Abstract

This work primarily aims to fabricate and use two photon polymerization (2PP) microstructures capable of being optically manipulated into any arbitrary orientation. We have integrated optical waveguides into the structures and therefore have freestanding waveguides, which can be positioned anywhere in the sample at any orientation using optical traps. One of the key aspects to the work is the change in direction of the incident plane wave, and the marked increase in the numerical aperture demonstrated. Hence, the optically steered waveguide can tap from a relatively broader beam and then generate a more tightly confined light at its tip. The paper contains both simulation, related to the propagation of light through the waveguide, and experimental demonstrations using our BioPhotonics Workstation. In a broader context, this work shows that optically trapped microfabricated structures can potentially help bridge the diffraction barrier. This structure-mediated paradigm may be carried forward to open new possibilities for exploiting beams from far-field optics down to the subwavelength domain.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  3. H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, and H. Masuhara, “Multibeam laser manipulation and fixation of microparticles,” Appl. Phys. Lett. 60(3), 310–312 (1992).
    [CrossRef]
  4. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Pattern formation and flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett. 16(19), 1463–1465 (1991).
    [CrossRef] [PubMed]
  5. E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998).
    [CrossRef]
  6. R. L. Eriksen, P. C. Mogensen, and J. Glückstad, “Multiple-beam optical tweezers generated by the generalized phase-contrast method,” Opt. Lett. 27(4), 267–269 (2002).
    [CrossRef] [PubMed]
  7. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a fiber-optical light-force trap,” Opt. Lett. 18(21), 1867–1869 (1993).
    [CrossRef] [PubMed]
  8. F. Merenda, J. Rohner, J. M. Fournier, and R. P. Salathé, “Miniaturized high-NA focusing-mirror multiple optical tweezers,” Opt. Express 15(10), 6075–6086 (2007).
    [CrossRef] [PubMed]
  9. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
    [CrossRef]
  10. A. Pralle, M. Prummer, E. L. Florin, E. H. Stelzer, and J. K. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44(5), 378–386 (1999).
    [CrossRef] [PubMed]
  11. A. Ashkin and J. M. Dziedzic, “Feedback stabilization of optically levitated particles,” Appl. Phys. Lett. 30(4), 202–204 (1977).
    [CrossRef]
  12. S. Tauro, A. Bañas, D. Palima, and J. Glückstad, “Dynamic axial stabilization of counter-propagating beam-traps with feedback control,” Opt. Express 18(17), 18217–18222 (2010).
    [CrossRef] [PubMed]
  13. J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368(6467), 113–119 (1994).
    [CrossRef] [PubMed]
  14. K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
    [CrossRef] [PubMed]
  15. A. G. Banerjee, S. Chowdhury, W. Losert, and S. K. Gupta, “Survey on indirect optical manipulation of cells, nucleic acids, and motor proteins,” J. Biomed. Opt. 16(5), 051302 (2011).
    [CrossRef] [PubMed]
  16. F. Hajizadeh and S. N. S. Reihani, “Optimized optical trapping of gold nanoparticles,” Opt. Express 18(2), 551–559 (2010).
    [CrossRef] [PubMed]
  17. R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
    [CrossRef]
  18. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
    [CrossRef] [PubMed]
  19. P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
    [CrossRef] [PubMed]
  20. J. Plewa, E. Tanner, D. Mueth, and D. Grier, “Processing carbon nanotubes with holographic optical tweezers,” Opt. Express 12(9), 1978–1981 (2004).
    [CrossRef] [PubMed]
  21. J. L. Hernández-Pozos, W. M. Lee, L. I. Vera-Robles, A. Campero, and K. Dholakia, “Controlled three-dimensional manipulation of vanadium oxide nanotubes with optical tweezers,” Appl. Phys. Lett. 93(24), 243107 (2008).
    [CrossRef]
  22. L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and force measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11(2), 023012 (2009).
    [CrossRef]
  23. D. M. Carberry, S. H. Simpson, J. A. Grieve, Y. Wang, H. Schäfer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Calibration of optically trapped nanotools,” Nanotechnology 21(17), 175501 (2010).
    [CrossRef] [PubMed]
  24. D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology 22(28), 285503 (2011).
    [CrossRef] [PubMed]
  25. M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,” New J. Phys. 12(11), 113056 (2010).
    [CrossRef]
  26. J. Glückstad, “Manipulating microtools with nanofeatures using light in 3d real-time,” Presented at the iNANO Seminar, Aarhus University, Denmark, 2 February, 2007.
  27. P. J. Rodrigo, L. Gammelgaard, P. Bøggild, I. R. Perch-Nielsen, and J. Glückstad, “Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps,” Opt. Express 13(18), 6899–6904 (2005).
    [CrossRef] [PubMed]
  28. P. J. Rodrigo, L. Kelemen, C. A. Alonzo, I. R. Perch-Nielsen, J. S. Dam, P. Ormos, and J. Glückstad, “2D optical manipulation and assembly of shape-complementary planar microstructures,” Opt. Express 15(14), 9009–9014 (2007).
    [CrossRef] [PubMed]
  29. P. J. Rodrigo, L. Kelemen, D. Palima, C. A. Alonzo, P. Ormos, and J. Glückstad, “Optical microassembly platform for constructing reconfigurable microenvironments for biomedical studies,” Opt. Express 17(8), 6578–6583 (2009).
    [CrossRef] [PubMed]
  30. D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Z. Dong, and X. M. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90(7), 071106 (2007).
    [CrossRef]
  31. J. Glückstad, “Optical manipulation: Sculpting the object,” Nat. Photonics 5(1), 7–8 (2011).
    [CrossRef]
  32. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  33. L. Tong, R. Gattass, I. Maxwell, J. Ashcom, and E. Mazur, “Optical loss measurements in femtosecond laser written waveguides in glass,” Opt. Commun. 259(2), 626–630 (2006).
    [CrossRef]
  34. A. Levskaya, O. D. Weiner, W. A. Lim, and C. A. Voigt, “Spatiotemporal control of cell signalling using a light-switchable protein interaction,” Nature 461(7266), 997–1001 (2009).
    [CrossRef] [PubMed]
  35. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14(3), 302–307 (1966).
    [CrossRef]
  36. A. G. Van Engen, S. A. Diddams, and T. S. Clement, “Dispersion measurements of water with white-light interferometry,” Appl. Opt. 37(24), 5679–5686 (1998).
    [CrossRef] [PubMed]
  37. T. A. Anhøj, “Fabrication of High Aspect Ratio SU-8 Structures for Integrated Spectrometers,” doctoral dissertation, Technical University of Denmark, Denmark (2007).
  38. G. P. Agrawal, Lightwave Technology: Components and Devices (Wiley, 2004), pp. 18–19.
  39. L. Kelemen, S. Valkai, and P. Ormos, “Integrated optical motor,” Appl. Opt. 45(12), 2777–2780 (2006).
    [CrossRef] [PubMed]
  40. H. U. Ulriksen, J. Thøgersen, S. Keiding, I. Perch-Nielsen, J. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rap. Publ. 3, 080341–080345 (2008).
  41. E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
    [CrossRef] [PubMed]
  42. G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
    [CrossRef]
  43. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [CrossRef]
  44. P. Verma, T. Ichimura, T. Yano, Y. Saito, and S. Kawata, “Nano-imaging through tip-enhanced Raman spectroscopy: Stepping beyond the classical limits,” Laser Photonics. Rev. 4(4), 548–561 (2010).
    [CrossRef]
  45. D. O’Carroll, I. Lieberwirth, and G. Redmond, “Microcavity effects and optically pumped lasing in single conjugated polymer nanowires,” Nat. Nanotechnol. 2(3), 180–184 (2007).
    [CrossRef] [PubMed]
  46. F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano 4(9), 5332–5338 (2010).
    [CrossRef] [PubMed]
  47. M. Majumder, N. Chopra, R. Andrews, and B. J. Hinds, “Nanoscale hydrodynamics: enhanced flow in carbon nanotubes,” Nature 438(7064), 44 (2005).
    [CrossRef] [PubMed]

