Abstract

The physical layer of optical access network is vulnerable to various attacks. As the dramatic increase of users and network capacity, the issue of physical-layer security becomes more and more important. This paper proposes a physical-enhanced secure strategy for orthogonal frequency division multiplexing passive optical network (OFDM-PON) by employing frequency domain chaos scrambling. The Logistic map is adopted for the chaos mapping. The chaos scrambling strategy can dynamically allocate the scrambling matrices for different OFDM frames according to the initial condition, which enhance the confidentiality of the physical layer. A mathematical model of this secure system is derived firstly, which achieves a secure transmission at physical layer in OFDM-PON. The results from experimental implementation using Logistic mapped chaos scrambling are also given to further demonstrate the efficiency of this secure strategy. An 10.125 Gb/s 64QAM-OFDM data with Logistic mapped chaos scrambling are successfully transmitted over 25-km single mode fiber (SMF), and the experimental results show that proposed security scheme can protect the system from eavesdropper and attacker, while keep a good performance for the legal ONU.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Cvijetic, “Advanced Technologies for Next-Generation Fiber Networks,” in Proc. OFC’10, paper OWY1 (2010).
  2. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “40-Gb/s MIMO-OFDM-PON using polarization multiplexing and direct-detection,” in Proc. OFC’09, paper OMV3 (2009).
  3. N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s Optical Access Based on Optical Orthogonal Frequency Division Multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
    [CrossRef]
  4. B. Liu, X. Xin, L. Zhang, J. Yu, Q. Zhang, and C. Yu, “A WDM-OFDM-PON architecture with centralized lightwave and PolSK-modulated multicast overlay,” Opt. Express 18(3), 2137–2143 (2010).
    [CrossRef] [PubMed]
  5. J. L. Wei, E. Hugues-Salas, R. P. Giddings, X. Q. Jin, X. Zheng, S. Mansoor, and J. M. Tang, “Wavelength reused bidirectional transmission of adaptively modulated optical OFDM signals in WDM-PONs incorporating SOA and RSOA intensity modulators,” Opt. Express 18(10), 9791–9808 (2010).
    [CrossRef] [PubMed]
  6. J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized Lightwave WDM-PON Employing 16-QAM Intensity Modulated OFDM Downstream and OOK Modulated Upstream Signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
    [CrossRef]
  7. X. Liu and F. Buchali, “Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM,” Opt. Express 16(26), 21944–21957 (2008).
    [CrossRef] [PubMed]
  8. W. Shieh, Q. Yang, and Y. Ma, “High-Speed and High Spectral Efficiency Coherent Optical OFDM,” in Proc.OFC’08, paper TuC2.3 (2008).
  9. J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol. 27(3), 189–204 (2009).
    [CrossRef]
  10. D. Fisher, “Optical Communication Challenges for a Future Internet Design,” in Proc. OFC’09, paper OMQ1 (2009).
  11. B. B. Wu and E. E. Narimanov, “A method for secure communications over a public fiber-optical network,” Opt. Express 14(9), 3738–3751 (2006).
    [CrossRef] [PubMed]
  12. M. Hossen, K. D. Kim, and Y. Park, “Synchronized Latency Secured MAC protocol for PON based large sensor network,” in Proc. ICACT’10, 1528–1532(2010).
  13. O. Matoba, T. Nomura, E. P. Cabre´, M. S. Milla’n, and B. Javidi, “Optical Techniques for Information Security,” in Proceedings of IEEE Issue on Optics and Photonics for Security and Defense (Dept. of Comput. Sci. & Syst. Eng., Kobe Univ., Kobe) 97, 1128–1148 (2009).
  14. F. G. Deng and G. L. Long, “Secure direct communication with a quantum one-time pad,” Phys. Rev. A 69(5), 052319–052322 (2004).
    [CrossRef]
  15. M. C. Soriano, P. Colet, and C. R. Mirasso, “Security Implications of Open- and Closed-Loop Receivers in All-Optical Chaos-Based Communications,” IEEE Photon. Technol. Lett. 21(7), 426–428 (2009).
    [CrossRef]
  16. A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express 18(5), 5188–5198 (2010).
    [CrossRef] [PubMed]
  17. M. van Turnhout and F. Bociort, “Chaotic behavior in an algorithm to escape from poor local minima in lens design,” Opt. Express 17(8), 6436–6450 (2009).
    [CrossRef] [PubMed]
  18. C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst. Tech. J. 28, 656–715 (1949).
  19. L. Zhang, X. Xin, B. Liu, and Y. Wang, “Secure OFDM-PON based on chaos scrambling,” IEEE Photon. Technol. Lett. 23(14), 998–1000 (2011).
    [CrossRef]
  20. S.-L. Chen, T. T. Hwang, and W.-W. Lin, “Randomness enhancement using digitalized modified logistic map,” IEEE Trans. Circuits Syst., II Express Briefs 57(12), 996–1000 (2010).
    [CrossRef]

2011 (1)

