Abstract

We design a plasmonic fiber waveguide (PFW) composed of coaxial cylindrical metal-dielectric multilayers in nanoscale, and constitute the corresponding dynamical equations describing the propagation modes in the PFW with the Kerr nonlinearity in the dielectric layers. The physics is connected to the discrete matrix nonlinear Schrödinger equations, from which the highly confined ring-like solitons in scale of subwavelength are found both for the visible lights and the near-infrared lights in the self-defocusing condition. Moreover, when increasing the intensity of the input light the confinement can be further improved due to the cylindrical symmetry of the PFW, which means both the width and the radius of the ring are reduced.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and A. Atwater, “Plasmonics: a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
    [CrossRef]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
    [CrossRef]
  3. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express,  1922029–22106 (2011).
    [CrossRef] [PubMed]
  4. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484–588 (2009).
    [CrossRef]
  5. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of suface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
    [CrossRef]
  6. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
    [CrossRef]
  7. B. Lee, I. M. Lee, S. Kim, D. H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57, 1479–1497 (2010).
    [CrossRef]
  8. A. Husakou and J. Herrmann, “Steplike transmission of light through a metal-dielectric multilayer structure due to an intensity-dependent sign of the effective dielectric constant,” Phys. Rev. Lett. 99, 127402 (2007).
    [CrossRef] [PubMed]
  9. S. M. Vuković, Z. Jakšić, I. V. Shadrivov, and Y. S. Kivshar, “Plasmonic crystal waveguides,” Appl. Phys. A 103, 615–617 (2011).
    [CrossRef]
  10. C. W. Lin, K. P. Chen, C. N. Hsiao, S. Lin, and C. K. Lee, “Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor,” Sens. Actuators B 113, 169–176 (2006).
    [CrossRef]
  11. N. N. Akhmediev, “Nonlinear theory of surface polaritons,” Zhurn. Eksp. Teoret. Fiz. 84, 1907–1917 (1983).
  12. V. K. Fedyanin and D. Mihalache, “P-polarized nonlinear surface polaritons in layered structures,” Z. Phys. B 47, 167–173 (1982).
    [CrossRef]
  13. F. Lederer and D. Mihalache, “An additional kind of nonlinear s-polarized surface plasmon polaritons,” Solid State Commun. 59, 151–153 (1986).
    [CrossRef]
  14. A. D. Boardman, A. A. Maradudin, G. I. Stegeman, T. Twardowski, and E. M. Wright, “Exact theory of nonlinear p-polarized optical waves,” Phys. Rev. A 35, 1159–1164 (1987).
    [CrossRef] [PubMed]
  15. D. Mihalache, G. I. Stegeman, C. T. Seaton, E. M. Wright, R. Zanoni, A. D. Boardman, and T. Twardowski, “Exact dispersion relations for transverse magnetic polarized guided waves at a nonlinear interface,” Opt. Lett. 12, 187–189 (1987).
    [CrossRef] [PubMed]
  16. D. Mihalache, M. Bertolotti, and C. Sibilia, “Nonlinear wave propagation in planar structures,” Prog. Opt. 27, 229–313 (1989).
  17. Y. Liu, G. Bartal, D. A. Genov, and X. Zhang, “Subwavelength discrete solitons in nonlinear metamaterials,” Phys. Rev. Lett. 99, 153901 (2007).
    [CrossRef] [PubMed]
  18. F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu, “Subwavelength plasmonic lattice solitons in arrays of metallic nanowires,” Phys. Rev. Lett. 104, 106802 (2010).
    [CrossRef] [PubMed]
  19. F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu, “Subwavelength vortical plasmonic lattice solitons,” Opt. Lett. 36, 1179–1181 (2011).
    [CrossRef] [PubMed]
  20. Y. Kou, F. Ye, and X. Chen, “Multipole plasmonic lattice solitons,” Phys. Rev. A 84, 033855 (2011).
    [CrossRef]
  21. O. Peleg, M. Segev, G. Bartal, D. N. Christodoulides, and N. Moiseyev, “Nonlinear waves in subwavelength waveguide arrays: evanescent bands and the ’phoenix soliton’,” Phys. Rev. Lett. 102, 163902 (2009).
    [CrossRef] [PubMed]
  22. I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B 75, 241402(R) (2007).
    [CrossRef]
  23. G. Bartal, G. Lerosey, and X. Zhang, “Subwavelength dynamic focusing in plasmonic nanostructures using time reversal,” Phys. Rev. B 79, 201103 (2009).
    [CrossRef]
  24. Y. V. Kartashov, B. A. Malomed, and L. Torner, “Solitons in nonlinear lattices,” Rev. Mod. Phys. 83, 247–305 (2011).
    [CrossRef]
  25. C. Jiang, S. Markutsya, Y. Pikus, and V. V. Tsukruk, “Freely suspended nanocomposite membranes as highly-sensitive sensors,” Nat. Mater. 3, 721–728 (2004).
    [CrossRef] [PubMed]
  26. Z. Jakšić, S. M. Vuković, J. Buha, and J. Matovic, “Nanomembrane-based plasmonics,” J. Nanophotonics 5, 051818 (2011).
    [CrossRef]
  27. Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc. 129, 14939–14945 (2007).
    [CrossRef] [PubMed]
  28. J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Comm. 1, 143 (2010).
    [CrossRef]
  29. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  30. E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett. 10, 1–5 (2010).
    [CrossRef]
  31. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scal localization,” Phys. Rev. B 73, 035407 (2006).
    [CrossRef]
  32. S. L. Chuang, “A coupled mode formulation by reciprocity and a variational principle,” J. Lightwave Technol. 5, 5–15 (1987).
    [CrossRef]
  33. S. L. Chuang, “A coupled-mode theory for multiwaveguide systems satisfying the reciprocity theorem and power conservation,” J. Lightwave Technol. 5, 174–183 (1987).
    [CrossRef]
  34. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
    [CrossRef]
  35. S. E. Koonin, Computational Physics (Benjamin/Cummings, Menlo Park, 1986).

