Abstract

By selectively blocking specific laser beams, we investigate coexisting seven distinguishable dressed odd-order multi-wave mixing (MWM) signals in a K-type five-level atomic system. We demonstrate that the enhancement and suppression of dressed four-wave mixing (FWM) signal can be directly detected by scanning the dressing field instead of the probe field. We also study the temporal and spatial interference between two FWM signals. Surprisingly, the pure-suppression of six-wave mixing signal has been shifted far away from resonance by atomic velocity component. Moreover, the interactions among six MWM signals have been studied.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. R. Hemmer, D. P. Katz, J. Donoghue, M. Cronin-Golomb, M. S. Shahriar, and P. Kumar, “Efficient low-intensity optical phase conjugation based on coherent population trapping in sodium,” Opt. Lett. 20(9), 982–984 (1995).
    [CrossRef] [PubMed]
  2. Y. Q. Li and M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett. 21(14), 1064–1066 (1996).
    [CrossRef] [PubMed]
  3. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
    [CrossRef]
  4. D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency mixing using electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 93(18), 183601 (2004).
    [CrossRef] [PubMed]
  5. H. Kang, G. Hernandez, and Y. Zhu, “Resonant four-wave mixing with slow light,” Phys. Rev. A 70(6), 061804 (2004).
    [CrossRef]
  6. Z. C. Zuo, J. Sun, X. Liu, Q. Jiang, G. S. Fu, L. A. Wu, and P. M. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett. 97(19), 193904 (2006).
    [CrossRef] [PubMed]
  7. H. Ma and C. B. de Araujo, “Interference between third- and fifth-order polarizations in semiconductor doped glasses,” Phys. Rev. Lett. 71(22), 3649–3652 (1993).
    [CrossRef] [PubMed]
  8. D. J. Ulness, J. C. Kirkwood, and A. C. Albrecht, “Competitive events in fifth order time resolved coherent Raman scattering: Direct versus sequential processes,” J. Chem. Phys. 108(10), 3897–3902 (1998).
    [CrossRef]
  9. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36 (1997).
    [CrossRef]
  10. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
    [CrossRef]
  11. A. Imamoğlu and S. E. Harris, “Lasers without inversion: interference of dressed lifetime-broadened states,” Opt. Lett. 14(24), 1344–1346 (1989).
    [CrossRef] [PubMed]
  12. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
    [CrossRef] [PubMed]
  13. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [CrossRef]
  14. M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
    [CrossRef] [PubMed]
  15. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
    [CrossRef] [PubMed]
  16. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
    [CrossRef] [PubMed]
  17. C. B. Li, H. B. Zheng, Y. P. Zhang, Z. Q. Nie, J. P. Song, and M. Xiao, “Observation of enhancement and suppression in four-wave mixing processes,” Appl. Phys. Lett. 95(4), 041103 (2009).
    [CrossRef]
  18. M. Yan, E. G. Rickey, and Y. F. Zhu, “Observation of doubly dressed states in cold atoms,” Phys. Rev. A 64(1), 013412 (2001).
    [CrossRef]
  19. M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
    [CrossRef]
  20. B. Anderson, Y. P. Zhang, U. Khadka, and M. Xiao, “Spatial interference between four- and six-wave mixing signals,” Opt. Lett. 33(18), 2029–2031 (2008).
    [CrossRef] [PubMed]
  21. Z. Wang, Y. Zhang, H. Chen, Z. Wu, Y. Fu, and H. Zheng, “Enhancement and suppression of two coexisting six-wave-mixing processes,” Phys. Rev. A 84(1), 013804 (2011).
    [CrossRef]

2011 (1)

Z. Wang, Y. Zhang, H. Chen, Z. Wu, Y. Fu, and H. Zheng, “Enhancement and suppression of two coexisting six-wave-mixing processes,” Phys. Rev. A 84(1), 013804 (2011).
[CrossRef]

2009 (1)