2011 (3)

A. G. Banerjee, S. Chowdhury, W. Losert, and S. K. Gupta, “Survey on indirect optical manipulation of cells, nucleic acids, and motor proteins,” J. Biomed. Opt. 16(5), 051302 (2011).
[CrossRef] [PubMed]

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology 22(28), 285503 (2011).
[CrossRef] [PubMed]

J. Glückstad, “Optical manipulation: Sculpting the object,” Nat. Photonics 5(1), 7–8 (2011).
[CrossRef]

2010 (9)

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,” New J. Phys. 12(11), 113056 (2010).
[CrossRef]

D. M. Carberry, S. H. Simpson, J. A. Grieve, Y. Wang, H. Schäfer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Calibration of optically trapped nanotools,” Nanotechnology 21(17), 175501 (2010).
[CrossRef] [PubMed]

F. Hajizadeh and S. N. S. Reihani, “Optimized optical trapping of gold nanoparticles,” Opt. Express 18(2), 551–559 (2010).
[CrossRef] [PubMed]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[CrossRef]

S. Tauro, A. Bañas, D. Palima, and J. Glückstad, “Dynamic axial stabilization of counter-propagating beam-traps with feedback control,” Opt. Express 18(17), 18217–18222 (2010).
[CrossRef] [PubMed]

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[CrossRef]

P. Verma, T. Ichimura, T. Yano, Y. Saito, and S. Kawata, “Nano-imaging through tip-enhanced Raman spectroscopy: Stepping beyond the classical limits,” Laser Photonics. Rev. 4(4), 548–561 (2010).
[CrossRef]

F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano 4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

2009 (4)

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[CrossRef]

L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and force measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11(2), 023012 (2009).
[CrossRef]

P. J. Rodrigo, L. Kelemen, D. Palima, C. A. Alonzo, P. Ormos, and J. Glückstad, “Optical microassembly platform for constructing reconfigurable microenvironments for biomedical studies,” Opt. Express 17(8), 6578–6583 (2009).
[CrossRef] [PubMed]

A. Levskaya, O. D. Weiner, W. A. Lim, and C. A. Voigt, “Spatiotemporal control of cell signalling using a light-switchable protein interaction,” Nature 461(7266), 997–1001 (2009).
[CrossRef] [PubMed]

2008 (4)

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
[CrossRef] [PubMed]

J. L. Hernández-Pozos, W. M. Lee, L. I. Vera-Robles, A. Campero, and K. Dholakia, “Controlled three-dimensional manipulation of vanadium oxide nanotubes with optical tweezers,” Appl. Phys. Lett. 93(24), 243107 (2008).
[CrossRef]

H. U. Ulriksen, J. Thøgersen, S. Keiding, I. Perch-Nielsen, J. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rap. Publ. 3, 080341–080345 (2008).

