Abstract

We present a method for an efficient spectral shift and compression of pulses from a femtosecond laser system. The method enables generation of broadly tunable (615 – 985 nm) narrow bandwidth (≈10 cm−1) pulses from the femtosecond pulses at 1030 nm. It employs a direct parametric amplification – without spectral filtering – of highly chirped white light by a narrow bandwidth (<5 cm−1) 515 nm pump pulse. The system, when pumped with just 200 μJ of the fundamental femtosecond pulse energy, generates pulses with energies of 3-9 μJ and an excellent beam quality in the entire tuning range.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Ishibashi and H. Onishi, “A multiplex infrared-visible sum-frequency spectrometer with wavelength tunability of the visible probe,” Appl. Phys. Lett. 81(7), 1338–1340 (2002).
    [CrossRef]
  2. R. R. Frontiera and R. A. Mathies, “Femtosecond Stimulated Raman Spectroscopy,” Laser Photonics Rev. 5(1), 102–113 (2011).
    [CrossRef]
  3. B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
    [CrossRef] [PubMed]
  4. J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35(14), 2430–2432 (2010).
    [CrossRef] [PubMed]
  5. G. M. Greetham, P. Burgos, Q. Cao, I. P. Clark, P. S. Codd, R. C. Farrow, M. W. George, M. Kogimtzis, P. Matousek, A. W. Parker, M. R. Pollard, D. A. Robinson, Z.-J. Xin, and M. Towrie, “ULTRA: A Unique Instrument for Time-Resolved Spectroscopy,” Appl. Spectrosc. 64(12), 1311–1319 (2010).
    [CrossRef] [PubMed]
  6. S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett. 89(12), 121124 (2006).
    [CrossRef]
  7. A. Lakshmanna, B. Mallick, and S. Umapathy, “Ultrafast Raman loss spectroscopy: a new approach to vibrational structure determination,” Curr. Sci. 97(2), 210–217 (2009).
  8. M. A. Marangoni, D. Brida, M. Quintavalle, G. Cirmi, F. M. Pigozzo, C. Manzoni, F. Baronio, A. D. Capobianco, and G. Cerullo, “Narrow-bandwidth picosecond pulses by spectral compression of femtosecond pulses in second-order nonlinear crystals,” Opt. Express 15(14), 8884–8891 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-14-8884 .
    [CrossRef] [PubMed]
  9. M. Marangoni, D. Brida, M. Conforti, A. D. Capobianco, C. Manzoni, F. Baronio, G. F. Nalesso, C. De Angelis, R. Ramponi, and G. Cerullo, “Synthesis of picosecond pulses by spectral compression and shaping of femtosecond pulses in engineered quadratic nonlinear media,” Opt. Lett. 34(3), 241–243 (2009).
    [CrossRef] [PubMed]
  10. E. Pontecorvo, S. M. Kapetanaki, M. Badioli, D. Brida, M. Marangoni, G. Cerullo, and T. Scopigno, “Femtosecond stimulated Raman spectrometer in the 320-520nm range,” Opt. Express 19(2), 1107–1112 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-1107 .
    [CrossRef] [PubMed]
  11. F. Raoult, A. C. L. Boscheron, D. Husson, C. Sauteret, A. Modena, V. Malka, F. Dorchies, and A. Migus, “Efficient generation of narrow-bandwidth picosecond pulses by frequency doubling of femtosecond chirped pulses,” Opt. Lett. 23(14), 1117–1119 (1998).
    [CrossRef] [PubMed]
  12. S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated Raman spectrograph for the near ultraviolet,” Appl. Phys. B 85(4), 557–564 (2006).
    [CrossRef]
  13. G. Xu, L. Qian, T. Wang, H. Zhu, C. Zhu, and D. Fan, “Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 174–180 (2004).
    [CrossRef]
  14. G. Veitas and R. Danielius, “Generation of narrow-bandwidth tunable picosecond pulses by difference-frequency mixing of stretched pulses,” J. Opt. Soc. Am. B 16(9), 1561–1565 (1999).
    [CrossRef]
  15. H. Luo, L. Qian, P. Yuan, and H. Zhu, “Generation of tunable narrowband pulses initiating from a femtosecond optical parametric amplifier,” Opt. Express 14(22), 10631–10635 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-22-10631 .
    [CrossRef] [PubMed]
  16. D. T. Co, J. V. Lockard, D. W. McCamant, and M. R. Wasielewski, “Narrow-bandwidth tunable picosecond pulses in the visible produced by noncollinear optical parametric amplification with a chirped blue pump,” Appl. Opt. 49(10), 1880–1885 (2010).
    [CrossRef] [PubMed]
  17. S. A. Kovalenko, A. L. Dobryakov, and N. P. Ernsting, “An efficient setup for femtosecond stimulated Raman spectroscopy,” Rev. Sci. Instrum. 82(6), 063102 (2011).
    [CrossRef] [PubMed]
  18. D. H. Auston, “Nonlinear spectroscopy of picosecond pulses,” Opt. Commun. 3(4), 272–276 (1971).
    [CrossRef]
  19. C. Radzewicz, P. Wasylczyk, and J. S. Krasiński, “A Poor Man’s FROG,” Opt. Commun. 186(4-6), 329–333 (2000).
    [CrossRef]
  20. O. Martinez, “3000 times grating compressor with positive group velocity dispersion: Application to fiber compensation in 1.3-1.6 µm region,” IEEE J. Quantum Electron. 23(1), 59–64 (1987).
    [CrossRef]

