mobilites des ions dans les gaz,” Ann. Chim. Phys 28, 433–530 (1903).

Lee, C. L.

F. C. Chen, J. L. Wu, C. L. Lee, Y. Hong, C. H. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95, 013305 (2009).
[CrossRef]

Lee, K.

P. Boland, K. Lee, J. Dean, and G. Namkoong, “Design of organic tandem solar cells using low- and high-bandgap polymer:fullerene composites,” Sol. Energy Mater. Sol. Cells 94, 2170–2175 (2010).
[CrossRef]

Lee, K. H.

Li, N.

Li, X. F.

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[CrossRef]

Liu, Y. G.

W. E. I. Sha, W. C. H. Choy, Y. G. Liu, and W. C. Chew, “Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic solar cells,” Appl. Phys. Lett. 99, 113304 (2011).
[CrossRef]

Maier, S. A.

Mihailetchi, V. D.

L. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, and P. W. M. Blom, “Device model for the operation of polymer/fullerene bulk heterojunction solar cells,” Phys. Rev. B 72, 085205 (2005).
[CrossRef]

Nam, Y. M.

Y. M. Nam, J. Huh, and W. H. Jo, “A computational study on optimal design for organic tandem solar cells,” Sol. Energy Mater. Sol. Cells 95, 1095–1101 (2011).
[CrossRef]

Namkoong, G.

P. Boland, K. Lee, J. Dean, and G. Namkoong, “Design of organic tandem solar cells using low- and high-bandgap polymer:fullerene composites,” Sol. Energy Mater. Sol. Cells 94, 2170–2175 (2010).
[CrossRef]

Ng, M. K.

X. H. Chen, C. C. Zhao, L. Rothberg, and M. K. Ng, “Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification,” Appl. Phys. Lett. 93, 123302 (2008).
[CrossRef]

Onsager, L.

L. Onsager, “Initial recombination of ions,” Phys. Rev. 54, 554–557 (1938).
[CrossRef]

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008).
[CrossRef] [PubMed]

Qiao, L. F.

D. D. S. Fung, L. F. Qiao, W. C. H. Choy, C. D. Wang, W. E. I. Sha, F. X. Xie, and S. L. He, “Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT-PSS layer,” J. Mater. Chem. 21, 16349–16356 (2011).
[CrossRef]

Rothberg, L.

X. H. Chen, C. C. Zhao, L. Rothberg, and M. K. Ng, “Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification,” Appl. Phys. Lett. 93, 123302 (2008).
[CrossRef]

Selberherr, S.

S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer, 1984).
[CrossRef]

Sha, W. E. I.

W. E. I. Sha, W. C. H. Choy, Y. G. Liu, and W. C. Chew, “Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic solar cells,” Appl. Phys. Lett. 99, 113304 (2011).
[CrossRef]

D. D. S. Fung, L. F. Qiao, W. C. H. Choy, C. D. Wang, W. E. I. Sha, F. X. Xie, and S. L. He, “Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT-PSS layer,” J. Mater. Chem. 21, 16349–16356 (2011).
[CrossRef]

F. X. Xie, W. C. H. Choy, C. C. D. Wang, W. E. I. Sha, and D. D. S. Fung, “Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers,” Appl. Phys. Lett. 99, 153304 (2011).
[CrossRef]

C. C. D. Wang, W. C. H. Choy, C. Duan, D. D. S. Fung, W. E. I. Sha, F. X. Xie, F. Huang, and Y. Cao, “Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells,” J. Mater. Chem. 22, 1206–1211 (2011).
[CrossRef]

W. E. I. Sha, W. C. H. Choy, and W. C. Chew, “Angular response of thin-film organic solar cells with periodic metal back nanostrips,” Opt. Lett. 36, 478–480 (2011).
[CrossRef] [PubMed]

W. E. I. Sha, W. C. H. Choy, Y. P. P. Chen, and W. C. Chew, “Optical design of organic solar cell with hybrid plasmonic system,” Opt. Express 19, 15908–15918 (2011).
[CrossRef] [PubMed]

W. E. I. Sha, W. C. H. Choy, and W. C. Chew, “A comprehensive study for the plasmonic thin-film solar cell with periodic structure,” Opt. Express 18, 5993–6007 (2010).
[CrossRef] [PubMed]

Shrotriya, V.

D. W. Sievers, V. Shrotriya, and Y. Yang, “Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells,” J. Appl. Phys. 100, 114509 (2006).
[CrossRef]

Sievers, D. W.