L. Zhang, X. Xin, B. Liu, and Y. Wang, “Secure OFDM-PON based on chaos scrambling,” IEEE Photon. Technol. Lett. 23(14), 998–1000 (2011).
[CrossRef]

2010 (5)

2009 (3)

M. C. Soriano, P. Colet, and C. R. Mirasso, “Security Implications of Open- and Closed-Loop Receivers in All-Optical Chaos-Based Communications,” IEEE Photon. Technol. Lett. 21(7), 426–428 (2009).
[CrossRef]

J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol. 27(3), 189–204 (2009).
[CrossRef]

M. van Turnhout and F. Bociort, “Chaotic behavior in an algorithm to escape from poor local minima in lens design,” Opt. Express 17(8), 6436–6450 (2009).
[CrossRef] [PubMed]

2008 (2)

J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized Lightwave WDM-PON Employing 16-QAM Intensity Modulated OFDM Downstream and OOK Modulated Upstream Signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

X. Liu and F. Buchali, “Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM,” Opt. Express 16(26), 21944–21957 (2008).
[CrossRef] [PubMed]

2006 (1)

2004 (1)

F. G. Deng and G. L. Long, “Secure direct communication with a quantum one-time pad,” Phys. Rev. A 69(5), 052319–052322 (2004).
[CrossRef]

1949 (1)

C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst. Tech. J. 28, 656–715 (1949).

Argyris, A.

Armstrong, J.

Bociort, F.

Bogris, A.

Buchali, F.

Chang, G. K.

J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized Lightwave WDM-PON Employing 16-QAM Intensity Modulated OFDM Downstream and OOK Modulated Upstream Signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

Chen, L.

J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized Lightwave WDM-PON Employing 16-QAM Intensity Modulated OFDM Downstream and OOK Modulated Upstream Signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

Chen, S.-L.

S.-L. Chen, T. T. Hwang, and W.-W. Lin, “Randomness enhancement using digitalized modified logistic map,” IEEE Trans. Circuits Syst., II Express Briefs 57(12), 996–1000 (2010).
[CrossRef]

Colet, P.

M. C. Soriano, P. Colet, and C. R. Mirasso, “Security Implications of Open- and Closed-Loop Receivers in All-Optical Chaos-Based Communications,” IEEE Photon. Technol. Lett. 21(7), 426–428 (2009).
[CrossRef]

Cvijetic, N.

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s Optical Access Based on Optical Orthogonal Frequency Division Multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[CrossRef]

Deng, F. G.

F. G. Deng and G. L. Long, “Secure direct communication with a quantum one-time pad,” Phys. Rev. A 69(5), 052319–052322 (2004).
[CrossRef]

Giddings, R. P.

Grivas, E.

Hamacher, M.

Hu, J.

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s Optical Access Based on Optical Orthogonal Frequency Division Multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[CrossRef]

Huang, M. F.

J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized Lightwave WDM-PON Employing 16-QAM Intensity Modulated OFDM Downstream and OOK Modulated Upstream Signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

Hugues-Salas, E.

Hwang, T. T.

S.-L. Chen, T. T. Hwang, and W.-W. Lin, “Randomness enhancement using digitalized modified logistic map,” IEEE Trans. Circuits Syst., II Express Briefs 57(12), 996–1000 (2010).
[CrossRef]

Jin, X. Q.

Lin, W.-W.

S.-L. Chen, T. T. Hwang, and W.-W. Lin, “Randomness enhancement using digitalized modified logistic map,” IEEE Trans. Circuits Syst., II Express Briefs 57(12), 996–1000 (2010).
[CrossRef]

Liu, B.

Liu, X.

Long, G. L.

F. G. Deng and G. L. Long, “Secure direct communication with a quantum one-time pad,” Phys. Rev. A 69(5), 052319–052322 (2004).
[CrossRef]

Mansoor, S.

Mirasso, C. R.

M. C. Soriano, P. Colet, and C. R. Mirasso, “Security Implications of Open- and Closed-Loop Receivers in All-Optical Chaos-Based Communications,” IEEE Photon. Technol. Lett. 21(7), 426–428 (2009).
[CrossRef]

Narimanov, E. E.

Qian, D.

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s Optical Access Based on Optical Orthogonal Frequency Division Multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[CrossRef]

J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized Lightwave WDM-PON Employing 16-QAM Intensity Modulated OFDM Downstream and OOK Modulated Upstream Signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

Shannon, C. E.

C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst. Tech. J. 28, 656–715 (1949).

Soriano, M. C.

M. C. Soriano, P. Colet, and C. R. Mirasso, “Security Implications of Open- and Closed-Loop Receivers in All-Optical Chaos-Based Communications,” IEEE Photon. Technol. Lett. 21(7), 426–428 (2009).
[CrossRef]

Syvridis, D.

Tang, J. M.

van Turnhout, M.

Wang, Y.

