Abstract

This paper describe a truly-passive coexistence of 10G-PON and GPON compatible reach extension system with a novel optical configuration, by using laser pumps to provide reverse-pumped distributed Raman gain for both 1270nm 10G-PON and 1310nm GPON upstream (US) signals, and using semiconductor optical amplifiers (SOA) as boosters to improve the loss budgets for both 1577nm 10G-PON and 1490nm GPON downstream (DS) signals. The Raman interaction between laser pumps and the two US signals is investigated, and the system transmission penalties of US signals due to Raman ASE noises is measured. The transmission impairments of 1490nm DS signals due to pattern-dependent distortion caused by gain dynamics of the SOA is discussed in this paper. Finally, we present experimental demonstration of coexisting 10G-PON and GPON bi-directional transmission over 50-km of AllWaveTM fiber with entirely passive fiber plant and a total 1:96 split, accommodating link loss budget more than 39-dB for both 10G-PON and GPON US signals.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. IITU-T Series Recommendation G.984, “Gigabit-capable passive optical networks (G-PON): Physical media dependent (PMD) layer specification,” Amendment 2 (2008).
  2. K. Suzuki, Y. Fukada, D. Nesset, and R. Davey, “Amplified gigabit PON systems,” J. Opt. Netw. 6(5), 422 (2007).
    [CrossRef]
  3. P. Iannone, H. H. Lee, K. C. Reichmann, X. Zhou, and M. Du, “Hybrid CWDM amplifier shared by multiple TDM PONs,” Proc. Optical Fiber Communications Conference (OFC/NFOEC’07), PDP-13 (2007).
  4. R. P. Davey, D. B. Grossman, M. R. Wiech, D. B. Payne, D. Nesset, A. E. Kelly, A. Rafel, S. Appathurai, and S. Yang, “Long reach passive optical networks,” J. Lightwave Technol. 27(3), 273–291 (2009).
    [CrossRef]
  5. ITU-T Series Recommendation G.984.6, “Gigabit-capable passive optical networks: Reach extension,” (03/2008).
  6. Benyuan Zhu and Derek Nesset, “GPON reach extension to 60km with entirely passive fiber using Raman amplifiers,” Proc. European Conference on Optical Communication (ECOC’09), 8.5.5 (2009).
  7. Derek Nesset and Paul Wright, “Raman extender GPON using 1240nm semiconductor quantum-dot lasers,” Proc. Optical Fiber Communications Conference (OFC/NFOEC’10), OThW6 (2010).
  8. B. Zhu, “Entirely passive reach extended GPON using Raman amplification,” Opt. Express 18(22), 23428–23434 (2010).
    [CrossRef] [PubMed]
  9. D. Nesset, K. Farrow, and P. Wright, “Bidirectional, Raman extended GPON with 50 km reach and 1:64 split using wavelength stabilized pumps,” Proc. European Conference on Opt. Comm. (ECOC’11), Th.12.C.1 (2011).
  10. R. Derek Nesset, Gorena, M. Potter and M. Yates, “Economic study comparing Raman extended GPON and mid-span GPON reach extenders,” Proc. Optical Fiber Communications Conference (OFC/NFOEC’10), NMC2 (2010).
  11. ITU-T Series Recommendation G.987.2, “10-Gigabit capable passive optical networks (XG-PON): physical media dependent (PMD) layer specifications,” (01/2010).
  12. B. Zhu, D. Au, F. Khan, and Y. Li, “Coexistence of 10G-PON and GPON Reach Extension to 50-km with Entirely Passive Fiber Plant,” Proc. European Conference on Optical Communication (ECOC’11), Th.13.B.5 (2011).
  13. ITU-T Series Recommendation G.984.5, “Gigabit-capable passive optical networks: Enhancement band,” (09/2007).
  14. P. P. Iannone, K. C. Reichmann, C. R. Doerr, L. L. Buhl, M. A. Cappuzzo, and E. Y. Chen, “A 40Gb/s CWDM-TDM PON with a Cyclic CWDM multiplexer/demultiplexer,” Proc. European Conference on Optical Communication (ECOC’09), 8.5.6. (2009).
  15. S. Grubb, T. Strasser, W. Y. Cheung, W. A. Reed, and V. Mizrahi, “High-Power 1.48 mm cascaded Raman laser in Germano-silicate fibers,” in Proceeding of OAA’1993, paper PD3, (1993).
  16. Y. K. Park, T. V. Nguyen, P. A. Morton, J. E. Johnson, O. Mizuhara, J. Jeong, L. D. tzeng, P. D. Yeates, T. Fullowan, P. F. Sciortino, A. M. Sergent, W. T. Tsang, and R. D. Yadvish, “Dispersion-penalty-free transmission over 130-km standard fiber using a 1.55- μm, 10-Gb/s integrated EA/DFB laser with low-extinction ratio and negative chirp,” IEEE Photon. Technol. Lett. 8(9), 1255–1257 (1996).
    [CrossRef]
  17. C. Headley and G. P. Agrawal, eds., Raman amplification in fiber optical communication systems (Elsevier,1990), p.84.