D. W. Sievers, V. Shrotriya, and Y. Yang, “Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells,” J. Appl. Phys. 100, 114509 (2006).
[CrossRef]

Smits, E. C. P.

L. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, and P. W. M. Blom, “Device model for the operation of polymer/fullerene bulk heterojunction solar cells,” Phys. Rev. B 72, 085205 (2005).
[CrossRef]

Tan, H. R.

J. Yang, J. B. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. R. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano 5, 6210–6217 (2011).
[CrossRef] [PubMed]

Tsai, F. J.

Wang, C. C. D.

C. C. D. Wang, W. C. H. Choy, C. Duan, D. D. S. Fung, W. E. I. Sha, F. X. Xie, F. Huang, and Y. Cao, “Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells,” J. Mater. Chem. 22, 1206–1211 (2011).
[CrossRef]

F. X. Xie, W. C. H. Choy, C. C. D. Wang, W. E. I. Sha, and D. D. S. Fung, “Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers,” Appl. Phys. Lett. 99, 153304 (2011).
[CrossRef]

Wang, C. D.

D. D. S. Fung, L. F. Qiao, W. C. H. Choy, C. D. Wang, W. E. I. Sha, F. X. Xie, and S. L. He, “Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT-PSS layer,” J. Mater. Chem. 21, 16349–16356 (2011).
[CrossRef]

Wang, J. Y.

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[CrossRef]

Williams, S. P.

C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. J. Jia, and S. P. Williams, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. 22, 3839–3856 (2010).
[CrossRef] [PubMed]

Wu, J. L.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. L. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5, 959–967 (2011).
[CrossRef] [PubMed]

F. C. Chen, J. L. Wu, C. L. Lee, Y. Hong, C. H. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95, 013305 (2009).
[CrossRef]

Xie, F. X.

D. D. S. Fung, L. F. Qiao, W. C. H. Choy, C. D. Wang, W. E. I. Sha, F. X. Xie, and S. L. He, “Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT-PSS layer,” J. Mater. Chem. 21, 16349–16356 (2011).
[CrossRef]

F. X. Xie, W. C. H. Choy, C. C. D. Wang, W. E. I. Sha, and D. D. S. Fung, “Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers,” Appl. Phys. Lett. 99, 153304 (2011).
[CrossRef]

C. C. D. Wang, W. C. H. Choy, C. Duan, D. D. S. Fung, W. E. I. Sha, F. X. Xie, F. Huang, and Y. Cao, “Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells,” J. Mater. Chem. 22, 1206–1211 (2011).
[CrossRef]

Yang, C. C.

Yang, J.

J. Yang, J. B. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. R. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano 5, 6210–6217 (2011).
[CrossRef] [PubMed]

Yang, Y.

J. Yang, J. B. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. R. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano 5, 6210–6217 (2011).
[CrossRef] [PubMed]

D. W. Sievers, V. Shrotriya, and Y. Yang, “Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells,” J. Appl. Phys. 100, 114509 (2006).
[CrossRef]

You, J. B.

J. Yang, J. B. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. R. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano 5, 6210–6217 (2011).
[CrossRef] [PubMed]

Zhang, X. W.

J. Yang, J. B. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. R. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano 5, 6210–6217 (2011).
[CrossRef] [PubMed]

Zhao, C. C.

X. H. Chen, C. C. Zhao, L. Rothberg, and M. K. Ng, “Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification,” Appl. Phys. Lett. 93, 123302 (2008).
[CrossRef]

ACS Nano

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. L. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5, 959–967 (2011).
[CrossRef] [PubMed]

J. Yang, J. B. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. R. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano 5, 6210–6217 (2011).
[CrossRef] [PubMed]

Adv. Mater.

C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. J. Jia, and S. P. Williams, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. 22, 3839–3856 (2010).
[CrossRef] [PubMed]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[CrossRef]

Ann. Chim. Phys

P. Langevin, “Recombinaison et mobilites des ions dans les gaz,” Ann. Chim. Phys 28, 433–530 (1903).

Appl. Phys. Lett.