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[CrossRef] [PubMed]

2007 (5)

D. O’Carroll, I. Lieberwirth, and G. Redmond, “Microcavity effects and optically pumped lasing in single conjugated polymer nanowires,” Nat. Nanotechnol. 2(3), 180–184 (2007).
[CrossRef] [PubMed]

D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Z. Dong, and X. M. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90(7), 071106 (2007).
[CrossRef]

P. J. Rodrigo, L. Kelemen, C. A. Alonzo, I. R. Perch-Nielsen, J. S. Dam, P. Ormos, and J. Glückstad, “2D optical manipulation and assembly of shape-complementary planar microstructures,” Opt. Express 15(14), 9009–9014 (2007).
[CrossRef] [PubMed]

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

F. Merenda, J. Rohner, J. M. Fournier, and R. P. Salathé, “Miniaturized high-NA focusing-mirror multiple optical tweezers,” Opt. Express 15(10), 6075–6086 (2007).
[CrossRef] [PubMed]

2006 (3)

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

L. Tong, R. Gattass, I. Maxwell, J. Ashcom, and E. Mazur, “Optical loss measurements in femtosecond laser written waveguides in glass,” Opt. Commun. 259(2), 626–630 (2006).
[CrossRef]

L. Kelemen, S. Valkai, and P. Ormos, “Integrated optical motor,” Appl. Opt. 45(12), 2777–2780 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (1)

2002 (1)

1999 (1)

A. Pralle, M. Prummer, E. L. Florin, E. H. Stelzer, and J. K. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44(5), 378–386 (1999).
[CrossRef] [PubMed]

1998 (2)

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998).
[CrossRef]

A. G. Van Engen, S. A. Diddams, and T. S. Clement, “Dispersion measurements of water with white-light interferometry,” Appl. Opt. 37(24), 5679–5686 (1998).
[CrossRef] [PubMed]

1996 (1)

1994 (1)

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368(6467), 113–119 (1994).
[CrossRef] [PubMed]

1993 (1)

1992 (1)

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, and H. Masuhara, “Multibeam laser manipulation and fixation of microparticles,” Appl. Phys. Lett. 60(3), 310–312 (1992).
[CrossRef]

1991 (1)

1986 (1)

1977 (1)

A. Ashkin and J. M. Dziedzic, “Feedback stabilization of optically levitated particles,” Appl. Phys. Lett. 30(4), 202–204 (1977).
[CrossRef]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

1966 (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14(3), 302–307 (1966).
[CrossRef]

Alonzo, C. A.

Andrews, R.

M. Majumder, N. Chopra, R. Andrews, and B. J. Hinds, “Nanoscale hydrodynamics: enhanced flow in carbon nanotubes,” Nature 438(7064), 44 (2005).
[CrossRef] [PubMed]

Arnold, C. B.

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[CrossRef] [PubMed]

Ashcom, J.

L. Tong, R. Gattass, I. Maxwell, J. Ashcom, and E. Mazur, “Optical loss measurements in femtosecond laser written waveguides in glass,” Opt. Commun. 259(2), 626–630 (2006).
[CrossRef]

Ashkin, A.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Feedback stabilization of optically levitated particles,” Appl. Phys. Lett. 30(4), 202–204 (1977).
[CrossRef]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Bañas, A.

Banerjee, A. G.

A. G. Banerjee, S. Chowdhury, W. Losert, and S. K. Gupta, “Survey on indirect optical manipulation of cells, nucleic acids, and motor proteins,” J. Biomed. Opt. 16(5), 051302 (2011).
[CrossRef] [PubMed]

Bjorkholm, J. E.

Bøggild, P.

Botchway, S. W.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,” New J. Phys. 12(11), 113056 (2010).
[CrossRef]

Bowman, R.

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology 22(28), 285503 (2011).
[CrossRef] [PubMed]

D. M. Carberry, S. H. Simpson, J. A. Grieve, Y. Wang, H. Schäfer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Calibration of optically trapped nanotools,” Nanotechnology 21(17), 175501 (2010).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[CrossRef]

Brambilla, G.

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
[CrossRef]

Campero, A.

J. L. Hernández-Pozos, W. M. Lee, L. I. Vera-Robles, A. Campero, and K. Dholakia, “Controlled three-dimensional manipulation of vanadium oxide nanotubes with optical tweezers,” Appl. Phys. Lett. 93(24), 243107 (2008).
[CrossRef]

Carberry, D. M.

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology 22(28), 285503 (2011).
[CrossRef] [PubMed]

D. M. Carberry, S. H. Simpson, J. A. Grieve, Y. Wang, H. Schäfer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Calibration of optically trapped nanotools,” Nanotechnology 21(17), 175501 (2010).
[CrossRef] [PubMed]

L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and force measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11(2), 023012 (2009).
[CrossRef]

Chichkov, B.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,” New J. Phys. 12(11), 113056 (2010).
[CrossRef]

Chopra, N.

M. Majumder, N. Chopra, R. Andrews, and B. J. Hinds, “Nanoscale hydrodynamics: enhanced flow in carbon nanotubes,” Nature 438(7064), 44 (2005).
[CrossRef] [PubMed]

Chowdhury, S.

A. G. Banerjee, S. Chowdhury, W. Losert, and S. K. Gupta, “Survey on indirect optical manipulation of cells, nucleic acids, and motor proteins,” J. Biomed. Opt. 16(5), 051302 (2011).
[CrossRef] [PubMed]

Chu, S.

