Abstract

We demonstrate three-dimensional imaging through a thin turbid medium using digital phase conjugation of the second harmonic signal emitted from a beacon nanoparticle. The digitally phase-conjugated focus scans the volume in the vicinity of its initial position through numerically manipulated phase patterns projected onto the spatial light modulator. Accurate three dimensional images of a fluorescent sample placed behind a turbid medium are obtained.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. N. Leith and J. Upatniek, “Holographic Imagery through Diffusing Media,” J. Opt. Soc. Am. 56(4), 523–523 (1966).
    [CrossRef]
  2. H. Kogelnik and K. S. Pennington, “Holographic Imaging Through a Random Medium,” J. Opt. Soc. Am. 58(2), 273–274 (1968).
    [CrossRef]
  3. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. H. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
    [CrossRef] [PubMed]
  4. F. Lemoult, G. Lerosey, J. de Rosny, and M. Fink, “Manipulating spatiotemporal degrees of freedom of waves in random media,” Phys. Rev. Lett. 103(17), 173902 (2009).
    [CrossRef] [PubMed]
  5. M. Cui, E. J. McDowell, and C. H. Yang, “An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear,” Opt. Express 18(1), 25–30 (2010).
    [CrossRef] [PubMed]
  6. M. Cui and C. H. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18(4), 3444–3455 (2010).
    [CrossRef] [PubMed]
  7. C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18(20), 20723–20731 (2010).
    [CrossRef] [PubMed]
  8. C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18(12), 12283–12290 (2010).
    [CrossRef] [PubMed]
  9. S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, (2010).
  10. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
    [CrossRef] [PubMed]
  11. I. M. Vellekoop and C. M. Aegerter, “Scattered light fluorescence microscopy: imaging through turbid layers,” Opt. Lett. 35(8), 1245–1247 (2010).
    [CrossRef] [PubMed]
  12. J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106(10), 103901 (2011).
    [CrossRef] [PubMed]
  13. O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
    [CrossRef]
  14. D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, (2011).
  15. J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-Reconstruction Imaging through Random Media - (Resolution Limitations - Atmospheric Effects - E/T),” Appl. Phys. Lett. 8(12), 311–313 (1966).
    [CrossRef]
  16. S. C. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
    [CrossRef] [PubMed]

2011 (3)

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106(10), 103901 (2011).
[CrossRef] [PubMed]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[CrossRef]

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, (2011).

2010 (7)

2009 (1)

F. Lemoult, G. Lerosey, J. de Rosny, and M. Fink, “Manipulating spatiotemporal degrees of freedom of waves in random media,” Phys. Rev. Lett. 103(17), 173902 (2009).
[CrossRef] [PubMed]

2008 (1)

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. H. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[CrossRef] [PubMed]

1988 (1)

S. C. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
[CrossRef] [PubMed]

1968 (1)

1966 (2)

E. N. Leith and J. Upatniek, “Holographic Imagery through Diffusing Media,” J. Opt. Soc. Am. 56(4), 523–523 (1966).
[CrossRef]

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-Reconstruction Imaging through Random Media - (Resolution Limitations - Atmospheric Effects - E/T),” Appl. Phys. Lett. 8(12), 311–313 (1966).
[CrossRef]

Aegerter, C. M.

Aulbach, J.

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106(10), 103901 (2011).
[CrossRef] [PubMed]

Austin, D. R.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, (2011).

Boccara, A. C.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, (2010).

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[CrossRef] [PubMed]

Bondareff, P.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, (2011).

Bromberg, Y.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[CrossRef]

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[CrossRef] [PubMed]

Chatel, B.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, (2011).

Cui, M.

de Rosny, J.

F. Lemoult, G. Lerosey, J. de Rosny, and M. Fink, “Manipulating spatiotemporal degrees of freedom of waves in random media,” Phys. Rev. Lett. 103(17), 173902 (2009).
[CrossRef] [PubMed]

Feld, M. S.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. H. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[CrossRef] [PubMed]

Feng, S. C.

S. C. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
[CrossRef] [PubMed]

Fink, M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[CrossRef] [PubMed]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, (2010).

F. Lemoult, G. Lerosey, J. de Rosny, and M. Fink, “Manipulating spatiotemporal degrees of freedom of waves in random media,” Phys. Rev. Lett. 103(17), 173902 (2009).
[CrossRef] [PubMed]

Gigan, S.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, (2011).

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, (2010).

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[CrossRef] [PubMed]

Gjonaj, B.

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106(10), 103901 (2011).
[CrossRef] [PubMed]

Goodman, J. W.

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-Reconstruction Imaging through Random Media - (Resolution Limitations - Atmospheric Effects - E/T),” Appl. Phys. Lett. 8(12), 311–313 (1966).
[CrossRef]

Grange, R.

Hsieh, C. L.

Huntley, W. H.

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-Reconstruction Imaging through Random Media - (Resolution Limitations - Atmospheric Effects - E/T),” Appl. Phys. Lett. 8(12), 311–313 (1966).
[CrossRef]

Jackson, D. W.