L. Zhang, X. Xin, B. Liu, and Y. Wang, “Secure OFDM-PON based on chaos scrambling,” IEEE Photon. Technol. Lett. 23(14), 998–1000 (2011).
[CrossRef]

Wei, J. L.

Wu, B. B.

Xin, X.

Yu, C.

Yu, J.

B. Liu, X. Xin, L. Zhang, J. Yu, Q. Zhang, and C. Yu, “A WDM-OFDM-PON architecture with centralized lightwave and PolSK-modulated multicast overlay,” Opt. Express 18(3), 2137–2143 (2010).
[CrossRef] [PubMed]

J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized Lightwave WDM-PON Employing 16-QAM Intensity Modulated OFDM Downstream and OOK Modulated Upstream Signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

Zhang, L.

Zhang, Q.

Zheng, X.

Bell Syst. Tech. J. (1)

C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst. Tech. J. 28, 656–715 (1949).

IEEE Commun. Mag. (1)

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s Optical Access Based on Optical Orthogonal Frequency Division Multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized Lightwave WDM-PON Employing 16-QAM Intensity Modulated OFDM Downstream and OOK Modulated Upstream Signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

L. Zhang, X. Xin, B. Liu, and Y. Wang, “Secure OFDM-PON based on chaos scrambling,” IEEE Photon. Technol. Lett. 23(14), 998–1000 (2011).
[CrossRef]

M. C. Soriano, P. Colet, and C. R. Mirasso, “Security Implications of Open- and Closed-Loop Receivers in All-Optical Chaos-Based Communications,” IEEE Photon. Technol. Lett. 21(7), 426–428 (2009).
[CrossRef]

IEEE Trans. Circuits Syst., II Express Briefs (1)

S.-L. Chen, T. T. Hwang, and W.-W. Lin, “Randomness enhancement using digitalized modified logistic map,” IEEE Trans. Circuits Syst., II Express Briefs 57(12), 996–1000 (2010).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (6)

Phys. Rev. A (1)

F. G. Deng and G. L. Long, “Secure direct communication with a quantum one-time pad,” Phys. Rev. A 69(5), 052319–052322 (2004).
[CrossRef]

Other (6)

M. Hossen, K. D. Kim, and Y. Park, “Synchronized Latency Secured MAC protocol for PON based large sensor network,” in Proc. ICACT’10, 1528–1532(2010).

O. Matoba, T. Nomura, E. P. Cabre´, M. S. Milla’n, and B. Javidi, “Optical Techniques for Information Security,” in Proceedings of IEEE Issue on Optics and Photonics for Security and Defense (Dept. of Comput. Sci. & Syst. Eng., Kobe Univ., Kobe) 97, 1128–1148 (2009).

M. Cvijetic, “Advanced Technologies for Next-Generation Fiber Networks,” in Proc. OFC’10, paper OWY1 (2010).

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “40-Gb/s MIMO-OFDM-PON using polarization multiplexing and direct-detection,” in Proc. OFC’09, paper OMV3 (2009).

W. Shieh, Q. Yang, and Y. Ma, “High-Speed and High Spectral Efficiency Coherent Optical OFDM,” in Proc.OFC’08, paper TuC2.3 (2008).

D. Fisher, “Optical Communication Challenges for a Future Internet Design,” in Proc. OFC’09, paper OMQ1 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of proposed secure OFDM-PON based on Logistic mapped chaos scrambling

Fig. 2
Fig. 2

The iteration values versus μ with 100 times iteration.

Fig. 3
Fig. 3

Schematic diagram of experiment (IM: intensity modulator).

Fig. 4
Fig. 4

(a) signal waveform before IM; (b) electrical spectrum before IM; (c) optical spectrum after IM; (d) electrical spectrum after PD; (e) 64QAM, electrical b-2-b; (f) 64QAM, 25km fiber.

Fig. 5
Fig. 5

Logistic based Lyapunov exponent in this system.

Fig. 6
Fig. 6

The average iteration period with different scrambling size and step length.

Fig. 7
Fig. 7

OFDM subcarrier distribution after chaos scrambling with L = 128 (a) P0’; (b) P0”.

Fig. 8
Fig. 8

The measured BER curves with and without chaos scrambling.

Fig. 9
Fig. 9

The measured BER curves with and without attacker.

Tables (1)

Tables Icon

Table 1 System Parameters for Experiment

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

x n+1 =μ x n (1 x n ) , x(0,1)&μ [1,4]
s n = k=1 N C k ×Pexp(j2π f k (n1) T s N ) , f k = k1 T s
P=( α 11 β 12 ... α 1N β 21 α 22 ... α 2N α N1 α N2 ... β NN ) ( α ik =0, β ik =1)
P j = { p j , p j+1 ,..., p j+N } T , p i p j =0 ,ij
x k,n = 2n1 2N , n=1,2,...,N
Pos= ( r 1 , r 2 ,..., r n ) T
I k = ( x k, r 1 , x k, r 2 ,..., x k, r n ) T

Metrics