2011 (3)

R. R. Frontiera and R. A. Mathies, “Femtosecond Stimulated Raman Spectroscopy,” Laser Photonics Rev. 5(1), 102–113 (2011).
[CrossRef]

S. A. Kovalenko, A. L. Dobryakov, and N. P. Ernsting, “An efficient setup for femtosecond stimulated Raman spectroscopy,” Rev. Sci. Instrum. 82(6), 063102 (2011).
[CrossRef] [PubMed]

E. Pontecorvo, S. M. Kapetanaki, M. Badioli, D. Brida, M. Marangoni, G. Cerullo, and T. Scopigno, “Femtosecond stimulated Raman spectrometer in the 320-520nm range,” Opt. Express 19(2), 1107–1112 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-1107 .
[CrossRef] [PubMed]

2010 (3)

2009 (2)

2007 (1)

2006 (4)

H. Luo, L. Qian, P. Yuan, and H. Zhu, “Generation of tunable narrowband pulses initiating from a femtosecond optical parametric amplifier,” Opt. Express 14(22), 10631–10635 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-22-10631 .
[CrossRef] [PubMed]

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated Raman spectrograph for the near ultraviolet,” Appl. Phys. B 85(4), 557–564 (2006).
[CrossRef]

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
[CrossRef] [PubMed]

S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett. 89(12), 121124 (2006).
[CrossRef]

2004 (1)

G. Xu, L. Qian, T. Wang, H. Zhu, C. Zhu, and D. Fan, “Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 174–180 (2004).
[CrossRef]

2002 (1)

T. Ishibashi and H. Onishi, “A multiplex infrared-visible sum-frequency spectrometer with wavelength tunability of the visible probe,” Appl. Phys. Lett. 81(7), 1338–1340 (2002).
[CrossRef]

2000 (1)

C. Radzewicz, P. Wasylczyk, and J. S. Krasiński, “A Poor Man’s FROG,” Opt. Commun. 186(4-6), 329–333 (2000).
[CrossRef]

1999 (1)

1998 (1)

1987 (1)

O. Martinez, “3000 times grating compressor with positive group velocity dispersion: Application to fiber compensation in 1.3-1.6 µm region,” IEEE J. Quantum Electron. 23(1), 59–64 (1987).
[CrossRef]

1971 (1)

D. H. Auston, “Nonlinear spectroscopy of picosecond pulses,” Opt. Commun. 3(4), 272–276 (1971).
[CrossRef]

Auston, D. H.

D. H. Auston, “Nonlinear spectroscopy of picosecond pulses,” Opt. Commun. 3(4), 272–276 (1971).
[CrossRef]

Badioli, M.

Baronio, F.

Boscheron, A. C. L.

Brida, D.

Burgos, P.

Cao, Q.

Capobianco, A. D.

Cerullo, G.

Chakraborty, A.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
[CrossRef] [PubMed]

Cirmi, G.

Clark, I. P.

Co, D. T.

Codd, P. S.

Conforti, M.

Danielius, R.

De Angelis, C.

Dobryakov, A. L.

S. A. Kovalenko, A. L. Dobryakov, and N. P. Ernsting, “An efficient setup for femtosecond stimulated Raman spectroscopy,” Rev. Sci. Instrum. 82(6), 063102 (2011).
[CrossRef] [PubMed]

Dorchies, F.

Ernsting, N. P.

S. A. Kovalenko, A. L. Dobryakov, and N. P. Ernsting, “An efficient setup for femtosecond stimulated Raman spectroscopy,” Rev. Sci. Instrum. 82(6), 063102 (2011).
[CrossRef] [PubMed]

Fan, D.