2011 (6)

S. M. Vuković, Z. Jakšić, I. V. Shadrivov, and Y. S. Kivshar, “Plasmonic crystal waveguides,” Appl. Phys. A 103, 615–617 (2011).
[CrossRef]

Y. Kou, F. Ye, and X. Chen, “Multipole plasmonic lattice solitons,” Phys. Rev. A 84, 033855 (2011).
[CrossRef]

Y. V. Kartashov, B. A. Malomed, and L. Torner, “Solitons in nonlinear lattices,” Rev. Mod. Phys. 83, 247–305 (2011).
[CrossRef]

Z. Jakšić, S. M. Vuković, J. Buha, and J. Matovic, “Nanomembrane-based plasmonics,” J. Nanophotonics 5, 051818 (2011).
[CrossRef]

F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu, “Subwavelength vortical plasmonic lattice solitons,” Opt. Lett. 36, 1179–1181 (2011).
[CrossRef] [PubMed]

M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express,  1922029–22106 (2011).
[CrossRef] [PubMed]

2010 (5)

F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu, “Subwavelength plasmonic lattice solitons in arrays of metallic nanowires,” Phys. Rev. Lett. 104, 106802 (2010).
[CrossRef] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett. 10, 1–5 (2010).
[CrossRef]

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Comm. 1, 143 (2010).
[CrossRef]

B. Lee, I. M. Lee, S. Kim, D. H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57, 1479–1497 (2010).
[CrossRef]

2009 (3)

O. Peleg, M. Segev, G. Bartal, D. N. Christodoulides, and N. Moiseyev, “Nonlinear waves in subwavelength waveguide arrays: evanescent bands and the ’phoenix soliton’,” Phys. Rev. Lett. 102, 163902 (2009).
[CrossRef] [PubMed]

G. Bartal, G. Lerosey, and X. Zhang, “Subwavelength dynamic focusing in plasmonic nanostructures using time reversal,” Phys. Rev. B 79, 201103 (2009).
[CrossRef]

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484–588 (2009).
[CrossRef]

2007 (5)

Y. Liu, G. Bartal, D. A. Genov, and X. Zhang, “Subwavelength discrete solitons in nonlinear metamaterials,” Phys. Rev. Lett. 99, 153901 (2007).
[CrossRef] [PubMed]

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B 75, 241402(R) (2007).
[CrossRef]

Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc. 129, 14939–14945 (2007).
[CrossRef] [PubMed]