C. B. Li, H. B. Zheng, Y. P. Zhang, Z. Q. Nie, J. P. Song, and M. Xiao, “Observation of enhancement and suppression in four-wave mixing processes,” Appl. Phys. Lett. 95(4), 041103 (2009).
[CrossRef]

2008 (1)

2006 (1)

Z. C. Zuo, J. Sun, X. Liu, Q. Jiang, G. S. Fu, L. A. Wu, and P. M. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett. 97(19), 193904 (2006).
[CrossRef] [PubMed]

2005 (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[CrossRef]

2004 (2)

D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency mixing using electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 93(18), 183601 (2004).
[CrossRef] [PubMed]

H. Kang, G. Hernandez, and Y. Zhu, “Resonant four-wave mixing with slow light,” Phys. Rev. A 70(6), 061804 (2004).
[CrossRef]

2001 (5)

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[CrossRef] [PubMed]

M. Yan, E. G. Rickey, and Y. F. Zhu, “Observation of doubly dressed states in cold atoms,” Phys. Rev. A 64(1), 013412 (2001).
[CrossRef]

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[CrossRef] [PubMed]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[CrossRef] [PubMed]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[CrossRef] [PubMed]

1999 (3)

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[CrossRef]

1998 (1)

D. J. Ulness, J. C. Kirkwood, and A. C. Albrecht, “Competitive events in fifth order time resolved coherent Raman scattering: Direct versus sequential processes,” J. Chem. Phys. 108(10), 3897–3902 (1998).
[CrossRef]

1997 (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36 (1997).
[CrossRef]

1996 (1)

1995 (1)

1993 (1)

H. Ma and C. B. de Araujo, “Interference between third- and fifth-order polarizations in semiconductor doped glasses,” Phys. Rev. Lett. 71(22), 3649–3652 (1993).
[CrossRef] [PubMed]

1989 (1)

Albrecht, A. C.

D. J. Ulness, J. C. Kirkwood, and A. C. Albrecht, “Competitive events in fifth order time resolved coherent Raman scattering: Direct versus sequential processes,” J. Chem. Phys. 108(10), 3897–3902 (1998).
[CrossRef]

Anderson, B.

Balic, V.

D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency mixing using electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 93(18), 183601 (2004).
[CrossRef] [PubMed]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Braje, D. A.

D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency mixing using electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 93(18), 183601 (2004).
[CrossRef] [PubMed]

Chen, H.

Z. Wang, Y. Zhang, H. Chen, Z. Wu, Y. Fu, and H. Zheng, “Enhancement and suppression of two coexisting six-wave-mixing processes,” Phys. Rev. A 84(1), 013804 (2011).
[CrossRef]

Cirac, J. I.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[CrossRef] [PubMed]

Cronin-Golomb, M.

de Araujo, C. B.

H. Ma and C. B. de Araujo, “Interference between third- and fifth-order polarizations in semiconductor doped glasses,” Phys. Rev. Lett. 71(22), 3649–3652 (1993).
[CrossRef] [PubMed]

Donoghue, J.

Duan, L.-M.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[CrossRef] [PubMed]

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Fleischhauer, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[CrossRef] [PubMed]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[CrossRef]

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[CrossRef]

Fry, E. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[CrossRef]

Fu, G. S.

Z. C. Zuo, J. Sun, X. Liu, Q. Jiang, G. S. Fu, L. A. Wu, and P. M. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett. 97(19), 193904 (2006).
[CrossRef] [PubMed]

Fu, P. M.

Z. C. Zuo, J. Sun, X. Liu, Q. Jiang, G. S. Fu, L. A. Wu, and P. M. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett. 97(19), 193904 (2006).
[CrossRef] [PubMed]

Fu, Y.

Z. Wang, Y. Zhang, H. Chen, Z. Wu, Y. Fu, and H. Zheng, “Enhancement and suppression of two coexisting six-wave-mixing processes,” Phys. Rev. A 84(1), 013804 (2011).
[CrossRef]

Goda, S.