2010 (1)

2009 (1)

2007 (1)

1996 (1)

Y. K. Park, T. V. Nguyen, P. A. Morton, J. E. Johnson, O. Mizuhara, J. Jeong, L. D. tzeng, P. D. Yeates, T. Fullowan, P. F. Sciortino, A. M. Sergent, W. T. Tsang, and R. D. Yadvish, “Dispersion-penalty-free transmission over 130-km standard fiber using a 1.55- μm, 10-Gb/s integrated EA/DFB laser with low-extinction ratio and negative chirp,” IEEE Photon. Technol. Lett. 8(9), 1255–1257 (1996).
[CrossRef]

Appathurai, S.

Davey, R.

Davey, R. P.

Fukada, Y.

Fullowan, T.

Y. K. Park, T. V. Nguyen, P. A. Morton, J. E. Johnson, O. Mizuhara, J. Jeong, L. D. tzeng, P. D. Yeates, T. Fullowan, P. F. Sciortino, A. M. Sergent, W. T. Tsang, and R. D. Yadvish, “Dispersion-penalty-free transmission over 130-km standard fiber using a 1.55- μm, 10-Gb/s integrated EA/DFB laser with low-extinction ratio and negative chirp,” IEEE Photon. Technol. Lett. 8(9), 1255–1257 (1996).
[CrossRef]

Grossman, D. B.

Jeong, J.

Y. K. Park, T. V. Nguyen, P. A. Morton, J. E. Johnson, O. Mizuhara, J. Jeong, L. D. tzeng, P. D. Yeates, T. Fullowan, P. F. Sciortino, A. M. Sergent, W. T. Tsang, and R. D. Yadvish, “Dispersion-penalty-free transmission over 130-km standard fiber using a 1.55- μm, 10-Gb/s integrated EA/DFB laser with low-extinction ratio and negative chirp,” IEEE Photon. Technol. Lett. 8(9), 1255–1257 (1996).
[CrossRef]

Johnson, J. E.

Y. K. Park, T. V. Nguyen, P. A. Morton, J. E. Johnson, O. Mizuhara, J. Jeong, L. D. tzeng, P. D. Yeates, T. Fullowan, P. F. Sciortino, A. M. Sergent, W. T. Tsang, and R. D. Yadvish, “Dispersion-penalty-free transmission over 130-km standard fiber using a 1.55- μm, 10-Gb/s integrated EA/DFB laser with low-extinction ratio and negative chirp,” IEEE Photon. Technol. Lett. 8(9), 1255–1257 (1996).
[CrossRef]

Kelly, A. E.

Mizuhara, O.

Y. K. Park, T. V. Nguyen, P. A. Morton, J. E. Johnson, O. Mizuhara, J. Jeong, L. D. tzeng, P. D. Yeates, T. Fullowan, P. F. Sciortino, A. M. Sergent, W. T. Tsang, and R. D. Yadvish, “Dispersion-penalty-free transmission over 130-km standard fiber using a 1.55- μm, 10-Gb/s integrated EA/DFB laser with low-extinction ratio and negative chirp,” IEEE Photon. Technol. Lett. 8(9), 1255–1257 (1996).
[CrossRef]

Morton, P. A.

Y. K. Park, T. V. Nguyen, P. A. Morton, J. E. Johnson, O. Mizuhara, J. Jeong, L. D. tzeng, P. D. Yeates, T. Fullowan, P. F. Sciortino, A. M. Sergent, W. T. Tsang, and R. D. Yadvish, “Dispersion-penalty-free transmission over 130-km standard fiber using a 1.55- μm, 10-Gb/s integrated EA/DFB laser with low-extinction ratio and negative chirp,” IEEE Photon. Technol. Lett. 8(9), 1255–1257 (1996).
[CrossRef]

Nesset, D.

Nguyen, T. V.

