Abstract

This paper presents a buried quad p-n junction (BQJ) photodetector fabricated with a HV (high-voltage) CMOS process. Multiple buried junction photodetectors are wavelength-sensitive devices developed for spectral analysis applications where a compact integrated solution is preferred over systems involving bulk optics or a spectrometer due to physical size limitations. The BQJ device presented here is designed for chip-based biochemical analyses using simultaneous fluorescence labeling of multiple analytes such as with advanced labs-on-chip or miniaturized photonics-based biosensors. Modeling and experimental measurements of the spectral response of the device are presented. A matrix-based method for estimating individual spectral components in a compound spectrum is described. The device and analysis method are validated via a test setup using individually modulated LEDs to simulate light from 4-component fluorescence emission.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. N. Lu, M. B. Chouikha, G. Sou, and M. Sedjil, “Colour detection using a buried double p-n junction structure implemented in the CMOS process,” Electron. Lett. 32(6), 594–596 (1996).
    [CrossRef]
  2. F. Yang and A. H. Titus, “Integrated colour detectors in 0.18 µm CMOS technology,” Electron. Lett. 43(23), 1279–1281 (2007).
    [CrossRef]
  3. K. Liang, W. Li, H. R. Ren, X. L. Liu, W. J. Wang, R. Yang, and D. J. Han, “Color measurement for RGB white LEDs in solid-state lighting using a BDJ photodetector,” Displays 30(3), 107–113 (2009).
    [CrossRef]
  4. D. L. Gilblom, S. K. Yoo, and P. Ventura, “Real-time color imaging with a CMOS sensor having stacked photodiodes,” Proc. SPIE 5210, 105–115 (2004).
    [CrossRef]
  5. T. Ross, R. K. Henderson, B. Rae, and D. Renshaw, “A buried triple-junction self-reset pixel in a 0.35µm high voltage CMOS process,” in Proceedings of International Image Sensor Workshop (Cliffhouse Resort Ogunquit, Maine USA, 2007), pp. 279–282.
  6. M. Ben Chouikha, G. N. Lu, M. Sedjil, and G. Sou, “Colour detection using buried triple pn junction structure implemented in BiCMOS process,” Electron. Lett. 34(1), 120–122 (1998).
    [CrossRef]
  7. R. F. Lyon and P. M. Hubel, “Eyeing the camera: into the next century,” in Proceedings of IS&T/SID 10th Color Imaging Conference (The Society for Imaging Science and Technology, Scottsdale, Arizona, USA, 2002), pp. 349–355.
  8. R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt. 6(3), 311–318 (2001).
    [CrossRef] [PubMed]
  9. H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem. 48(5), 653–662 (2000).
    [CrossRef] [PubMed]
  10. C. Richard, A. Renaudin, V. Aimez, and P. G. Charette, “An integrated hybrid interference and absorption filter for fluorescence detection in lab-on-a-chip devices,” Lab Chip 9(10), 1371–1376 (2009).
    [CrossRef] [PubMed]
  11. G. N. Lu, “A dual-wavelength method using the BDJ detector and its application to iron concentration measurement,” Meas. Sci. Technol. 10(4), 312–315 (1999).
    [CrossRef]

2009 (2)

K. Liang, W. Li, H. R. Ren, X. L. Liu, W. J. Wang, R. Yang, and D. J. Han, “Color measurement for RGB white LEDs in solid-state lighting using a BDJ photodetector,” Displays 30(3), 107–113 (2009).
[CrossRef]

C. Richard, A. Renaudin, V. Aimez, and P. G. Charette, “An integrated hybrid interference and absorption filter for fluorescence detection in lab-on-a-chip devices,” Lab Chip 9(10), 1371–1376 (2009).
[CrossRef] [PubMed]

2007 (1)

F. Yang and A. H. Titus, “Integrated colour detectors in 0.18 µm CMOS technology,” Electron. Lett. 43(23), 1279–1281 (2007).
[CrossRef]

2004 (1)

D. L. Gilblom, S. K. Yoo, and P. Ventura, “Real-time color imaging with a CMOS sensor having stacked photodiodes,” Proc. SPIE 5210, 105–115 (2004).
[CrossRef]

2001 (1)

R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt. 6(3), 311–318 (2001).
[CrossRef] [PubMed]

2000 (1)

H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem. 48(5), 653–662 (2000).
[CrossRef] [PubMed]