A. Husakou and J. Herrmann, “Steplike transmission of light through a metal-dielectric multilayer structure due to an intensity-dependent sign of the effective dielectric constant,” Phys. Rev. Lett. 99, 127402 (2007).
[CrossRef] [PubMed]

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of suface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[CrossRef]

2006 (2)

C. W. Lin, K. P. Chen, C. N. Hsiao, S. Lin, and C. K. Lee, “Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor,” Sens. Actuators B 113, 169–176 (2006).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scal localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

2004 (1)

C. Jiang, S. Markutsya, Y. Pikus, and V. V. Tsukruk, “Freely suspended nanocomposite membranes as highly-sensitive sensors,” Nat. Mater. 3, 721–728 (2004).
[CrossRef] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef]

2001 (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and A. Atwater, “Plasmonics: a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

1989 (1)

D. Mihalache, M. Bertolotti, and C. Sibilia, “Nonlinear wave propagation in planar structures,” Prog. Opt. 27, 229–313 (1989).

1987 (4)

S. L. Chuang, “A coupled mode formulation by reciprocity and a variational principle,” J. Lightwave Technol. 5, 5–15 (1987).
[CrossRef]

S. L. Chuang, “A coupled-mode theory for multiwaveguide systems satisfying the reciprocity theorem and power conservation,” J. Lightwave Technol. 5, 174–183 (1987).
[CrossRef]

D. Mihalache, G. I. Stegeman, C. T. Seaton, E. M. Wright, R. Zanoni, A. D. Boardman, and T. Twardowski, “Exact dispersion relations for transverse magnetic polarized guided waves at a nonlinear interface,” Opt. Lett. 12, 187–189 (1987).
[CrossRef] [PubMed]

A. D. Boardman, A. A. Maradudin, G. I. Stegeman, T. Twardowski, and E. M. Wright, “Exact theory of nonlinear p-polarized optical waves,” Phys. Rev. A 35, 1159–1164 (1987).
[CrossRef] [PubMed]

1986 (1)

F. Lederer and D. Mihalache, “An additional kind of nonlinear s-polarized surface plasmon polaritons,” Solid State Commun. 59, 151–153 (1986).
[CrossRef]

1983 (1)

N. N. Akhmediev, “Nonlinear theory of surface polaritons,” Zhurn. Eksp. Teoret. Fiz. 84, 1907–1917 (1983).

1982 (1)

V. K. Fedyanin and D. Mihalache, “P-polarized nonlinear surface polaritons in layered structures,” Z. Phys. B 47, 167–173 (1982).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Akhmediev, N. N.

N. N. Akhmediev, “Nonlinear theory of surface polaritons,” Zhurn. Eksp. Teoret. Fiz. 84, 1907–1917 (1983).

Artemyev, M.

Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc. 129, 14939–14945 (2007).
[CrossRef] [PubMed]

Atwater, A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and A. Atwater, “Plasmonics: a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scal localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Avrutsky, I.

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B 75, 241402(R) (2007).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef]

Bartal, G.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Comm. 1, 143 (2010).
[CrossRef]

O. Peleg, M. Segev, G. Bartal, D. N. Christodoulides, and N. Moiseyev, “Nonlinear waves in subwavelength waveguide arrays: evanescent bands and the ’phoenix soliton’,” Phys. Rev. Lett. 102, 163902 (2009).
[CrossRef] [PubMed]

G. Bartal, G. Lerosey, and X. Zhang, “Subwavelength dynamic focusing in plasmonic nanostructures using time reversal,” Phys. Rev. B 79, 201103 (2009).
[CrossRef]

Y. Liu, G. Bartal, D. A. Genov, and X. Zhang, “Subwavelength discrete solitons in nonlinear metamaterials,” Phys. Rev. Lett. 99, 153901 (2007).
[CrossRef] [PubMed]

Berini, P.

Bertolotti, M.

D. Mihalache, M. Bertolotti, and C. Sibilia, “Nonlinear wave propagation in planar structures,” Prog. Opt. 27, 229–313 (1989).

Boardman, A. D.

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and A. Atwater, “Plasmonics: a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Buha, J.

Z. Jakšić, S. M. Vuković, J. Buha, and J. Matovic, “Nanomembrane-based plasmonics,” J. Nanophotonics 5, 051818 (2011).
[CrossRef]

Chen, K. P.