Cižmár, T.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[CrossRef]

Clement, T. S.

Constable, A.

Dam, J.

H. U. Ulriksen, J. Thøgersen, S. Keiding, I. Perch-Nielsen, J. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rap. Publ. 3, 080341–080345 (2008).

Dam, J. S.

Davis, K. M.

Dholakia, K.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[CrossRef]

J. L. Hernández-Pozos, W. M. Lee, L. I. Vera-Robles, A. Campero, and K. Dholakia, “Controlled three-dimensional manipulation of vanadium oxide nanotubes with optical tweezers,” Appl. Phys. Lett. 93(24), 243107 (2008).
[CrossRef]

Diddams, S. A.

Dong, X. Z.

D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Z. Dong, and X. M. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90(7), 071106 (2007).
[CrossRef]

Duan, X. M.

D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Z. Dong, and X. M. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90(7), 071106 (2007).
[CrossRef]

Dufresne, E. R.

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998).
[CrossRef]

Dziedzic, J. M.

Eriksen, R. L.

Finer, J. T.

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368(6467), 113–119 (1994).
[CrossRef] [PubMed]

Florin, E. L.

A. Pralle, M. Prummer, E. L. Florin, E. H. Stelzer, and J. K. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44(5), 378–386 (1999).
[CrossRef] [PubMed]

Fournier, J. M.

Freeman, E.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,” New J. Phys. 12(11), 113056 (2010).
[CrossRef]

Gammelgaard, L.

Gargas, D.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[CrossRef]

Gattass, R.

L. Tong, R. Gattass, I. Maxwell, J. Ashcom, and E. Mazur, “Optical loss measurements in femtosecond laser written waveguides in glass,” Opt. Commun. 259(2), 626–630 (2006).
[CrossRef]

Gibson, G. M.

D. M. Carberry, S. H. Simpson, J. A. Grieve, Y. Wang, H. Schäfer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Calibration of optically trapped nanotools,” Nanotechnology 21(17), 175501 (2010).
[CrossRef] [PubMed]

L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and force measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11(2), 023012 (2009).
[CrossRef]

Glückstad, J.

J. Glückstad, “Optical manipulation: Sculpting the object,” Nat. Photonics 5(1), 7–8 (2011).
[CrossRef]

S. Tauro, A. Bañas, D. Palima, and J. Glückstad, “Dynamic axial stabilization of counter-propagating beam-traps with feedback control,” Opt. Express 18(17), 18217–18222 (2010).
[CrossRef] [PubMed]

P. J. Rodrigo, L. Kelemen, D. Palima, C. A. Alonzo, P. Ormos, and J. Glückstad, “Optical microassembly platform for constructing reconfigurable microenvironments for biomedical studies,” Opt. Express 17(8), 6578–6583 (2009).
[CrossRef] [PubMed]

H. U. Ulriksen, J. Thøgersen, S. Keiding, I. Perch-Nielsen, J. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rap. Publ. 3, 080341–080345 (2008).

P. J. Rodrigo, L. Kelemen, C. A. Alonzo, I. R. Perch-Nielsen, J. S. Dam, P. Ormos, and J. Glückstad, “2D optical manipulation and assembly of shape-complementary planar microstructures,” Opt. Express 15(14), 9009–9014 (2007).
[CrossRef] [PubMed]

P. J. Rodrigo, L. Gammelgaard, P. Bøggild, I. R. Perch-Nielsen, and J. Glückstad, “Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps,” Opt. Express 13(18), 6899–6904 (2005).
[CrossRef] [PubMed]

R. L. Eriksen, P. C. Mogensen, and J. Glückstad, “Multiple-beam optical tweezers generated by the generalized phase-contrast method,” Opt. Lett. 27(4), 267–269 (2002).
[CrossRef] [PubMed]

Gong, Q. H.

D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Z. Dong, and X. M. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90(7), 071106 (2007).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[CrossRef]

Grier, D.

Grier, D. G.

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998).
[CrossRef]

Grieve, J. A.

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology 22(28), 285503 (2011).
[CrossRef] [PubMed]

D. M. Carberry, S. H. Simpson, J. A. Grieve, Y. Wang, H. Schäfer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Calibration of optically trapped nanotools,” Nanotechnology 21(17), 175501 (2010).
[CrossRef] [PubMed]

Gu, F.

F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano 4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

Gupta, S. K.

A. G. Banerjee, S. Chowdhury, W. Losert, and S. K. Gupta, “Survey on indirect optical manipulation of cells, nucleic acids, and motor proteins,” J. Biomed. Opt. 16(5), 051302 (2011).
[CrossRef] [PubMed]

Hajizadeh, F.

Halsall, R. N. J.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,” New J. Phys. 12(11), 113056 (2010).
[CrossRef]

Hanna, S.

D. M. Carberry, S. H. Simpson, J. A. Grieve, Y. Wang, H. Schäfer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Calibration of optically trapped nanotools,” Nanotechnology 21(17), 175501 (2010).
[CrossRef] [PubMed]

Hernández-Pozos, J. L.

J. L. Hernández-Pozos, W. M. Lee, L. I. Vera-Robles, A. Campero, and K. Dholakia, “Controlled three-dimensional manipulation of vanadium oxide nanotubes with optical tweezers,” Appl. Phys. Lett. 93(24), 243107 (2008).
[CrossRef]

Hinds, B. J.