Y. K. Park, T. V. Nguyen, P. A. Morton, J. E. Johnson, O. Mizuhara, J. Jeong, L. D. tzeng, P. D. Yeates, T. Fullowan, P. F. Sciortino, A. M. Sergent, W. T. Tsang, and R. D. Yadvish, “Dispersion-penalty-free transmission over 130-km standard fiber using a 1.55- μm, 10-Gb/s integrated EA/DFB laser with low-extinction ratio and negative chirp,” IEEE Photon. Technol. Lett. 8(9), 1255–1257 (1996).
[CrossRef]

Park, Y. K.

Y. K. Park, T. V. Nguyen, P. A. Morton, J. E. Johnson, O. Mizuhara, J. Jeong, L. D. tzeng, P. D. Yeates, T. Fullowan, P. F. Sciortino, A. M. Sergent, W. T. Tsang, and R. D. Yadvish, “Dispersion-penalty-free transmission over 130-km standard fiber using a 1.55- μm, 10-Gb/s integrated EA/DFB laser with low-extinction ratio and negative chirp,” IEEE Photon. Technol. Lett. 8(9), 1255–1257 (1996).
[CrossRef]

Payne, D. B.

Rafel, A.

Sciortino, P. F.

Y. K. Park, T. V. Nguyen, P. A. Morton, J. E. Johnson, O. Mizuhara, J. Jeong, L. D. tzeng, P. D. Yeates, T. Fullowan, P. F. Sciortino, A. M. Sergent, W. T. Tsang, and R. D. Yadvish, “Dispersion-penalty-free transmission over 130-km standard fiber using a 1.55- μm, 10-Gb/s integrated EA/DFB laser with low-extinction ratio and negative chirp,” IEEE Photon. Technol. Lett. 8(9), 1255–1257 (1996).
[CrossRef]

Sergent, A. M.

Y. K. Park, T. V. Nguyen, P. A. Morton, J. E. Johnson, O. Mizuhara, J. Jeong, L. D. tzeng, P. D. Yeates, T. Fullowan, P. F. Sciortino, A. M. Sergent, W. T. Tsang, and R. D. Yadvish, “Dispersion-penalty-free transmission over 130-km standard fiber using a 1.55- μm, 10-Gb/s integrated EA/DFB laser with low-extinction ratio and negative chirp,” IEEE Photon. Technol. Lett. 8(9), 1255–1257 (1996).
[CrossRef]

Suzuki, K.

Tsang, W. T.

Y. K. Park, T. V. Nguyen, P. A. Morton, J. E. Johnson, O. Mizuhara, J. Jeong, L. D. tzeng, P. D. Yeates, T. Fullowan, P. F. Sciortino, A. M. Sergent, W. T. Tsang, and R. D. Yadvish, “Dispersion-penalty-free transmission over 130-km standard fiber using a 1.55- μm, 10-Gb/s integrated EA/DFB laser with low-extinction ratio and negative chirp,” IEEE Photon. Technol. Lett. 8(9), 1255–1257 (1996).
[CrossRef]

tzeng, L. D.

Y. K. Park, T. V. Nguyen, P. A. Morton, J. E. Johnson, O. Mizuhara, J. Jeong, L. D. tzeng, P. D. Yeates, T. Fullowan, P. F. Sciortino, A. M. Sergent, W. T. Tsang, and R. D. Yadvish, “Dispersion-penalty-free transmission over 130-km standard fiber using a 1.55- μm, 10-Gb/s integrated EA/DFB laser with low-extinction ratio and negative chirp,” IEEE Photon. Technol. Lett. 8(9), 1255–1257 (1996).
[CrossRef]

Wiech, M. R.

Yadvish, R. D.

Y. K. Park, T. V. Nguyen, P. A. Morton, J. E. Johnson, O. Mizuhara, J. Jeong, L. D. tzeng, P. D. Yeates, T. Fullowan, P. F. Sciortino, A. M. Sergent, W. T. Tsang, and R. D. Yadvish, “Dispersion-penalty-free transmission over 130-km standard fiber using a 1.55- μm, 10-Gb/s integrated EA/DFB laser with low-extinction ratio and negative chirp,” IEEE Photon. Technol. Lett. 8(9), 1255–1257 (1996).
[CrossRef]

Yang, S.

Yeates, P. D.

Y. K. Park, T. V. Nguyen, P. A. Morton, J. E. Johnson, O. Mizuhara, J. Jeong, L. D. tzeng, P. D. Yeates, T. Fullowan, P. F. Sciortino, A. M. Sergent, W. T. Tsang, and R. D. Yadvish, “Dispersion-penalty-free transmission over 130-km standard fiber using a 1.55- μm, 10-Gb/s integrated EA/DFB laser with low-extinction ratio and negative chirp,” IEEE Photon. Technol. Lett. 8(9), 1255–1257 (1996).
[CrossRef]

Zhu, B.