D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency mixing using electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 93(18), 183601 (2004).
[CrossRef] [PubMed]

Harris, S. E.

D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency mixing using electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 93(18), 183601 (2004).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36 (1997).
[CrossRef]

A. Imamoğlu and S. E. Harris, “Lasers without inversion: interference of dressed lifetime-broadened states,” Opt. Lett. 14(24), 1344–1346 (1989).
[CrossRef] [PubMed]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Hemmer, P. R.

Hernandez, G.

H. Kang, G. Hernandez, and Y. Zhu, “Resonant four-wave mixing with slow light,” Phys. Rev. A 70(6), 061804 (2004).
[CrossRef]

Hollberg, L.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[CrossRef]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[CrossRef]

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[CrossRef] [PubMed]

A. Imamoğlu and S. E. Harris, “Lasers without inversion: interference of dressed lifetime-broadened states,” Opt. Lett. 14(24), 1344–1346 (1989).
[CrossRef] [PubMed]

Jiang, Q.

Z. C. Zuo, J. Sun, X. Liu, Q. Jiang, G. S. Fu, L. A. Wu, and P. M. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett. 97(19), 193904 (2006).
[CrossRef] [PubMed]

Kang, H.

H. Kang, G. Hernandez, and Y. Zhu, “Resonant four-wave mixing with slow light,” Phys. Rev. A 70(6), 061804 (2004).
[CrossRef]

Kash, M. M.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[CrossRef]

Katz, D. P.

Khadka, U.

Kirkwood, J. C.

D. J. Ulness, J. C. Kirkwood, and A. C. Albrecht, “Competitive events in fifth order time resolved coherent Raman scattering: Direct versus sequential processes,” J. Chem. Phys. 108(10), 3897–3902 (1998).
[CrossRef]

Kumar, P.

Li, C. B.

C. B. Li, H. B. Zheng, Y. P. Zhang, Z. Q. Nie, J. P. Song, and M. Xiao, “Observation of enhancement and suppression in four-wave mixing processes,” Appl. Phys. Lett. 95(4), 041103 (2009).
[CrossRef]

Li, Y. Q.

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[CrossRef] [PubMed]

Liu, X.

Z. C. Zuo, J. Sun, X. Liu, Q. Jiang, G. S. Fu, L. A. Wu, and P. M. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett. 97(19), 193904 (2006).
[CrossRef] [PubMed]

Lukin, M. D.

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[CrossRef] [PubMed]

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[CrossRef] [PubMed]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[CrossRef] [PubMed]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[CrossRef]

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[CrossRef]

Ma, H.

H. Ma and C. B. de Araujo, “Interference between third- and fifth-order polarizations in semiconductor doped glasses,” Phys. Rev. Lett. 71(22), 3649–3652 (1993).
[CrossRef] [PubMed]

Mair, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[CrossRef] [PubMed]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[CrossRef]

Nie, Z. Q.

C. B. Li, H. B. Zheng, Y. P. Zhang, Z. Q. Nie, J. P. Song, and M. Xiao, “Observation of enhancement and suppression in four-wave mixing processes,” Appl. Phys. Lett. 95(4), 041103 (2009).
[CrossRef]

Phillips, D. F.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[CrossRef] [PubMed]

Rickey, E. G.

M. Yan, E. G. Rickey, and Y. F. Zhu, “Observation of doubly dressed states in cold atoms,” Phys. Rev. A 64(1), 013412 (2001).
[CrossRef]

Rostovtsev, Y.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[CrossRef]

Sautenkov, V. A.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[CrossRef]

Scully, M. O.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[CrossRef]

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[CrossRef]

Shahriar, M. S.

Song, J. P.

C. B. Li, H. B. Zheng, Y. P. Zhang, Z. Q. Nie, J. P. Song, and M. Xiao, “Observation of enhancement and suppression in four-wave mixing processes,” Appl. Phys. Lett. 95(4), 041103 (2009).
[CrossRef]

Sun, J.