M. Majumder, N. Chopra, R. Andrews, and B. J. Hinds, “Nanoscale hydrodynamics: enhanced flow in carbon nanotubes,” Nature 438(7064), 44 (2005).
[CrossRef] [PubMed]

Hirao, K.

Hörber, J. K.

A. Pralle, M. Prummer, E. L. Florin, E. H. Stelzer, and J. K. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44(5), 378–386 (1999).
[CrossRef] [PubMed]

Ichimura, T.

P. Verma, T. Ichimura, T. Yano, Y. Saito, and S. Kawata, “Nano-imaging through tip-enhanced Raman spectroscopy: Stepping beyond the classical limits,” Laser Photonics. Rev. 4(4), 548–561 (2010).
[CrossRef]

Ikin, L.

L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and force measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11(2), 023012 (2009).
[CrossRef]

Jenkins, D. W. K.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,” New J. Phys. 12(11), 113056 (2010).
[CrossRef]

Kawata, S.

P. Verma, T. Ichimura, T. Yano, Y. Saito, and S. Kawata, “Nano-imaging through tip-enhanced Raman spectroscopy: Stepping beyond the classical limits,” Laser Photonics. Rev. 4(4), 548–561 (2010).
[CrossRef]

Keiding, S.

H. U. Ulriksen, J. Thøgersen, S. Keiding, I. Perch-Nielsen, J. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rap. Publ. 3, 080341–080345 (2008).

Kelemen, L.

Kim, J.

Kitamura, N.

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, and H. Masuhara, “Multibeam laser manipulation and fixation of microparticles,” Appl. Phys. Lett. 60(3), 310–312 (1992).
[CrossRef]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Pattern formation and flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett. 16(19), 1463–1465 (1991).
[CrossRef] [PubMed]

Kocher, S. J.

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology 22(28), 285503 (2011).
[CrossRef] [PubMed]

Koshioka, M.

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, and H. Masuhara, “Multibeam laser manipulation and fixation of microparticles,” Appl. Phys. Lett. 60(3), 310–312 (1992).
[CrossRef]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Pattern formation and flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett. 16(19), 1463–1465 (1991).
[CrossRef] [PubMed]

Lee, W. M.

J. L. Hernández-Pozos, W. M. Lee, L. I. Vera-Robles, A. Campero, and K. Dholakia, “Controlled three-dimensional manipulation of vanadium oxide nanotubes with optical tweezers,” Appl. Phys. Lett. 93(24), 243107 (2008).
[CrossRef]

Levskaya, A.

A. Levskaya, O. D. Weiner, W. A. Lim, and C. A. Voigt, “Spatiotemporal control of cell signalling using a light-switchable protein interaction,” Nature 461(7266), 997–1001 (2009).
[CrossRef] [PubMed]

Li, Y.

D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Z. Dong, and X. M. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90(7), 071106 (2007).
[CrossRef]

Lieberwirth, I.

D. O’Carroll, I. Lieberwirth, and G. Redmond, “Microcavity effects and optically pumped lasing in single conjugated polymer nanowires,” Nat. Nanotechnol. 2(3), 180–184 (2007).
[CrossRef] [PubMed]

Lim, W. A.

A. Levskaya, O. D. Weiner, W. A. Lim, and C. A. Voigt, “Spatiotemporal control of cell signalling using a light-switchable protein interaction,” Nature 461(7266), 997–1001 (2009).
[CrossRef] [PubMed]

Liphardt, J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Loader, I.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,” New J. Phys. 12(11), 113056 (2010).
[CrossRef]

Losert, W.

A. G. Banerjee, S. Chowdhury, W. Losert, and S. K. Gupta, “Survey on indirect optical manipulation of cells, nucleic acids, and motor proteins,” J. Biomed. Opt. 16(5), 051302 (2011).
[CrossRef] [PubMed]

Majumder, M.

M. Majumder, N. Chopra, R. Andrews, and B. J. Hinds, “Nanoscale hydrodynamics: enhanced flow in carbon nanotubes,” Nature 438(7064), 44 (2005).
[CrossRef] [PubMed]

Masuhara, H.

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, and H. Masuhara, “Multibeam laser manipulation and fixation of microparticles,” Appl. Phys. Lett. 60(3), 310–312 (1992).
[CrossRef]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Pattern formation and flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett. 16(19), 1463–1465 (1991).
[CrossRef] [PubMed]

Maxwell, I.

L. Tong, R. Gattass, I. Maxwell, J. Ashcom, and E. Mazur, “Optical loss measurements in femtosecond laser written waveguides in glass,” Opt. Commun. 259(2), 626–630 (2006).
[CrossRef]

Mazilu, M.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[CrossRef]

Mazur, E.

L. Tong, R. Gattass, I. Maxwell, J. Ashcom, and E. Mazur, “Optical loss measurements in femtosecond laser written waveguides in glass,” Opt. Commun. 259(2), 626–630 (2006).
[CrossRef]

McLeod, E.

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[CrossRef] [PubMed]

Merenda, F.

Mervis, J.

Miles, M. J.

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology 22(28), 285503 (2011).
[CrossRef] [PubMed]

D. M. Carberry, S. H. Simpson, J. A. Grieve, Y. Wang, H. Schäfer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Calibration of optically trapped nanotools,” Nanotechnology 21(17), 175501 (2010).
[CrossRef] [PubMed]

L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and force measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11(2), 023012 (2009).
[CrossRef]

Misawa, H.