C. W. Lin, K. P. Chen, C. N. Hsiao, S. Lin, and C. K. Lee, “Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor,” Sens. Actuators B 113, 169–176 (2006).
[CrossRef]

Chen, X.

Y. Kou, F. Ye, and X. Chen, “Multipole plasmonic lattice solitons,” Phys. Rev. A 84, 033855 (2011).
[CrossRef]

Choi, H.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Comm. 1, 143 (2010).
[CrossRef]

Christodoulides, D. N.

O. Peleg, M. Segev, G. Bartal, D. N. Christodoulides, and N. Moiseyev, “Nonlinear waves in subwavelength waveguide arrays: evanescent bands and the ’phoenix soliton’,” Phys. Rev. Lett. 102, 163902 (2009).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Chuang, S. L.

S. L. Chuang, “A coupled mode formulation by reciprocity and a variational principle,” J. Lightwave Technol. 5, 5–15 (1987).
[CrossRef]

S. L. Chuang, “A coupled-mode theory for multiwaveguide systems satisfying the reciprocity theorem and power conservation,” J. Lightwave Technol. 5, 174–183 (1987).
[CrossRef]

Chulkov, E. V.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of suface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scal localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef]

Echenique, P. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of suface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[CrossRef]

Elser, J.

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B 75, 241402(R) (2007).
[CrossRef]

Fedutik, Y.

Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc. 129, 14939–14945 (2007).
[CrossRef] [PubMed]

Fedyanin, V. K.

V. K. Fedyanin and D. Mihalache, “P-polarized nonlinear surface polaritons in layered structures,” Z. Phys. B 47, 167–173 (1982).
[CrossRef]

Genov, D. A.

Y. Liu, G. Bartal, D. A. Genov, and X. Zhang, “Subwavelength discrete solitons in nonlinear metamaterials,” Phys. Rev. Lett. 99, 153901 (2007).
[CrossRef] [PubMed]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Herrmann, J.

A. Husakou and J. Herrmann, “Steplike transmission of light through a metal-dielectric multilayer structure due to an intensity-dependent sign of the effective dielectric constant,” Phys. Rev. Lett. 99, 127402 (2007).
[CrossRef] [PubMed]

Hesselink, L.

B. Lee, I. M. Lee, S. Kim, D. H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57, 1479–1497 (2010).
[CrossRef]

Hsiao, C. N.

C. W. Lin, K. P. Chen, C. N. Hsiao, S. Lin, and C. K. Lee, “Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor,” Sens. Actuators B 113, 169–176 (2006).
[CrossRef]

Hu, B.

F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu, “Subwavelength vortical plasmonic lattice solitons,” Opt. Lett. 36, 1179–1181 (2011).
[CrossRef] [PubMed]

F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu, “Subwavelength plasmonic lattice solitons in arrays of metallic nanowires,” Phys. Rev. Lett. 104, 106802 (2010).
[CrossRef] [PubMed]

Husakou, A.

A. Husakou and J. Herrmann, “Steplike transmission of light through a metal-dielectric multilayer structure due to an intensity-dependent sign of the effective dielectric constant,” Phys. Rev. Lett. 99, 127402 (2007).
[CrossRef] [PubMed]

Jakšic, Z.

Z. Jakšić, S. M. Vuković, J. Buha, and J. Matovic, “Nanomembrane-based plasmonics,” J. Nanophotonics 5, 051818 (2011).
[CrossRef]

S. M. Vuković, Z. Jakšić, I. V. Shadrivov, and Y. S. Kivshar, “Plasmonic crystal waveguides,” Appl. Phys. A 103, 615–617 (2011).
[CrossRef]

Jiang, C.

C. Jiang, S. Markutsya, Y. Pikus, and V. V. Tsukruk, “Freely suspended nanocomposite membranes as highly-sensitive sensors,” Nat. Mater. 3, 721–728 (2004).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Kartashov, Y. V.

Y. V. Kartashov, B. A. Malomed, and L. Torner, “Solitons in nonlinear lattices,” Rev. Mod. Phys. 83, 247–305 (2011).
[CrossRef]

Kik, P. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and A. Atwater, “Plasmonics: a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Kim, S.

B. Lee, I. M. Lee, S. Kim, D. H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57, 1479–1497 (2010).
[CrossRef]

Kivshar, Y. S.