G. Xu, L. Qian, T. Wang, H. Zhu, C. Zhu, and D. Fan, “Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 174–180 (2004).
[CrossRef]

Farrow, R. C.

Frontiera, R. R.

R. R. Frontiera and R. A. Mathies, “Femtosecond Stimulated Raman Spectroscopy,” Laser Photonics Rev. 5(1), 102–113 (2011).
[CrossRef]

George, M. W.

Gilch, P.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated Raman spectrograph for the near ultraviolet,” Appl. Phys. B 85(4), 557–564 (2006).
[CrossRef]

Gord, J. R.

Greetham, G. M.

Husson, D.

Ishibashi, T.

T. Ishibashi and H. Onishi, “A multiplex infrared-visible sum-frequency spectrometer with wavelength tunability of the visible probe,” Appl. Phys. Lett. 81(7), 1338–1340 (2002).
[CrossRef]

Kapetanaki, S. M.

Kogimtzis, M.

Kovalenko, S. A.

S. A. Kovalenko, A. L. Dobryakov, and N. P. Ernsting, “An efficient setup for femtosecond stimulated Raman spectroscopy,” Rev. Sci. Instrum. 82(6), 063102 (2011).
[CrossRef] [PubMed]

Krasinski, J. S.

C. Radzewicz, P. Wasylczyk, and J. S. Krasiński, “A Poor Man’s FROG,” Opt. Commun. 186(4-6), 329–333 (2000).
[CrossRef]

Laimgruber, S.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated Raman spectrograph for the near ultraviolet,” Appl. Phys. B 85(4), 557–564 (2006).
[CrossRef]

Lakshmanna, A.

A. Lakshmanna, B. Mallick, and S. Umapathy, “Ultrafast Raman loss spectroscopy: a new approach to vibrational structure determination,” Curr. Sci. 97(2), 210–217 (2009).

Lockard, J. V.

Luo, H.

Malka, V.

Mallick, B.

A. Lakshmanna, B. Mallick, and S. Umapathy, “Ultrafast Raman loss spectroscopy: a new approach to vibrational structure determination,” Curr. Sci. 97(2), 210–217 (2009).

Manzoni, C.

Marangoni, M.

Marangoni, M. A.

Martinez, O.

O. Martinez, “3000 times grating compressor with positive group velocity dispersion: Application to fiber compensation in 1.3-1.6 µm region,” IEEE J. Quantum Electron. 23(1), 59–64 (1987).
[CrossRef]

Mathies, R. A.

R. R. Frontiera and R. A. Mathies, “Femtosecond Stimulated Raman Spectroscopy,” Laser Photonics Rev. 5(1), 102–113 (2011).
[CrossRef]

S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett. 89(12), 121124 (2006).
[CrossRef]

Matousek, P.

McCamant, D. W.

Meyer, T. R.

Migus, A.

Miller, J. D.

Modena, A.

Nalesso, G. F.

Onishi, H.

T. Ishibashi and H. Onishi, “A multiplex infrared-visible sum-frequency spectrometer with wavelength tunability of the visible probe,” Appl. Phys. Lett. 81(7), 1338–1340 (2002).
[CrossRef]

Parker, A. W.

Pigozzo, F. M.

Pollard, M. R.

Pontecorvo, E.

Prince, B. D.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
[CrossRef] [PubMed]

Prince, B. M.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
[CrossRef] [PubMed]

Qian, L.

H. Luo, L. Qian, P. Yuan, and H. Zhu, “Generation of tunable narrowband pulses initiating from a femtosecond optical parametric amplifier,” Opt. Express 14(22), 10631–10635 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-22-10631 .
[CrossRef] [PubMed]

G. Xu, L. Qian, T. Wang, H. Zhu, C. Zhu, and D. Fan, “Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 174–180 (2004).
[CrossRef]

Quintavalle, M.

Radzewicz, C.

C. Radzewicz, P. Wasylczyk, and J. S. Krasiński, “A Poor Man’s FROG,” Opt. Commun. 186(4-6), 329–333 (2000).
[CrossRef]

Ramponi, R.

Raoult, F.

Robinson, D. A.

Sauteret, C.

Schachenmayr, H.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated Raman spectrograph for the near ultraviolet,” Appl. Phys. B 85(4), 557–564 (2006).
[CrossRef]

Schmidt, B.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated Raman spectrograph for the near ultraviolet,” Appl. Phys. B 85(4), 557–564 (2006).
[CrossRef]

Scopigno, T.

Shim, S.

S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett. 89(12), 121124 (2006).
[CrossRef]

Slipchenko, M. N.

Stauffer, H. U.