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, and H. Masuhara, “Multibeam laser manipulation and fixation of microparticles,” Appl. Phys. Lett. 60(3), 310–312 (1992).
[CrossRef]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Pattern formation and flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett. 16(19), 1463–1465 (1991).
[CrossRef] [PubMed]

Miura, K.

Mogensen, P. C.

Mueth, D.

Nagy, A.

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
[CrossRef] [PubMed]

Nakayama, Y.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Neuman, K. C.

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
[CrossRef] [PubMed]

O’Carroll, D.

D. O’Carroll, I. Lieberwirth, and G. Redmond, “Microcavity effects and optically pumped lasing in single conjugated polymer nanowires,” Nat. Nanotechnol. 2(3), 180–184 (2007).
[CrossRef] [PubMed]

Olof, S. N.

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology 22(28), 285503 (2011).
[CrossRef] [PubMed]

Onorato, R. M.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Ormos, P.

Ovsianikov, A.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,” New J. Phys. 12(11), 113056 (2010).
[CrossRef]

Padgett, M. J.

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology 22(28), 285503 (2011).
[CrossRef] [PubMed]

D. M. Carberry, S. H. Simpson, J. A. Grieve, Y. Wang, H. Schäfer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Calibration of optically trapped nanotools,” Nanotechnology 21(17), 175501 (2010).
[CrossRef] [PubMed]

L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and force measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11(2), 023012 (2009).
[CrossRef]

Palima, D.

Palima, D. Z.

H. U. Ulriksen, J. Thøgersen, S. Keiding, I. Perch-Nielsen, J. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rap. Publ. 3, 080341–080345 (2008).

Parker, A. W.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,” New J. Phys. 12(11), 113056 (2010).
[CrossRef]

Pauzauskie, P. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Perch-Nielsen, I.

H. U. Ulriksen, J. Thøgersen, S. Keiding, I. Perch-Nielsen, J. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rap. Publ. 3, 080341–080345 (2008).

Perch-Nielsen, I. R.

Phillips, D. B.

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology 22(28), 285503 (2011).
[CrossRef] [PubMed]

Plewa, J.

Pollard, M. R.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,” New J. Phys. 12(11), 113056 (2010).
[CrossRef]

Pralle, A.

A. Pralle, M. Prummer, E. L. Florin, E. H. Stelzer, and J. K. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44(5), 378–386 (1999).
[CrossRef] [PubMed]

Prentiss, M.

Prummer, M.

A. Pralle, M. Prummer, E. L. Florin, E. H. Stelzer, and J. K. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44(5), 378–386 (1999).
[CrossRef] [PubMed]

Qi, F. J.

D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Z. Dong, and X. M. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90(7), 071106 (2007).
[CrossRef]

Radenovic, A.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Redmond, G.

D. O’Carroll, I. Lieberwirth, and G. Redmond, “Microcavity effects and optically pumped lasing in single conjugated polymer nanowires,” Nat. Nanotechnol. 2(3), 180–184 (2007).
[CrossRef] [PubMed]

Reihani, S. N. S.

Rodrigo, P. J.

Rohner, J.

Saito, Y.

P. Verma, T. Ichimura, T. Yano, Y. Saito, and S. Kawata, “Nano-imaging through tip-enhanced Raman spectroscopy: Stepping beyond the classical limits,” Laser Photonics. Rev. 4(4), 548–561 (2010).
[CrossRef]

Salathé, R. P.

Sasaki, K.

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, and H. Masuhara, “Multibeam laser manipulation and fixation of microparticles,” Appl. Phys. Lett. 60(3), 310–312 (1992).
[CrossRef]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Pattern formation and flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett. 16(19), 1463–1465 (1991).
[CrossRef] [PubMed]

Saykally, R. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Schäfer, H.

D. M. Carberry, S. H. Simpson, J. A. Grieve, Y. Wang, H. Schäfer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Calibration of optically trapped nanotools,” Nanotechnology 21(17), 175501 (2010).
[CrossRef] [PubMed]

Shroff, H.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Simmons, R. M.

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368(6467), 113–119 (1994).
[CrossRef] [PubMed]

Simpson, S. H.

D. M. Carberry, S. H. Simpson, J. A. Grieve, Y. Wang, H. Schäfer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Calibration of optically trapped nanotools,” Nanotechnology 21(17), 175501 (2010).
[CrossRef] [PubMed]

Spudich, J. A.

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368(6467), 113–119 (1994).
[CrossRef] [PubMed]

Stapelfeldt, H.

H. U. Ulriksen, J. Thøgersen, S. Keiding, I. Perch-Nielsen, J. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rap. Publ. 3, 080341–080345 (2008).

Steinhart, M.

D. M. Carberry, S. H. Simpson, J. A. Grieve, Y. Wang, H. Schäfer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Calibration of optically trapped nanotools,” Nanotechnology 21(17), 175501 (2010).
[CrossRef] [PubMed]

Stelzer, E. H.

A. Pralle, M. Prummer, E. L. Florin, E. H. Stelzer, and J. K. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44(5), 378–386 (1999).
[CrossRef] [PubMed]

Stevens, R.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,” New J. Phys. 12(11), 113056 (2010).
[CrossRef]

Sugimoto, N.

Tan, D. F.

D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Z. Dong, and X. M. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90(7), 071106 (2007).
[CrossRef]

Tanner, E.

Tauro, S.

Thøgersen, J.