Z. C. Zuo, J. Sun, X. Liu, Q. Jiang, G. S. Fu, L. A. Wu, and P. M. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett. 97(19), 193904 (2006).
[CrossRef] [PubMed]

Ulness, D. J.

D. J. Ulness, J. C. Kirkwood, and A. C. Albrecht, “Competitive events in fifth order time resolved coherent Raman scattering: Direct versus sequential processes,” J. Chem. Phys. 108(10), 3897–3902 (1998).
[CrossRef]

Walsworth, R. L.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[CrossRef] [PubMed]

Wang, Z.

Z. Wang, Y. Zhang, H. Chen, Z. Wu, Y. Fu, and H. Zheng, “Enhancement and suppression of two coexisting six-wave-mixing processes,” Phys. Rev. A 84(1), 013804 (2011).
[CrossRef]

Welch, G. R.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[CrossRef]

Wu, L. A.

Z. C. Zuo, J. Sun, X. Liu, Q. Jiang, G. S. Fu, L. A. Wu, and P. M. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett. 97(19), 193904 (2006).
[CrossRef] [PubMed]

Wu, Z.

Z. Wang, Y. Zhang, H. Chen, Z. Wu, Y. Fu, and H. Zheng, “Enhancement and suppression of two coexisting six-wave-mixing processes,” Phys. Rev. A 84(1), 013804 (2011).
[CrossRef]

Xiao, M.

Yan, M.

M. Yan, E. G. Rickey, and Y. F. Zhu, “Observation of doubly dressed states in cold atoms,” Phys. Rev. A 64(1), 013412 (2001).
[CrossRef]

Yelin, S. F.

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[CrossRef]

Yin, G. Y.

D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency mixing using electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 93(18), 183601 (2004).
[CrossRef] [PubMed]

Zhang, Y.

Z. Wang, Y. Zhang, H. Chen, Z. Wu, Y. Fu, and H. Zheng, “Enhancement and suppression of two coexisting six-wave-mixing processes,” Phys. Rev. A 84(1), 013804 (2011).
[CrossRef]

Zhang, Y. P.

C. B. Li, H. B. Zheng, Y. P. Zhang, Z. Q. Nie, J. P. Song, and M. Xiao, “Observation of enhancement and suppression in four-wave mixing processes,” Appl. Phys. Lett. 95(4), 041103 (2009).
[CrossRef]

B. Anderson, Y. P. Zhang, U. Khadka, and M. Xiao, “Spatial interference between four- and six-wave mixing signals,” Opt. Lett. 33(18), 2029–2031 (2008).
[CrossRef] [PubMed]

Zheng, H.

Z. Wang, Y. Zhang, H. Chen, Z. Wu, Y. Fu, and H. Zheng, “Enhancement and suppression of two coexisting six-wave-mixing processes,” Phys. Rev. A 84(1), 013804 (2011).
[CrossRef]

Zheng, H. B.

C. B. Li, H. B. Zheng, Y. P. Zhang, Z. Q. Nie, J. P. Song, and M. Xiao, “Observation of enhancement and suppression in four-wave mixing processes,” Appl. Phys. Lett. 95(4), 041103 (2009).
[CrossRef]

Zhu, Y.

H. Kang, G. Hernandez, and Y. Zhu, “Resonant four-wave mixing with slow light,” Phys. Rev. A 70(6), 061804 (2004).
[CrossRef]

Zhu, Y. F.

M. Yan, E. G. Rickey, and Y. F. Zhu, “Observation of doubly dressed states in cold atoms,” Phys. Rev. A 64(1), 013412 (2001).
[CrossRef]

Zibrov, A. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[CrossRef]

Zoller, P.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[CrossRef] [PubMed]

Zuo, Z. C.