S. M. Vuković, Z. Jakšić, I. V. Shadrivov, and Y. S. Kivshar, “Plasmonic crystal waveguides,” Appl. Phys. A 103, 615–617 (2011).
[CrossRef]

Koonin, S. E.

S. E. Koonin, Computational Physics (Benjamin/Cummings, Menlo Park, 1986).

Kou, Y.

Y. Kou, F. Ye, and X. Chen, “Multipole plasmonic lattice solitons,” Phys. Rev. A 84, 033855 (2011).
[CrossRef]

Lederer, F.

F. Lederer and D. Mihalache, “An additional kind of nonlinear s-polarized surface plasmon polaritons,” Solid State Commun. 59, 151–153 (1986).
[CrossRef]

Lee, B.

B. Lee, I. M. Lee, S. Kim, D. H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57, 1479–1497 (2010).
[CrossRef]

Lee, C. K.

C. W. Lin, K. P. Chen, C. N. Hsiao, S. Lin, and C. K. Lee, “Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor,” Sens. Actuators B 113, 169–176 (2006).
[CrossRef]

Lee, I. M.

B. Lee, I. M. Lee, S. Kim, D. H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57, 1479–1497 (2010).
[CrossRef]

Lerosey, G.

G. Bartal, G. Lerosey, and X. Zhang, “Subwavelength dynamic focusing in plasmonic nanostructures using time reversal,” Phys. Rev. B 79, 201103 (2009).
[CrossRef]

Lin, C. W.

C. W. Lin, K. P. Chen, C. N. Hsiao, S. Lin, and C. K. Lee, “Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor,” Sens. Actuators B 113, 169–176 (2006).
[CrossRef]

Lin, S.

C. W. Lin, K. P. Chen, C. N. Hsiao, S. Lin, and C. K. Lee, “Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor,” Sens. Actuators B 113, 169–176 (2006).
[CrossRef]

Liu, Y.

Y. Liu, G. Bartal, D. A. Genov, and X. Zhang, “Subwavelength discrete solitons in nonlinear metamaterials,” Phys. Rev. Lett. 99, 153901 (2007).
[CrossRef] [PubMed]

Liu, Z.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Comm. 1, 143 (2010).
[CrossRef]

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett. 10, 1–5 (2010).
[CrossRef]

Maier, S. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and A. Atwater, “Plasmonics: a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Malomed, B. A.

Y. V. Kartashov, B. A. Malomed, and L. Torner, “Solitons in nonlinear lattices,” Rev. Mod. Phys. 83, 247–305 (2011).
[CrossRef]

Maradudin, A. A.

A. D. Boardman, A. A. Maradudin, G. I. Stegeman, T. Twardowski, and E. M. Wright, “Exact theory of nonlinear p-polarized optical waves,” Phys. Rev. A 35, 1159–1164 (1987).
[CrossRef] [PubMed]

Markutsya, S.

C. Jiang, S. Markutsya, Y. Pikus, and V. V. Tsukruk, “Freely suspended nanocomposite membranes as highly-sensitive sensors,” Nat. Mater. 3, 721–728 (2004).
[CrossRef] [PubMed]

Matovic, J.

Z. Jakšić, S. M. Vuković, J. Buha, and J. Matovic, “Nanomembrane-based plasmonics,” J. Nanophotonics 5, 051818 (2011).
[CrossRef]

Mei, Y.

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett. 10, 1–5 (2010).
[CrossRef]

Meltzer, S.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and A. Atwater, “Plasmonics: a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Mihalache, D.

F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu, “Subwavelength vortical plasmonic lattice solitons,” Opt. Lett. 36, 1179–1181 (2011).
[CrossRef] [PubMed]

F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu, “Subwavelength plasmonic lattice solitons in arrays of metallic nanowires,” Phys. Rev. Lett. 104, 106802 (2010).
[CrossRef] [PubMed]

D. Mihalache, M. Bertolotti, and C. Sibilia, “Nonlinear wave propagation in planar structures,” Prog. Opt. 27, 229–313 (1989).