H. U. Ulriksen, J. Thøgersen, S. Keiding, I. Perch-Nielsen, J. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rap. Publ. 3, 080341–080345 (2008).

Tong, L.

F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano 4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

L. Tong, R. Gattass, I. Maxwell, J. Ashcom, and E. Mazur, “Optical loss measurements in femtosecond laser written waveguides in glass,” Opt. Commun. 259(2), 626–630 (2006).
[CrossRef]

Towrie, M.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,” New J. Phys. 12(11), 113056 (2010).
[CrossRef]

Trepagnier, E.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Turchetta, R.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,” New J. Phys. 12(11), 113056 (2010).
[CrossRef]

Ulriksen, H. U.

H. U. Ulriksen, J. Thøgersen, S. Keiding, I. Perch-Nielsen, J. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rap. Publ. 3, 080341–080345 (2008).

Valkai, S.

Van Engen, A. G.

Vera-Robles, L. I.

J. L. Hernández-Pozos, W. M. Lee, L. I. Vera-Robles, A. Campero, and K. Dholakia, “Controlled three-dimensional manipulation of vanadium oxide nanotubes with optical tweezers,” Appl. Phys. Lett. 93(24), 243107 (2008).
[CrossRef]

Verma, P.

P. Verma, T. Ichimura, T. Yano, Y. Saito, and S. Kawata, “Nano-imaging through tip-enhanced Raman spectroscopy: Stepping beyond the classical limits,” Laser Photonics. Rev. 4(4), 548–561 (2010).
[CrossRef]

Voigt, C. A.

A. Levskaya, O. D. Weiner, W. A. Lim, and C. A. Voigt, “Spatiotemporal control of cell signalling using a light-switchable protein interaction,” Nature 461(7266), 997–1001 (2009).
[CrossRef] [PubMed]

Wang, P.

F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano 4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

Wang, Y.

D. M. Carberry, S. H. Simpson, J. A. Grieve, Y. Wang, H. Schäfer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Calibration of optically trapped nanotools,” Nanotechnology 21(17), 175501 (2010).
[CrossRef] [PubMed]

Ward, A. D.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,” New J. Phys. 12(11), 113056 (2010).
[CrossRef]

Weiner, O. D.

A. Levskaya, O. D. Weiner, W. A. Lim, and C. A. Voigt, “Spatiotemporal control of cell signalling using a light-switchable protein interaction,” Nature 461(7266), 997–1001 (2009).
[CrossRef] [PubMed]

Yan, R.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[CrossRef]

Yang, H.

D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Z. Dong, and X. M. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90(7), 071106 (2007).
[CrossRef]

Yang, P.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[CrossRef]

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Yang, Z.

F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano 4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

Yano, T.

P. Verma, T. Ichimura, T. Yano, Y. Saito, and S. Kawata, “Nano-imaging through tip-enhanced Raman spectroscopy: Stepping beyond the classical limits,” Laser Photonics. Rev. 4(4), 548–561 (2010).
[CrossRef]

Yee, K. S.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14(3), 302–307 (1966).
[CrossRef]

Yu, H.

F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano 4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

Zarinetchi, F.

ACS Nano (1)

F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano 4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, and H. Masuhara, “Multibeam laser manipulation and fixation of microparticles,” Appl. Phys. Lett. 60(3), 310–312 (1992).
[CrossRef]

A. Ashkin and J. M. Dziedzic, “Feedback stabilization of optically levitated particles,” Appl. Phys. Lett. 30(4), 202–204 (1977).
[CrossRef]

J. L. Hernández-Pozos, W. M. Lee, L. I. Vera-Robles, A. Campero, and K. Dholakia, “Controlled three-dimensional manipulation of vanadium oxide nanotubes with optical tweezers,” Appl. Phys. Lett. 93(24), 243107 (2008).
[CrossRef]

D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Z. Dong, and X. M. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90(7), 071106 (2007).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14(3), 302–307 (1966).
[CrossRef]

J. Biomed. Opt. (1)

A. G. Banerjee, S. Chowdhury, W. Losert, and S. K. Gupta, “Survey on indirect optical manipulation of cells, nucleic acids, and motor proteins,” J. Biomed. Opt. 16(5), 051302 (2011).
[CrossRef] [PubMed]

J. Eur. Opt. Soc. Rap. Publ. (1)

H. U. Ulriksen, J. Thøgersen, S. Keiding, I. Perch-Nielsen, J. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rap. Publ. 3, 080341–080345 (2008).

J. Opt. (1)

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
[CrossRef]

Laser Photonics. Rev. (1)

P. Verma, T. Ichimura, T. Yano, Y. Saito, and S. Kawata, “Nano-imaging through tip-enhanced Raman spectroscopy: Stepping beyond the classical limits,” Laser Photonics. Rev. 4(4), 548–561 (2010).
[CrossRef]

Microsc. Res. Tech. (1)

A. Pralle, M. Prummer, E. L. Florin, E. H. Stelzer, and J. K. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44(5), 378–386 (1999).
[CrossRef] [PubMed]

Nanotechnology (2)

D. M. Carberry, S. H. Simpson, J. A. Grieve, Y. Wang, H. Schäfer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Calibration of optically trapped nanotools,” Nanotechnology 21(17), 175501 (2010).
[CrossRef] [PubMed]

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology 22(28), 285503 (2011).
[CrossRef] [PubMed]

Nat. Mater. (1)

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Nat. Methods (1)

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
[CrossRef] [PubMed]

Nat. Nanotechnol. (2)