1999 (1)

G. N. Lu, “A dual-wavelength method using the BDJ detector and its application to iron concentration measurement,” Meas. Sci. Technol. 10(4), 312–315 (1999).
[CrossRef]

1998 (1)

M. Ben Chouikha, G. N. Lu, M. Sedjil, and G. Sou, “Colour detection using buried triple pn junction structure implemented in BiCMOS process,” Electron. Lett. 34(1), 120–122 (1998).
[CrossRef]

1996 (1)

G. N. Lu, M. B. Chouikha, G. Sou, and M. Sedjil, “Colour detection using a buried double p-n junction structure implemented in the CMOS process,” Electron. Lett. 32(6), 594–596 (1996).
[CrossRef]

Aimez, V.

C. Richard, A. Renaudin, V. Aimez, and P. G. Charette, “An integrated hybrid interference and absorption filter for fluorescence detection in lab-on-a-chip devices,” Lab Chip 9(10), 1371–1376 (2009).
[CrossRef] [PubMed]

Bearman, G.

R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt. 6(3), 311–318 (2001).
[CrossRef] [PubMed]

Ben Chouikha, M.

M. Ben Chouikha, G. N. Lu, M. Sedjil, and G. Sou, “Colour detection using buried triple pn junction structure implemented in BiCMOS process,” Electron. Lett. 34(1), 120–122 (1998).
[CrossRef]

Charette, P. G.

C. Richard, A. Renaudin, V. Aimez, and P. G. Charette, “An integrated hybrid interference and absorption filter for fluorescence detection in lab-on-a-chip devices,” Lab Chip 9(10), 1371–1376 (2009).
[CrossRef] [PubMed]

Chouikha, M. B.

G. N. Lu, M. B. Chouikha, G. Sou, and M. Sedjil, “Colour detection using a buried double p-n junction structure implemented in the CMOS process,” Electron. Lett. 32(6), 594–596 (1996).
[CrossRef]

Fraser, S. E.

R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt. 6(3), 311–318 (2001).
[CrossRef] [PubMed]

Gilblom, D. L.

D. L. Gilblom, S. K. Yoo, and P. Ventura, “Real-time color imaging with a CMOS sensor having stacked photodiodes,” Proc. SPIE 5210, 105–115 (2004).
[CrossRef]

Han, D. J.

K. Liang, W. Li, H. R. Ren, X. L. Liu, W. J. Wang, R. Yang, and D. J. Han, “Color measurement for RGB white LEDs in solid-state lighting using a BDJ photodetector,” Displays 30(3), 107–113 (2009).
[CrossRef]

Hattori, S.

H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem. 48(5), 653–662 (2000).
[CrossRef] [PubMed]

Hirose, S.

H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem. 48(5), 653–662 (2000).
[CrossRef] [PubMed]

Lansford, R.

R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt. 6(3), 311–318 (2001).
[CrossRef] [PubMed]

Li, W.

K. Liang, W. Li, H. R. Ren, X. L. Liu, W. J. Wang, R. Yang, and D. J. Han, “Color measurement for RGB white LEDs in solid-state lighting using a BDJ photodetector,” Displays 30(3), 107–113 (2009).
[CrossRef]

Liang, K.

K. Liang, W. Li, H. R. Ren, X. L. Liu, W. J. Wang, R. Yang, and D. J. Han, “Color measurement for RGB white LEDs in solid-state lighting using a BDJ photodetector,” Displays 30(3), 107–113 (2009).
[CrossRef]

Liu, X. L.

K. Liang, W. Li, H. R. Ren, X. L. Liu, W. J. Wang, R. Yang, and D. J. Han, “Color measurement for RGB white LEDs in solid-state lighting using a BDJ photodetector,” Displays 30(3), 107–113 (2009).
[CrossRef]

Lu, G. N.

G. N. Lu, “A dual-wavelength method using the BDJ detector and its application to iron concentration measurement,” Meas. Sci. Technol. 10(4), 312–315 (1999).
[CrossRef]

M. Ben Chouikha, G. N. Lu, M. Sedjil, and G. Sou, “Colour detection using buried triple pn junction structure implemented in BiCMOS process,” Electron. Lett. 34(1), 120–122 (1998).
[CrossRef]

G. N. Lu, M. B. Chouikha, G. Sou, and M. Sedjil, “Colour detection using a buried double p-n junction structure implemented in the CMOS process,” Electron. Lett. 32(6), 594–596 (1996).
[CrossRef]

Nishimura, H.