W. E. I. Sha, W. C. H. Choy, Y. G. Liu, and W. C. Chew, “Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic solar cells,” Appl. Phys. Lett. 99, 113304 (2011).
[CrossRef]

X. H. Chen, C. C. Zhao, L. Rothberg, and M. K. Ng, “Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification,” Appl. Phys. Lett. 93, 123302 (2008).
[CrossRef]

F. C. Chen, J. L. Wu, C. L. Lee, Y. Hong, C. H. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95, 013305 (2009).
[CrossRef]

F. X. Xie, W. C. H. Choy, C. C. D. Wang, W. E. I. Sha, and D. D. S. Fung, “Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers,” Appl. Phys. Lett. 99, 153304 (2011).
[CrossRef]

J. Appl. Phys.

D. W. Sievers, V. Shrotriya, and Y. Yang, “Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells,” J. Appl. Phys. 100, 114509 (2006).
[CrossRef]

J. Chem. Phys.

C. L. Braun, “Electric-field assisted dissociation of charge-transfer states as a mechanism of photocarrier production,” J. Chem. Phys. 80, 4157–4161 (1984).
[CrossRef]

J. Mater. Chem.

C. C. D. Wang, W. C. H. Choy, C. Duan, D. D. S. Fung, W. E. I. Sha, F. X. Xie, F. Huang, and Y. Cao, “Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells,” J. Mater. Chem. 22, 1206–1211 (2011).
[CrossRef]

D. D. S. Fung, L. F. Qiao, W. C. H. Choy, C. D. Wang, W. E. I. Sha, F. X. Xie, and S. L. He, “Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT-PSS layer,” J. Mater. Chem. 21, 16349–16356 (2011).
[CrossRef]

Nat. Mater.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev.

L. Onsager, “Initial recombination of ions,” Phys. Rev. 54, 554–557 (1938).
[CrossRef]

Phys. Rev. B

L. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, and P. W. M. Blom, “Device model for the operation of polymer/fullerene bulk heterojunction solar cells,” Phys. Rev. B 72, 085205 (2005).
[CrossRef]

Rep. Prog. Phys.

C. Deibel and V. Dyakonov, “Polymer-fullerene bulk heterojunction solar cells,” Rep. Prog. Phys. 73, 096401 (2010).
[CrossRef]

SIAM J. Matrix Anal. Appl.

T. A. Davis and I. S. Duff, “An unsymmetric-pattern multifrontal method for sparse LU factorization,” SIAM J. Matrix Anal. Appl. 18, 140–158 (1997).
[CrossRef]

Sol. Energy Mater. Sol. Cells

P. Boland, K. Lee, J. Dean, and G. Namkoong, “Design of organic tandem solar cells using low- and high-bandgap polymer:fullerene composites,” Sol. Energy Mater. Sol. Cells 94, 2170–2175 (2010).
[CrossRef]

Y. M. Nam, J. Huh, and W. H. Jo, “A computational study on optimal design for organic tandem solar cells,” Sol. Energy Mater. Sol. Cells 95, 1095–1101 (2011).
[CrossRef]

Other

S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer, 1984).
[CrossRef]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) The schematic unit cell structure of a plasmonic OSC with 2D periodic metallic back grating as an anode. The geometric parameters are set as: d1 = 30 nm, d2 = 70 nm, d3 = 30 nm, W = 100 nm, and P = 200 nm. The effective bandgap and density of states of the active material P3HT:PCBM is 1.1 eV and 2.5 × 1019cm−3. The anode of the Ag–PEDOT:PSS–Ag periodic grating is assumed to be an ohmic contact (no injection barrier). The TiO2 cathode layer has an injection barrier of 0.2 eV. (b) The exciton generation rate (×1027) of the standard OSC that replaces the Ag–PEDOT:PSS–Ag grating by a PEDOT:PSS layer. (c) The exciton generation rate (×1027) of the plasmonic OSC. (d) The current density-voltage curves of the plasmonic and standard OSCs under the AM 1.5G light illumination.

Fig. 2
Fig. 2

The J-V curves of the plasmonic and standard OSCs with extremely nonuniform exciton generation rate and unbalanced electron/hole mobilities.

Tables (3)

Tables Icon

Table 1 Scaled independent basic units. max {DOS} denotes maximum effective density of states (cm−3).

Tables Icon

Table 2 The characteristic parameters of plasmonic and standard OSCs involving short-circuit current Jsc, open-circuit voltage Voc, maximum power (MP), fill factor (FF), and power conversion efficiency (PCE).