D. O’Carroll, I. Lieberwirth, and G. Redmond, “Microcavity effects and optically pumped lasing in single conjugated polymer nanowires,” Nat. Nanotechnol. 2(3), 180–184 (2007).
[CrossRef] [PubMed]

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[CrossRef] [PubMed]

Nat. Photonics (4)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[CrossRef]

J. Glückstad, “Optical manipulation: Sculpting the object,” Nat. Photonics 5(1), 7–8 (2011).
[CrossRef]

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[CrossRef]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[CrossRef]

Nature (4)

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368(6467), 113–119 (1994).
[CrossRef] [PubMed]

A. Levskaya, O. D. Weiner, W. A. Lim, and C. A. Voigt, “Spatiotemporal control of cell signalling using a light-switchable protein interaction,” Nature 461(7266), 997–1001 (2009).
[CrossRef] [PubMed]

M. Majumder, N. Chopra, R. Andrews, and B. J. Hinds, “Nanoscale hydrodynamics: enhanced flow in carbon nanotubes,” Nature 438(7064), 44 (2005).
[CrossRef] [PubMed]

New J. Phys. (2)

L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and force measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11(2), 023012 (2009).
[CrossRef]

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,” New J. Phys. 12(11), 113056 (2010).
[CrossRef]

Opt. Commun. (1)

L. Tong, R. Gattass, I. Maxwell, J. Ashcom, and E. Mazur, “Optical loss measurements in femtosecond laser written waveguides in glass,” Opt. Commun. 259(2), 626–630 (2006).
[CrossRef]

Opt. Express (7)

Opt. Lett. (5)

Phys. Rev. Lett. (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Rev. Sci. Instrum. (1)

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998).
[CrossRef]

Other (3)

J. Glückstad, “Manipulating microtools with nanofeatures using light in 3d real-time,” Presented at the iNANO Seminar, Aarhus University, Denmark, 2 February, 2007.

T. A. Anhøj, “Fabrication of High Aspect Ratio SU-8 Structures for Integrated Spectrometers,” doctoral dissertation, Technical University of Denmark, Denmark (2007).

G. P. Agrawal, Lightwave Technology: Components and Devices (Wiley, 2004), pp. 18–19.

Supplementary Material (5)

» Media 1: MOV (1168 KB)     
» Media 2: MOV (895 KB)     
» Media 3: MOV (108 KB)     
» Media 4: MOV (218 KB)     
» Media 5: MOV (189 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Redirecting and confining light from far-field optics to a localized target. (a) FDTD model of propagation (λ = 532nm) through a bent polymer waveguide (SU8, n = 1.6; bend radius, R = 5.8μm) that is immersed in water (n = 1.33). Insets show the field near the tip for different tapers and illumination wavelengths (top: λ = 532nm; bottom: λ = 1064nm. The simulated tips can have abrupt tapers that start ~2µm before the tip or gradual tapers that start right after the bend and appear as slender tips in the insets. The end of the tips are flattened with widths measuring ~0.1µm to ~0.4µm) The time evolution is shown in Media 1 (b) Artist rendition to illustrate the trapping and waveguiding geometry: the bent waveguide redirects vertical light beams onto a target located on the side of a 3D target. (c) Intensity linescans along the dashed lines in (a) show that light exiting the tip (solid line, II) is narrower and has higher peak intensity than the incoming light (dashed, I). The FWHM’s are illustrated by the shaded regions.

Fig. 2
Fig. 2

SEM images of representative two-photon polymerized structures: a) A bent waveguide (bending radius R~8 μm; width ~1.5 μm) sitting atop a supporting structure having spheroidal handles for optical trapping; the waveguide is connected via reverse-angled rods for minimal light-coupling loss the support structure; b) – d) Some tip structures that can be fabricated

Fig. 3
Fig. 3

Experimental setup and optical micromanipulation. (a) Schematic of the experimental setup showing the counterpropagating beam traps, top- and sideview microscope and light coupling. (b) Experimental snapshots showing a 2PP-structure being optically manipulated around a relatively large bubble (~80μm). (c) Snapshots from simultaneous optical manipulation of two microstructures (Media 2). (scalebar:10μm)

Fig. 4
Fig. 4

Guiding light through waveguides held by stationary optical traps. Snapshots from side-view microscopy (Media 3) during light coupling experiments through an optically trapped structure showing (a) λ = 532nm; (b) λ = 1064nm; (c) fluorescence at 532nm excitation as the waveguide points towards the microscope. (d) and (e): Fluorescence images at 532nm excitation when the waveguide is reoriented to visualize the beam propagation. Light emerging from the tip exhibits a pronged pattern, (d), which can be focused by using an optically trapped bead as lens, (e). (scalebar:10μm)

Fig. 5
Fig. 5

Light coupling through a dynamically manipulated waveguide. (a) Snapshots from sideview fluorescent imaging of an optically trapped and manipulated waveguide (Media 4). (b) Snapshots showing selective fluorescence excitation of a target bead among a group of beads (left: vertical column of beads; right: 2 × 2 vertically arranged beads). (c) Snapshots showing reversed light coupling: an optically trapped structure creates a localized field and a second trapped structure is manipulated to scan the local field; the reverse-coupled light is visible from the top microscope (Media 5). The yellow arrow indicates where the light couples out when the scanning tip detects an optical field (scalebar:10μm)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

NA= n waveguide 2 n background 2 0.065.
V= Dπ λ NA=5.26.

Metrics