H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem. 48(5), 653–662 (2000).
[CrossRef] [PubMed]

Okumura, K.

H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem. 48(5), 653–662 (2000).
[CrossRef] [PubMed]

Ren, H. R.

K. Liang, W. Li, H. R. Ren, X. L. Liu, W. J. Wang, R. Yang, and D. J. Han, “Color measurement for RGB white LEDs in solid-state lighting using a BDJ photodetector,” Displays 30(3), 107–113 (2009).
[CrossRef]

Renaudin, A.

C. Richard, A. Renaudin, V. Aimez, and P. G. Charette, “An integrated hybrid interference and absorption filter for fluorescence detection in lab-on-a-chip devices,” Lab Chip 9(10), 1371–1376 (2009).
[CrossRef] [PubMed]

Richard, C.

C. Richard, A. Renaudin, V. Aimez, and P. G. Charette, “An integrated hybrid interference and absorption filter for fluorescence detection in lab-on-a-chip devices,” Lab Chip 9(10), 1371–1376 (2009).
[CrossRef] [PubMed]

Sedjil, M.

M. Ben Chouikha, G. N. Lu, M. Sedjil, and G. Sou, “Colour detection using buried triple pn junction structure implemented in BiCMOS process,” Electron. Lett. 34(1), 120–122 (1998).
[CrossRef]

G. N. Lu, M. B. Chouikha, G. Sou, and M. Sedjil, “Colour detection using a buried double p-n junction structure implemented in the CMOS process,” Electron. Lett. 32(6), 594–596 (1996).
[CrossRef]

Shirai, T.

H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem. 48(5), 653–662 (2000).
[CrossRef] [PubMed]

Sou, G.

M. Ben Chouikha, G. N. Lu, M. Sedjil, and G. Sou, “Colour detection using buried triple pn junction structure implemented in BiCMOS process,” Electron. Lett. 34(1), 120–122 (1998).
[CrossRef]

G. N. Lu, M. B. Chouikha, G. Sou, and M. Sedjil, “Colour detection using a buried double p-n junction structure implemented in the CMOS process,” Electron. Lett. 32(6), 594–596 (1996).
[CrossRef]

Titus, A. H.

F. Yang and A. H. Titus, “Integrated colour detectors in 0.18 µm CMOS technology,” Electron. Lett. 43(23), 1279–1281 (2007).
[CrossRef]

Tsurui, H.

H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem. 48(5), 653–662 (2000).
[CrossRef] [PubMed]

Ventura, P.

D. L. Gilblom, S. K. Yoo, and P. Ventura, “Real-time color imaging with a CMOS sensor having stacked photodiodes,” Proc. SPIE 5210, 105–115 (2004).
[CrossRef]

Wang, W. J.

K. Liang, W. Li, H. R. Ren, X. L. Liu, W. J. Wang, R. Yang, and D. J. Han, “Color measurement for RGB white LEDs in solid-state lighting using a BDJ photodetector,” Displays 30(3), 107–113 (2009).
[CrossRef]

Yang, F.

F. Yang and A. H. Titus, “Integrated colour detectors in 0.18 µm CMOS technology,” Electron. Lett. 43(23), 1279–1281 (2007).
[CrossRef]

Yang, R.

K. Liang, W. Li, H. R. Ren, X. L. Liu, W. J. Wang, R. Yang, and D. J. Han, “Color measurement for RGB white LEDs in solid-state lighting using a BDJ photodetector,” Displays 30(3), 107–113 (2009).
[CrossRef]

Yoo, S. K.

D. L. Gilblom, S. K. Yoo, and P. Ventura, “Real-time color imaging with a CMOS sensor having stacked photodiodes,” Proc. SPIE 5210, 105–115 (2004).
[CrossRef]

Displays (1)

K. Liang, W. Li, H. R. Ren, X. L. Liu, W. J. Wang, R. Yang, and D. J. Han, “Color measurement for RGB white LEDs in solid-state lighting using a BDJ photodetector,” Displays 30(3), 107–113 (2009).
[CrossRef]

Electron. Lett. (3)

G. N. Lu, M. B. Chouikha, G. Sou, and M. Sedjil, “Colour detection using a buried double p-n junction structure implemented in the CMOS process,” Electron. Lett. 32(6), 594–596 (1996).
[CrossRef]