J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35(14), 2430–2432 (2010).
[CrossRef] [PubMed]

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
[CrossRef] [PubMed]

Towrie, M.

Umapathy, S.

A. Lakshmanna, B. Mallick, and S. Umapathy, “Ultrafast Raman loss spectroscopy: a new approach to vibrational structure determination,” Curr. Sci. 97(2), 210–217 (2009).

Veitas, G.

Wang, T.

G. Xu, L. Qian, T. Wang, H. Zhu, C. Zhu, and D. Fan, “Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 174–180 (2004).
[CrossRef]

Wasielewski, M. R.

Wasylczyk, P.

C. Radzewicz, P. Wasylczyk, and J. S. Krasiński, “A Poor Man’s FROG,” Opt. Commun. 186(4-6), 329–333 (2000).
[CrossRef]

Xin, Z.-J.

Xu, G.

G. Xu, L. Qian, T. Wang, H. Zhu, C. Zhu, and D. Fan, “Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 174–180 (2004).
[CrossRef]

Yuan, P.

Zhu, C.

G. Xu, L. Qian, T. Wang, H. Zhu, C. Zhu, and D. Fan, “Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 174–180 (2004).
[CrossRef]

Zhu, H.

H. Luo, L. Qian, P. Yuan, and H. Zhu, “Generation of tunable narrowband pulses initiating from a femtosecond optical parametric amplifier,” Opt. Express 14(22), 10631–10635 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-22-10631 .
[CrossRef] [PubMed]

G. Xu, L. Qian, T. Wang, H. Zhu, C. Zhu, and D. Fan, “Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 174–180 (2004).
[CrossRef]

Zinth, W.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated Raman spectrograph for the near ultraviolet,” Appl. Phys. B 85(4), 557–564 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated Raman spectrograph for the near ultraviolet,” Appl. Phys. B 85(4), 557–564 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

T. Ishibashi and H. Onishi, “A multiplex infrared-visible sum-frequency spectrometer with wavelength tunability of the visible probe,” Appl. Phys. Lett. 81(7), 1338–1340 (2002).
[CrossRef]

S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett. 89(12), 121124 (2006).
[CrossRef]

Appl. Spectrosc. (1)

Curr. Sci. (1)

A. Lakshmanna, B. Mallick, and S. Umapathy, “Ultrafast Raman loss spectroscopy: a new approach to vibrational structure determination,” Curr. Sci. 97(2), 210–217 (2009).

IEEE J. Quantum Electron. (1)

O. Martinez, “3000 times grating compressor with positive group velocity dispersion: Application to fiber compensation in 1.3-1.6 µm region,” IEEE J. Quantum Electron. 23(1), 59–64 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Xu, L. Qian, T. Wang, H. Zhu, C. Zhu, and D. Fan, “Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 174–180 (2004).
[CrossRef]

J. Chem. Phys. (1)

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

R. R. Frontiera and R. A. Mathies, “Femtosecond Stimulated Raman Spectroscopy,” Laser Photonics Rev. 5(1), 102–113 (2011).
[CrossRef]

Opt. Commun. (2)

D. H. Auston, “Nonlinear spectroscopy of picosecond pulses,” Opt. Commun. 3(4), 272–276 (1971).
[CrossRef]

C. Radzewicz, P. Wasylczyk, and J. S. Krasiński, “A Poor Man’s FROG,” Opt. Commun. 186(4-6), 329–333 (2000).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Rev. Sci. Instrum. (1)

S. A. Kovalenko, A. L. Dobryakov, and N. P. Ernsting, “An efficient setup for femtosecond stimulated Raman spectroscopy,” Rev. Sci. Instrum. 82(6), 063102 (2011).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup for producing broadly tunable narrow bandwidth ps pulses from the femtosecond laser source. Double-sided arrows indicate adjustable optical delays. Prisms depicted in the figure are Porro prisms with 28,3 mm hypotenuse and 20 mm height. All the mirrors are dielectric except those guiding the signal beam, which are silver coated.

Fig. 2
Fig. 2

Pulse energies (circles) and bandwidths (triangles) of the experimental setup as function of signal wavelength. The inset shows typical signal beam profile as measured with a CCD camera.

Fig. 3
Fig. 3

Normalized experimental spectra of signal beam in entire tuning range measured by the spectrometer.

Fig. 4
Fig. 4

Crosscorrelation (left) and spectrum profile (right) of the signal beam centered at 680.2 nm. Right: Circles represent values measured by the spectrometer; solid line is the Gaussian fit to the experimental values; blue dashed line is the theoretical spectral profile calculated from the measured crosscorelation with the assumption of a flat temporal phase.

Metrics