D. Mihalache, G. I. Stegeman, C. T. Seaton, E. M. Wright, R. Zanoni, A. D. Boardman, and T. Twardowski, “Exact dispersion relations for transverse magnetic polarized guided waves at a nonlinear interface,” Opt. Lett. 12, 187–189 (1987).
[CrossRef] [PubMed]

F. Lederer and D. Mihalache, “An additional kind of nonlinear s-polarized surface plasmon polaritons,” Solid State Commun. 59, 151–153 (1986).
[CrossRef]

V. K. Fedyanin and D. Mihalache, “P-polarized nonlinear surface polaritons in layered structures,” Z. Phys. B 47, 167–173 (1982).
[CrossRef]

Moiseyev, N.

O. Peleg, M. Segev, G. Bartal, D. N. Christodoulides, and N. Moiseyev, “Nonlinear waves in subwavelength waveguide arrays: evanescent bands and the ’phoenix soliton’,” Phys. Rev. Lett. 102, 163902 (2009).
[CrossRef] [PubMed]

Oh, D. H.

B. Lee, I. M. Lee, S. Kim, D. H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57, 1479–1497 (2010).
[CrossRef]

Panoiu, N. C.

F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu, “Subwavelength vortical plasmonic lattice solitons,” Opt. Lett. 36, 1179–1181 (2011).
[CrossRef] [PubMed]

F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu, “Subwavelength plasmonic lattice solitons in arrays of metallic nanowires,” Phys. Rev. Lett. 104, 106802 (2010).
[CrossRef] [PubMed]

Peleg, O.

O. Peleg, M. Segev, G. Bartal, D. N. Christodoulides, and N. Moiseyev, “Nonlinear waves in subwavelength waveguide arrays: evanescent bands and the ’phoenix soliton’,” Phys. Rev. Lett. 102, 163902 (2009).
[CrossRef] [PubMed]

Pikus, Y.

C. Jiang, S. Markutsya, Y. Pikus, and V. V. Tsukruk, “Freely suspended nanocomposite membranes as highly-sensitive sensors,” Nat. Mater. 3, 721–728 (2004).
[CrossRef] [PubMed]

Pitarke, J. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of suface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[CrossRef]

Podolskiy, V.

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B 75, 241402(R) (2007).
[CrossRef]

Requicha, A. A. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and A. Atwater, “Plasmonics: a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Rho, J.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Comm. 1, 143 (2010).
[CrossRef]

Salakhutdinov, I.

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B 75, 241402(R) (2007).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
[CrossRef]

Schmidt, O. G.

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett. 10, 1–5 (2010).
[CrossRef]

Seaton, C. T.

Segev, M.

O. Peleg, M. Segev, G. Bartal, D. N. Christodoulides, and N. Moiseyev, “Nonlinear waves in subwavelength waveguide arrays: evanescent bands and the ’phoenix soliton’,” Phys. Rev. Lett. 102, 163902 (2009).
[CrossRef] [PubMed]

Shadrivov, I. V.

S. M. Vuković, Z. Jakšić, I. V. Shadrivov, and Y. S. Kivshar, “Plasmonic crystal waveguides,” Appl. Phys. A 103, 615–617 (2011).
[CrossRef]

Sibilia, C.

D. Mihalache, M. Bertolotti, and C. Sibilia, “Nonlinear wave propagation in planar structures,” Prog. Opt. 27, 229–313 (1989).

Silkin, V. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of suface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[CrossRef]

Smith, E. J.

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett. 10, 1–5 (2010).
[CrossRef]

Stegeman, G. I.

Stockman, M. I.

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scal localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
[CrossRef]

Temnov, V.

Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc. 129, 14939–14945 (2007).
[CrossRef] [PubMed]

Torner, L.

Y. V. Kartashov, B. A. Malomed, and L. Torner, “Solitons in nonlinear lattices,” Rev. Mod. Phys. 83, 247–305 (2011).
[CrossRef]

Tsukruk, V. V.

C. Jiang, S. Markutsya, Y. Pikus, and V. V. Tsukruk, “Freely suspended nanocomposite membranes as highly-sensitive sensors,” Nat. Mater. 3, 721–728 (2004).
[CrossRef] [PubMed]

Twardowski, T.

Ustinovich, E.

Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc. 129, 14939–14945 (2007).
[CrossRef] [PubMed]

Vukovic, S. M.