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-Reconstruction Imaging through Random Media - (Resolution Limitations - Atmospheric Effects - E/T),” Appl. Phys. Lett. 8(12), 311–313 (1966).
[CrossRef]

Johnson, P. M.

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106(10), 103901 (2011).
[CrossRef] [PubMed]

Kane, C.

S. C. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
[CrossRef] [PubMed]

Katz, O.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[CrossRef]

Kogelnik, H.

Lagendijk, A.

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106(10), 103901 (2011).
[CrossRef] [PubMed]

Laporte, G.

Lee, P. A.

S. C. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
[CrossRef] [PubMed]

Lehmann, M.

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-Reconstruction Imaging through Random Media - (Resolution Limitations - Atmospheric Effects - E/T),” Appl. Phys. Lett. 8(12), 311–313 (1966).
[CrossRef]

Leith, E. N.

Lemoult, F.

F. Lemoult, G. Lerosey, J. de Rosny, and M. Fink, “Manipulating spatiotemporal degrees of freedom of waves in random media,” Phys. Rev. Lett. 103(17), 173902 (2009).
[CrossRef] [PubMed]

Lerosey, G.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, (2010).

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[CrossRef] [PubMed]

F. Lemoult, G. Lerosey, J. de Rosny, and M. Fink, “Manipulating spatiotemporal degrees of freedom of waves in random media,” Phys. Rev. Lett. 103(17), 173902 (2009).
[CrossRef] [PubMed]

McCabe, D. J.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, (2011).

McDowell, E. J.

Mosk, A. P.

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106(10), 103901 (2011).
[CrossRef] [PubMed]

Pennington, K. S.

Popoff, S.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, (2010).

Popoff, S. M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[CrossRef] [PubMed]

Psaltis, D.

Pu, Y.

Silberberg, Y.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[CrossRef]

Small, E.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[CrossRef]

Stone, A. D.

S. C. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
[CrossRef] [PubMed]

Tajalli, A.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, (2011).

Upatniek, J.

Vellekoop, I. M.

Walmsley, I. A.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, (2011).

Yang, C. H.

Yaqoob, Z.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. H. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-Reconstruction Imaging through Random Media - (Resolution Limitations - Atmospheric Effects - E/T),” Appl. Phys. Lett. 8(12), 311–313 (1966).
[CrossRef]

J. Opt. Soc. Am. (2)

Nat. Commun. (2)

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, (2011).

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, (2010).

Nat. Photonics (2)

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[CrossRef]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. H. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. Lett. (4)

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106(10), 103901 (2011).
[CrossRef] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[CrossRef] [PubMed]

S. C. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
[CrossRef] [PubMed]

F. Lemoult, G. Lerosey, J. de Rosny, and M. Fink, “Manipulating spatiotemporal degrees of freedom of waves in random media,” Phys. Rev. Lett. 103(17), 173902 (2009).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup. BS: non-polarization beam splitter; PBS: polarization beam splitter; FM1-FM2: flip mirror; DM: dichroic mirror; OBJ1-OBJ2: microscope objective; L1-L4: lens; λ/2: half wave plate. Inset: illustrative diagram of the SHRIMP, imaging targets and turbid medium.

Fig. 2
Fig. 2

Illustration of the concepts of 3D digital scanning. The turbid medium is configured on the image plane of the EMCCD/SLM. (a) The SHG wave emitted from the SHRIMP propagates through the turbid medium, and the resultant random wave front is recorded on the same plane. The phase information is conjugated, multiplied by a tilting wave front, and sent back through the turbid medium. The phase conjugated focus is displaced from the original position of SHRIMP in the x or y direction; (b) The SHG wave emitted from the SHRIMP propagates through the turbid medium, and the resultant random wave front is recorded on the same plane. The phase information is conjugated, multiplied by a quadratic wave front, and sent back through the turbid medium. The phase conjugated focus is displaced from the original position of SHRIMP in the z direction.

Fig. 3
Fig. 3

Normalized intensity of phase conjugated focus verse shift distance in Z directions. red: one layer of single sided tape; green: two layers of single sided tape; blue: three layers of single sided tape.

Fig. 4
Fig. 4

(a) Microscope image and (b) Phase conjugated scanned microscope image of fluorescence beads deposited on the same plane as the SHRIMP; (c) Microscope image and (d) Phase conjugated scanning microscope image of fluorescence beads deposit on the plane ~170μm away from SHRIMP; (e) Scanned image of a Y-Z plane, which crosses the dotted line in Fig. 4 (a) and (c). (b) and (d) pixel size: 1.5 × 1.5μm2, image size: 75 × 75μm2; (e) pixel size: 1.5 × 10μm2, image size: 75 × 500μm2.

Fig. 5
Fig. 5

Cross-section plot of the intensity of the phase conjugated focus: (a) Lateral direction; (b) Axial direction.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C A ( Δz )= C T ( k θ x L ) C T ( k θ y L ) F θ x , θ y { exp[ ik ρ 2 /R ] }d θ x d θ y F θ x , θ y { exp[ ik ρ 2 /R ] }d θ x d θ y

Metrics