Z. C. Zuo, J. Sun, X. Liu, Q. Jiang, G. S. Fu, L. A. Wu, and P. M. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett. 97(19), 193904 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

C. B. Li, H. B. Zheng, Y. P. Zhang, Z. Q. Nie, J. P. Song, and M. Xiao, “Observation of enhancement and suppression in four-wave mixing processes,” Appl. Phys. Lett. 95(4), 041103 (2009).
[CrossRef]

J. Chem. Phys. (1)

D. J. Ulness, J. C. Kirkwood, and A. C. Albrecht, “Competitive events in fifth order time resolved coherent Raman scattering: Direct versus sequential processes,” J. Chem. Phys. 108(10), 3897–3902 (1998).
[CrossRef]

Nature (4)

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[CrossRef] [PubMed]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Rev. A (4)

H. Kang, G. Hernandez, and Y. Zhu, “Resonant four-wave mixing with slow light,” Phys. Rev. A 70(6), 061804 (2004).
[CrossRef]

Z. Wang, Y. Zhang, H. Chen, Z. Wu, Y. Fu, and H. Zheng, “Enhancement and suppression of two coexisting six-wave-mixing processes,” Phys. Rev. A 84(1), 013804 (2011).
[CrossRef]

M. Yan, E. G. Rickey, and Y. F. Zhu, “Observation of doubly dressed states in cold atoms,” Phys. Rev. A 64(1), 013412 (2001).
[CrossRef]

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[CrossRef]

Phys. Rev. Lett. (5)

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[CrossRef] [PubMed]

Z. C. Zuo, J. Sun, X. Liu, Q. Jiang, G. S. Fu, L. A. Wu, and P. M. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett. 97(19), 193904 (2006).
[CrossRef] [PubMed]

H. Ma and C. B. de Araujo, “Interference between third- and fifth-order polarizations in semiconductor doped glasses,” Phys. Rev. Lett. 71(22), 3649–3652 (1993).
[CrossRef] [PubMed]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[CrossRef]

D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency mixing using electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 93(18), 183601 (2004).
[CrossRef] [PubMed]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36 (1997).
[CrossRef]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) The diagram of the K-type five-level atomic system. (b) Spatial beam geometry used in the experiment. (c) The diagram of the ladder-type three-level atomic subsystem when the fields E 3 , E 3 , E 4 and E 4 are blocked and E 1 , E 2 and E 2 are turned on. (d) The diagram of the Y-type four-level atomic subsystem when the fields E 3 and E 3 are blocked and other beams are turned on. (e) The diagram of the K-type five-level atomic system when the fields E 2 and E 4 are blocked only.

Fig. 2
Fig. 2

The probe transmission (the upper curves) and measured MWM signals (the bottom curves) with different ways of blocking laser beams. The left peaks show the EIT window and MWM signals related to E 4 ( E 4 ) and the right peaks are related to E 2 ( E 2 ). (a) Measured total MWM signals with all beams turned on. (b) Measured MWM signals related to E 4 ( E 4 ) and SWM signal E S2 , with E 2 blocked. (c) Measured MWM signals related to E 4 ( E 4 ) and SWM signal E S2 , with E 2 blocked. (d) Measured MWM signals related to E 2 ( E 2 ) with E 4 and E 4 blocked. (e) Measured FWM signal E F2 and E F4 with E 3 and E 3 blocked. The experimental parameters are Δ 2 =150MHz , Δ 4 =140MHz , Δ 3 =0MHz , and the powers of all laser beams are 5.3mW ( E 1 ), 40.9mW ( E 2 ), 5mW ( E 2 ), 44mW ( E 3 and E 3 ), 21mW ( E 4 and E 4 ).

Fig. 3
Fig. 3

(a) The measured intensity of (a1) the probe transmission and (a2) the singly-dressed FWM signal E F2 versus Δ 2 at discrete probe detunings Δ 1 =80, 20, 0, 20 and 80 MHz , and the measured intensity of (a3) the probe transmission and (a4) the singly-dressed FWM signal E F2 versus Δ 1 at discrete dressing detunings Δ 2 =80, 20, 0, 20 and 80 MHz . (b1), (b3), (b4), (b5) are theoretical calculations corresponding to (a1)-(a4). (b2) is the theoretical calculations of enhancement and suppression of singly-dressed E F2 . (c) The dressed energy level diagrams corresponding to (a). Powers of participating laser beams are 4mW ( E 1 ), 34.5mW ( E 2 ), 8.7mW ( E 2 ).The detuning range is 200MHz when scanning Δ 1 , 60MHz when scanning Δ 2 .