S. M. Vuković, Z. Jakšić, I. V. Shadrivov, and Y. S. Kivshar, “Plasmonic crystal waveguides,” Appl. Phys. A 103, 615–617 (2011).
[CrossRef]

Z. Jakšić, S. M. Vuković, J. Buha, and J. Matovic, “Nanomembrane-based plasmonics,” J. Nanophotonics 5, 051818 (2011).
[CrossRef]

Woggon, U.

Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc. 129, 14939–14945 (2007).
[CrossRef] [PubMed]

Wright, E. M.

Xiong, Y.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Comm. 1, 143 (2010).
[CrossRef]

Ye, F.

Y. Kou, F. Ye, and X. Chen, “Multipole plasmonic lattice solitons,” Phys. Rev. A 84, 033855 (2011).
[CrossRef]

F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu, “Subwavelength vortical plasmonic lattice solitons,” Opt. Lett. 36, 1179–1181 (2011).
[CrossRef] [PubMed]

F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu, “Subwavelength plasmonic lattice solitons in arrays of metallic nanowires,” Phys. Rev. Lett. 104, 106802 (2010).
[CrossRef] [PubMed]

Ye, Z.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Comm. 1, 143 (2010).
[CrossRef]

Yin, X.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Comm. 1, 143 (2010).
[CrossRef]

Zanoni, R.

Zhang, X.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Comm. 1, 143 (2010).
[CrossRef]

G. Bartal, G. Lerosey, and X. Zhang, “Subwavelength dynamic focusing in plasmonic nanostructures using time reversal,” Phys. Rev. B 79, 201103 (2009).
[CrossRef]

Y. Liu, G. Bartal, D. A. Genov, and X. Zhang, “Subwavelength discrete solitons in nonlinear metamaterials,” Phys. Rev. Lett. 99, 153901 (2007).
[CrossRef] [PubMed]

Adv. Mater. (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and A. Atwater, “Plasmonics: a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Adv. Opt. Photon. (1)

Appl. Phys. A (1)

S. M. Vuković, Z. Jakšić, I. V. Shadrivov, and Y. S. Kivshar, “Plasmonic crystal waveguides,” Appl. Phys. A 103, 615–617 (2011).
[CrossRef]

J. Am. Chem. Soc. (1)

Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc. 129, 14939–14945 (2007).
[CrossRef] [PubMed]

J. Lightwave Technol. (2)

S. L. Chuang, “A coupled mode formulation by reciprocity and a variational principle,” J. Lightwave Technol. 5, 5–15 (1987).
[CrossRef]

S. L. Chuang, “A coupled-mode theory for multiwaveguide systems satisfying the reciprocity theorem and power conservation,” J. Lightwave Technol. 5, 174–183 (1987).
[CrossRef]

J. Mod. Opt. (1)

B. Lee, I. M. Lee, S. Kim, D. H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57, 1479–1497 (2010).
[CrossRef]

J. Nanophotonics (1)

Z. Jakšić, S. M. Vuković, J. Buha, and J. Matovic, “Nanomembrane-based plasmonics,” J. Nanophotonics 5, 051818 (2011).
[CrossRef]

Nano Lett. (1)

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett. 10, 1–5 (2010).
[CrossRef]

Nat. Comm. (1)

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Comm. 1, 143 (2010).
[CrossRef]

Nat. Mater. (1)

C. Jiang, S. Markutsya, Y. Pikus, and V. V. Tsukruk, “Freely suspended nanocomposite membranes as highly-sensitive sensors,” Nat. Mater. 3, 721–728 (2004).
[CrossRef] [PubMed]

Nat. Photonics (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Nature (London) (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (2)

A. D. Boardman, A. A. Maradudin, G. I. Stegeman, T. Twardowski, and E. M. Wright, “Exact theory of nonlinear p-polarized optical waves,” Phys. Rev. A 35, 1159–1164 (1987).
[CrossRef] [PubMed]

Y. Kou, F. Ye, and X. Chen, “Multipole plasmonic lattice solitons,” Phys. Rev. A 84, 033855 (2011).
[CrossRef]

Phys. Rev. B (4)

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B 75, 241402(R) (2007).
[CrossRef]

G. Bartal, G. Lerosey, and X. Zhang, “Subwavelength dynamic focusing in plasmonic nanostructures using time reversal,” Phys. Rev. B 79, 201103 (2009).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scal localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Phys. Rev. Lett. (4)