IEEE Photon. Technol. Lett. (1)

Y. K. Park, T. V. Nguyen, P. A. Morton, J. E. Johnson, O. Mizuhara, J. Jeong, L. D. tzeng, P. D. Yeates, T. Fullowan, P. F. Sciortino, A. M. Sergent, W. T. Tsang, and R. D. Yadvish, “Dispersion-penalty-free transmission over 130-km standard fiber using a 1.55- μm, 10-Gb/s integrated EA/DFB laser with low-extinction ratio and negative chirp,” IEEE Photon. Technol. Lett. 8(9), 1255–1257 (1996).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Netw. (1)

Opt. Express (1)

Other (13)

C. Headley and G. P. Agrawal, eds., Raman amplification in fiber optical communication systems (Elsevier,1990), p.84.

IITU-T Series Recommendation G.984, “Gigabit-capable passive optical networks (G-PON): Physical media dependent (PMD) layer specification,” Amendment 2 (2008).

P. Iannone, H. H. Lee, K. C. Reichmann, X. Zhou, and M. Du, “Hybrid CWDM amplifier shared by multiple TDM PONs,” Proc. Optical Fiber Communications Conference (OFC/NFOEC’07), PDP-13 (2007).

ITU-T Series Recommendation G.984.6, “Gigabit-capable passive optical networks: Reach extension,” (03/2008).

Benyuan Zhu and Derek Nesset, “GPON reach extension to 60km with entirely passive fiber using Raman amplifiers,” Proc. European Conference on Optical Communication (ECOC’09), 8.5.5 (2009).

Derek Nesset and Paul Wright, “Raman extender GPON using 1240nm semiconductor quantum-dot lasers,” Proc. Optical Fiber Communications Conference (OFC/NFOEC’10), OThW6 (2010).

D. Nesset, K. Farrow, and P. Wright, “Bidirectional, Raman extended GPON with 50 km reach and 1:64 split using wavelength stabilized pumps,” Proc. European Conference on Opt. Comm. (ECOC’11), Th.12.C.1 (2011).

R. Derek Nesset, Gorena, M. Potter and M. Yates, “Economic study comparing Raman extended GPON and mid-span GPON reach extenders,” Proc. Optical Fiber Communications Conference (OFC/NFOEC’10), NMC2 (2010).

ITU-T Series Recommendation G.987.2, “10-Gigabit capable passive optical networks (XG-PON): physical media dependent (PMD) layer specifications,” (01/2010).

B. Zhu, D. Au, F. Khan, and Y. Li, “Coexistence of 10G-PON and GPON Reach Extension to 50-km with Entirely Passive Fiber Plant,” Proc. European Conference on Optical Communication (ECOC’11), Th.13.B.5 (2011).

ITU-T Series Recommendation G.984.5, “Gigabit-capable passive optical networks: Enhancement band,” (09/2007).

P. P. Iannone, K. C. Reichmann, C. R. Doerr, L. L. Buhl, M. A. Cappuzzo, and E. Y. Chen, “A 40Gb/s CWDM-TDM PON with a Cyclic CWDM multiplexer/demultiplexer,” Proc. European Conference on Optical Communication (ECOC’09), 8.5.6. (2009).

S. Grubb, T. Strasser, W. Y. Cheung, W. A. Reed, and V. Mizrahi, “High-Power 1.48 mm cascaded Raman laser in Germano-silicate fibers,” in Proceeding of OAA’1993, paper PD3, (1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of System configuration for coexistence of XG-PON and GPON reach extender

Fig. 2
Fig. 2

(a) Schematic diagram of cyclic WDM mux/demux, (b) The measured transmissivity of cyclic WDM mux/demux

Fig. 3
Fig. 3

OSNR and Raman gain vs (a) 1270 nm and (b) 1310nm signals power into feeder fiber

Fig. 4
Fig. 4

Received optical spectra for (a) US and (b) DS signals

Fig. 5
Fig. 5

Receiver power penalty as a function of total link losses for XGPON 1270nm (a) and GPON 1310nm (b)

Fig. 6
Fig. 6

(a), BER of 1490nm DS through 50-km fiber as a function of receiver power under various SOA operation conditions, (b) the recorded output power /gain of SOA, and the receiver power penalties v.s SOA input power

Fig. 7
Fig. 7

BER performance of the extended PON systems (a) 1270nm and 1310nm US, (b) 1490nm and 1577nm DS

Tables (1)

Tables Icon

Table 1 Link loss budget

Metrics