Fig. 4
Fig. 4

(a) The measured intensity of (a1) the probe transmission and (a2) the doubly-dressed FWM signal E F2 versus Δ 2 at discrete probe detunings Δ 1 =80, 40, 20, 10, 0, 10, 20, 40 and 80 MHz , and the measured intensity of (a3) the probe transmission and (a4) the doubly-dressed FWM signal E F2 versus Δ 1 at discrete self-dressing detunings Δ 2 =80, 40, 20, 10, 0, 10, 20, 40 and 80 MHz ( Δ 4 is fixed at Δ 4 =0 ). (b1), (b3), (b4), (b5) are theoretical calculations corresponding to (a1)-(a4). (b2) is the theoretical calculations of enhancement and suppression of doubly-dressed E F2 . (c) The energy level diagrams corresponding to (a). (d) The measured intensity of (d1) the probe transmission and (d2) the doubly-dressed FWM signal E F2 versus Δ 4 at discrete probe detunings Δ 1 =80, 40, 20, 10, 0, 10, 20, 40 and 80 MHz , and the measured intensity of (d3) the probe transmission and (d4) the doubly-dressed FWM signal E F2 versus Δ 1 at discrete external-dressing detunings Δ 4 =80, 40, 20, 10, 0, 10, 20, 40 and 80 MHz ( Δ 2 is fixed at Δ 2 =0 ). (e1)-(e4) Theoretical calculations corresponding to (d1)-(d4). (f) The energy level diagrams corresponding to (d). Powers of participating laser beams are 4.6mW ( E 1 ), 33mW ( E 2 ), 8.4mW ( E 2 ), 39mW ( E 4 ).

Fig. 5
Fig. 5

The spatiotemporal interferograms of E F2 and E F4 in the Y-type atomic subsystem. (a) A three-dimensional spatiotemporal interferogram of the total FWM signal intensity I(τ,r) versus time delay τ of beam E 2 and transverse position r. (b) The temporal interference with a much longer time delay of beam E 2 . (c) Measured beat signal intensity I(τ,r) versus time delay τ together with the theoretically simulated result (solid curve).

Fig. 6
Fig. 6

(a1) The probe transmission signal and (a2) the SWM signal with the enhancement and suppression effect versus Δ 2 for different Δ 1 with the laser beams E 2 and E 4 blocked when Δ 3 is at large detuning. (b) The doubly-dressed state diagram of the SWM signal. Powers of participating laser beams are 3mW ( E 1 ), 4.6mW ( E 2 ), 44mW ( E 3 and E 3 ), 65mW ( E 4 ).

Fig. 7
Fig. 7

(a) Measured total MWM signal versus Δ 2 at discrete Δ 1 when all seven laser beams on. (b) Measured FWM signals versus Δ 2 at discrete Δ 1 . (b1) Signal obtained with the laser beams E 3 and E 3 blocked and others on. (b2) The enhancement and suppression of the FWM signal E F4 when the laser beams E 3 , E 3 and E 2 are blocked. (b3) The FWM signal when the laser beams E 3 , E 3 and E 4 are blocked. (c) Measured SWM signals versus Δ 2 at discrete Δ 1 . (c1) Signal obtained with laser beams E 2 , E 4 blocked and others on. (c3) Signal obtained with the laser beams E 2 , E 4 and E 4 blocked. (c2) The sum of E S4 D E S4 and E S2 D E S2 . Powers of all laser beams are 3.7mW ( E 1 ), 55mW ( E 2 ), 5.3mW ( E 2 ), 44mW ( E 3 and E 3 ), 85mW ( E 4 ), 8.6mW ( E 4 ).

Metrics