Tables Icon

Table 3 An overview of voltage, current density, exciton dissociation probability (Diss), and recombination loss (Rec loss) at short-circuit (SC), maximum power (MP), and open-circuit (OC) conditions.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

G ( r ) = 400 nm 800 nm 2 π h n r ( λ ) k i ( λ ) ɛ 0 | E ( r , λ ) | 2 Γ ( λ ) d λ
( ɛ ϕ ) = q ( p n )
n t = 1 q . ( q μ n n ϕ + q D n n ) + Q G ( 1 Q ) R
p t = 1 q ( q μ p p ϕ q D p p ) + Q G ( 1 Q ) R
1 Δ x 2 ɛ i + 1 / 2 , j ϕ i + 1 , j t + 1 + 1 Δ x 2 ɛ i 1 / 2 , j ϕ i 1 , j t + 1 + 1 Δ y 2 ɛ i , j + 1 / 2 ϕ i , j + 1 t + 1 + 1 Δ y 2 ɛ i , j 1 / 2 ϕ i , j 1 t + 1 ( ɛ i + 1 / 2 , j + ɛ i 1 / 2 , j + ɛ i , j + 1 / 2 + ɛ i , j 1 / 2 ) ( 1 2 Δ x 2 + 1 2 Δ y 2 ) ϕ i , j t + 1 n i , j t + p i , j t U t ϕ i , j t + 1 = q ( n i , j t p i , j t ) n i , j t + p i , j t U t ϕ i , j t
n i , j t + 1 n i , j t Δ t = Q i , j t G i , j ( 1 Q i , j t ) R i , j t + D i + 1 / 2 , j n Δ x 2 B ( ϕ i + 1 , j t + 1 ϕ i , j t + 1 U t ) n i + 1 , j t + 1 + D i 1 / 2 , j n Δ x 2 B ( ϕ i 1 , j t + 1 ϕ i , j t + 1 U t ) n i 1 , j t + 1 + D i , j + 1 / 2 n Δ y 2 B ( ϕ i , j + 1 t + 1 ϕ i , j t + 1 U t ) n i , j + 1 t + 1 + D i , j 1 / 2 n Δ y 2 B ( ϕ i , j 1 t + 1 ϕ i , j t + 1 U t ) n i , j 1 t + 1 [ D i + 1 / 2 , j n Δ x 2 B ( ϕ i , j t + 1 ϕ i + 1 , j t + 1 U t ) + D i 1 / 2 , j n Δ x 2 B ( ϕ i , j t + 1 ϕ i 1 , j t + 1 U t ) + D i , j + 1 / 2 n Δ y 2 B ( ϕ i , j t + 1 ϕ i , j + 1 t + 1 U t ) + D i , j 1 / 2 n Δ y 2 B ( ϕ i , j t + 1 ϕ i , j 1 t + 1 U t ) ] n i , j t + 1
p i , j t + 1 p i , j t Δ t = Q i , j t G i , j ( 1 Q i , j t ) R i , j t + D i + 1 / 2 , j p Δ x 2 B ( ϕ i , j t + 1 ϕ i + 1 , j t + 1 U t ) p i + 1 , j t + 1 + D i 1 / 2 , j p Δ x 2 B ( ϕ i , j t + 1 ϕ i 1 , j t + 1 U t ) p i 1 , j t + 1 + D i , j + 1 / 2 p Δ y 2 B ( ϕ i , j t + 1 ϕ i , j + 1 t + 1 U t ) p i , j + 1 t + 1 + D i , j 1 / 2 p Δ y 2 B ( ϕ i , j t + 1 ϕ i , j 1 t + 1 U t ) p i , j 1 t + 1 [ D i + 1 / 2 , j p Δ x 2 B ( ϕ i + 1 , j t + 1 ϕ i , j t + 1 U t ) + D i 1 / 2 , j p Δ x 2 B ( ϕ i 1 , j t + 1 ϕ i , j t + 1 U t ) + D i , j + 1 / 2 p Δ y 2 B ( ϕ i , j + 1 t + 1 ϕ i , j t + 1 U t ) + D i , j 1 / 2 p Δ y 2 B ( ϕ i , j 1 t + 1 ϕ i , j t + 1 U t ) ] p i , j t + 1
ϕ = V a W m q
ϕ N = 0 , n N = 0 , p N = 0
n = N c exp ( ψ b n k B T ) , for cathode
p = N v exp ( ψ b p k B T ) , for anode
Δ t < min ( C ɛ μ n n + μ p p )
R loss = 1 U Q G
G grating = { G c , d 3 y d 3 + L g 0 else
G planar = { G c , d 3 + d 2 L g y d 3 + d 2 0 , else

Metrics