F. Yang and A. H. Titus, “Integrated colour detectors in 0.18 µm CMOS technology,” Electron. Lett. 43(23), 1279–1281 (2007).
[CrossRef]

M. Ben Chouikha, G. N. Lu, M. Sedjil, and G. Sou, “Colour detection using buried triple pn junction structure implemented in BiCMOS process,” Electron. Lett. 34(1), 120–122 (1998).
[CrossRef]

J. Biomed. Opt. (1)

R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt. 6(3), 311–318 (2001).
[CrossRef] [PubMed]

J. Histochem. Cytochem. (1)

H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem. 48(5), 653–662 (2000).
[CrossRef] [PubMed]

Lab Chip (1)

C. Richard, A. Renaudin, V. Aimez, and P. G. Charette, “An integrated hybrid interference and absorption filter for fluorescence detection in lab-on-a-chip devices,” Lab Chip 9(10), 1371–1376 (2009).
[CrossRef] [PubMed]

Meas. Sci. Technol. (1)

G. N. Lu, “A dual-wavelength method using the BDJ detector and its application to iron concentration measurement,” Meas. Sci. Technol. 10(4), 312–315 (1999).
[CrossRef]

Proc. SPIE (1)

D. L. Gilblom, S. K. Yoo, and P. Ventura, “Real-time color imaging with a CMOS sensor having stacked photodiodes,” Proc. SPIE 5210, 105–115 (2004).
[CrossRef]

Other (2)

T. Ross, R. K. Henderson, B. Rae, and D. Renshaw, “A buried triple-junction self-reset pixel in a 0.35µm high voltage CMOS process,” in Proceedings of International Image Sensor Workshop (Cliffhouse Resort Ogunquit, Maine USA, 2007), pp. 279–282.

R. F. Lyon and P. M. Hubel, “Eyeing the camera: into the next century,” in Proceedings of IS&T/SID 10th Color Imaging Conference (The Society for Imaging Science and Technology, Scottsdale, Arizona, USA, 2002), pp. 349–355.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic representation of the BQJ structure fabricated with the Teledyne DALSA Semiconductor HVCMOS process; (b) Equivalent electrical model with SMU connections (Reverse bias voltage on each junction: −1.5 V); (c) Photograph of the device showing a focused light spot in the middle of the square photodetector active area.

Fig. 2
Fig. 2

Modeled spectral responses for the four individual junctions from 400 nm to 950 nm. Inset shows the modeled transmittance of the passivation layers

Fig. 3
Fig. 3

Measured spectral responses of the BQJ photodetector junctions biased at −1.5 V. The modulation of the responsivities due to the mutual interference from the partial reflections at the interfaces between the photodetector surface and the passivation layers is clearly visible.

Fig. 4
Fig. 4

Comparison of the modeled and measured normalized spectral responses, Ni(λ).

Fig. 5
Fig. 5

Relative contribution of each junction to the total spectral sensitivity as a function of wavelength (measured set of Fig. 4). The central wavelengths of the four LEDs used in the experiment described in Fig. 6 are indicated by the vertical bars.

Fig. 6
Fig. 6

Spectra of the four LEDs used in calibration and validation experiments.

Fig. 7
Fig. 7

Expected and estimated optical power from the four individual LEDs calculated with the matrix-based method described in the paper.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

| I 1 |=| I o1 | | I 2 |=| I o2 || I o1 | | I 3 |=| I o3 |( | I o2 || I o1 | ) | I 4 |=| I o4 |( | I o3 |( | I o2 || I o1 | ) )
N i ( λ )= S i ( λ ) j=1 4 S j ( λ ) = I ph,i ( λ ) j=1 4 I ph,j ( λ ) , i=1..4
I i = Φ( λ ) S i ( λ )dλ , i=1..4
I i = k=1 4 c k Φ k ( λ ) S i ( λ )dλ , i=1..4,
I i = k=1 4 c k R ik ,
R ik = Φ k ( λ ) S i ( λ )dλ
[ R 11 R 12 R 13 R 14 R 21 R 22 R 23 R 24 R 31 R 32 R 33 R 34 R 41 R 42 R 43 R 44 ][ c 1 c 2 c 3 c 4 ]=[ I 1 I 2 I 3 I 4 ]

Metrics