O. Peleg, M. Segev, G. Bartal, D. N. Christodoulides, and N. Moiseyev, “Nonlinear waves in subwavelength waveguide arrays: evanescent bands and the ’phoenix soliton’,” Phys. Rev. Lett. 102, 163902 (2009).
[CrossRef] [PubMed]

A. Husakou and J. Herrmann, “Steplike transmission of light through a metal-dielectric multilayer structure due to an intensity-dependent sign of the effective dielectric constant,” Phys. Rev. Lett. 99, 127402 (2007).
[CrossRef] [PubMed]

Y. Liu, G. Bartal, D. A. Genov, and X. Zhang, “Subwavelength discrete solitons in nonlinear metamaterials,” Phys. Rev. Lett. 99, 153901 (2007).
[CrossRef] [PubMed]

F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu, “Subwavelength plasmonic lattice solitons in arrays of metallic nanowires,” Phys. Rev. Lett. 104, 106802 (2010).
[CrossRef] [PubMed]

Prog. Opt. (1)

D. Mihalache, M. Bertolotti, and C. Sibilia, “Nonlinear wave propagation in planar structures,” Prog. Opt. 27, 229–313 (1989).

Rep. Prog. Phys. (1)

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of suface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[CrossRef]

Rev. Mod. Phys. (1)

Y. V. Kartashov, B. A. Malomed, and L. Torner, “Solitons in nonlinear lattices,” Rev. Mod. Phys. 83, 247–305 (2011).
[CrossRef]

Sens. Actuators B (1)

C. W. Lin, K. P. Chen, C. N. Hsiao, S. Lin, and C. K. Lee, “Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor,” Sens. Actuators B 113, 169–176 (2006).
[CrossRef]

Solid State Commun. (1)

F. Lederer and D. Mihalache, “An additional kind of nonlinear s-polarized surface plasmon polaritons,” Solid State Commun. 59, 151–153 (1986).
[CrossRef]

Z. Phys. B (1)

V. K. Fedyanin and D. Mihalache, “P-polarized nonlinear surface polaritons in layered structures,” Z. Phys. B 47, 167–173 (1982).
[CrossRef]

Zhurn. Eksp. Teoret. Fiz. (1)

N. N. Akhmediev, “Nonlinear theory of surface polaritons,” Zhurn. Eksp. Teoret. Fiz. 84, 1907–1917 (1983).

Other (2)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
[CrossRef]

S. E. Koonin, Computational Physics (Benjamin/Cummings, Menlo Park, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(Color online) (a) Cross section of the PFW. (b) Schematics of the PFW. Only first few metal layers are drawn for demonstration. (c) Dispersion of SPPs mode in the 1-th SPW. Distributions of Ez in different SPWs in case of λ = 700 nm (d), and λ = 1550 nm (e), respectively. For clarity, only that in SPWs with indexes 1, 2, 6, and 7 are drawn. The mode amplitudes in different SPWs have been normalized by their energy flows in z direction respectively.

Fig. 2.
Fig. 2.

(Color online) (a) The profile of the longitudinal field component Ez of the soliton with the wavelength of λ = 700 nm in the PFW. (b) The distribution of Ez along the radial direction, where the inset is an amplification of one part. (c) Nonlinear and (d) linear propagation over 40 μm distance in the lossless PFW. (e) Propagation of the soliton in the same PFW when the loss in metal is taken into account.

Fig. 3.
Fig. 3.

(Color online) (a) Propagation of the soliton along 40 μm in the lossless PFW when the wavelength λ is 1550nm. (b) Linear propagation along 4 μm in the same PFW. (c) Propagation of the soliton along 4 μm when the loss is considered.

Fig. 4.
Fig. 4.

(Color online) (a–c) The profiles of the solitons with the intensity of 20I0, 100I0, 180I0 respectively. The values in each figure have been normalized to their maximum. (d) Radius of the soliton’s peak changing with the intensity.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

i d dz CA + ( BC K ) A X | A | 2 A = 0 ,
C n , n 1 4 S ( E r ( n ) H ϕ ( n ) + E r ( n ) H ϕ ( n ) ) dS ,
K n , n ω 4 S ( ε ( n ) ε ) K ˜ n , n dS ,
X n , n S ε 0 n 2 ε d 2 α n ω 4 K ˜ n , n dS ,
i d dz A + TA + G | A | 2 A = 0 ,

Metrics