Abstract

Through rational design, we compare the performance of three plasmonic antenna structures for UV fluorescence enhancement. Among the antenna performance metrics considered are the local increase in excitation intensity and the increase in quantum efficiency, the product of which represents the net fluorescence enhancement. With realistic structures in aluminum, we predict that greater than 100× net enhancement can be obtained.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. F. Chen, “Fluorescence quantum yields of tryptophan and tyrosine,” Anal. Lett.1, 35–42 (1967).
    [CrossRef]
  2. C. R. Johnson, M. Ludwig, S. O’Donnell, and S. A. Asher, “UV resonance Raman spectroscopy of the aromatic amino acids and myoglobin,” J. Am. Chem. Soc.106, 5008–5010 (1984).
    [CrossRef]
  3. G. D. Fasman, ed. Practical Handbook of Biochemistry and Molecular Biology. CRC Press1989.
  4. K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem.79, 6480–6487 (2007).
    [CrossRef] [PubMed]
  5. H. Szmacinski, K. Ray, and J. R. Lakowicz, “Metal-enhanced fluorescence of tryptophan residues in proteins: Application towards label-free bioassays,” Anal. Biochem.385, 358–364 (2008).
    [CrossRef] [PubMed]
  6. J. R. Lakowicz, B. Shen, Z. Gryczynski, S. D’Auria, and I. Gryczynski, “Intrinsic fluorescence from DNA can be enhanced by metallic particles,” Biochem. Biophys. Res. Commun.286, 875–879 (2001).
    [CrossRef] [PubMed]
  7. J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D: Appl. Phys.36, R240–R249 (2003).
    [CrossRef]
  8. K. Aslan, M. J. R. Previte, Y. Zhang, and C. D. Geddes, “Surface plasmon coupled fluorescence in the ultraviolet and visible spectral regions using zinc thin films,” Anal. Chem.80, 7304–7312 (2008).
    [CrossRef] [PubMed]
  9. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
    [CrossRef]
  10. A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced raman scattering,” J. Raman Spectrosc.40, 1324–1330 (2009).
    [CrossRef]
  11. C. C. Davis, “Fluorescence: Molecules in a tight spot,” Nat. Photonics3, 608–609 (2009).
    [CrossRef]
  12. S. Attavar, M. Diwekar, and S. Blair, “Photoactivated capture molecule immobilization in plasmonic nanoapertures in the ultraviolet,” Lab Chip11, 841–844 (2011).
    [CrossRef] [PubMed]
  13. M. T. Neves-Petersen, T. Snabe, S. Klitgaard, M. Duroux, and S. B. Petersen, “Photonic activation of disulfide bridges achieves oriented protein immobilization on biosensor surfaces,” Protein Sci.15, 343–351 (2006).
    [CrossRef] [PubMed]
  14. K. Aslan and C. D. Geddes, “Directional surface plasmon coupled luminescence for analytical sensing applications: Which metal, what wavelength, what observation angle?,” Anal. Chem.81, 6913–6922 (2009).
    [CrossRef] [PubMed]
  15. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser & Photon. Rev.4, 795–808 (2010).
    [CrossRef]
  16. S. Blair and J. Wenger, “Enhancing fluorescence with sub-wavelength metallic apertures,” in The Role of Plasmonic Engineering in Surface-Enhanced Fluorescence (C. D. Geddes, ed.) ch. 17 John Wiley & Sons2008.
  17. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  18. H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett.11, 637–644 (2011).
    [CrossRef] [PubMed]
  19. F. Mahdavi and S. Blair, “Nanoaperture fluorescence enhancement in the ultraviolet,” Plasmonics5, 169–174 (2010).
    [CrossRef]
  20. E. D. Palik, “Handbook of Optical Constants of Solids,” Academic Press, London (1985)
  21. L. Novotny and B. Hecht, “Principles of Nano-Optics,” Cambridge University Press, Cambridge, (2006).
    [CrossRef]
  22. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express16, 9144–9154 (2008).
    [CrossRef] [PubMed]
  23. O. Mahboub, S. C. Palacios, C. Genet, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and T. W. Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express18, 11292–11299 (2010).
    [CrossRef] [PubMed]
  24. M. Kuttge, F. J. G. de Abajo, and A. Polman, “How grooves reflect and confine surface plasmon polaritons,” Opt. Express17, 10385–10392 (2009).
    [CrossRef] [PubMed]
  25. S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express19, 10429–10442 (2011).
    [CrossRef] [PubMed]
  26. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garvia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
    [CrossRef] [PubMed]

2011 (3)

S. Attavar, M. Diwekar, and S. Blair, “Photoactivated capture molecule immobilization in plasmonic nanoapertures in the ultraviolet,” Lab Chip11, 841–844 (2011).
[CrossRef] [PubMed]

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett.11, 637–644 (2011).
[CrossRef] [PubMed]

S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express19, 10429–10442 (2011).
[CrossRef] [PubMed]

2010 (3)

O. Mahboub, S. C. Palacios, C. Genet, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and T. W. Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express18, 11292–11299 (2010).
[CrossRef] [PubMed]

F. Mahdavi and S. Blair, “Nanoaperture fluorescence enhancement in the ultraviolet,” Plasmonics5, 169–174 (2010).
[CrossRef]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser & Photon. Rev.4, 795–808 (2010).
[CrossRef]

2009 (5)

K. Aslan and C. D. Geddes, “Directional surface plasmon coupled luminescence for analytical sensing applications: Which metal, what wavelength, what observation angle?,” Anal. Chem.81, 6913–6922 (2009).
[CrossRef] [PubMed]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
[CrossRef]

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced raman scattering,” J. Raman Spectrosc.40, 1324–1330 (2009).
[CrossRef]

C. C. Davis, “Fluorescence: Molecules in a tight spot,” Nat. Photonics3, 608–609 (2009).
[CrossRef]

M. Kuttge, F. J. G. de Abajo, and A. Polman, “How grooves reflect and confine surface plasmon polaritons,” Opt. Express17, 10385–10392 (2009).
[CrossRef] [PubMed]

2008 (3)

H. Szmacinski, K. Ray, and J. R. Lakowicz, “Metal-enhanced fluorescence of tryptophan residues in proteins: Application towards label-free bioassays,” Anal. Biochem.385, 358–364 (2008).
[CrossRef] [PubMed]

K. Aslan, M. J. R. Previte, Y. Zhang, and C. D. Geddes, “Surface plasmon coupled fluorescence in the ultraviolet and visible spectral regions using zinc thin films,” Anal. Chem.80, 7304–7312 (2008).
[CrossRef] [PubMed]

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express16, 9144–9154 (2008).
[CrossRef] [PubMed]

2007 (1)

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem.79, 6480–6487 (2007).
[CrossRef] [PubMed]

2006 (1)

M. T. Neves-Petersen, T. Snabe, S. Klitgaard, M. Duroux, and S. B. Petersen, “Photonic activation of disulfide bridges achieves oriented protein immobilization on biosensor surfaces,” Protein Sci.15, 343–351 (2006).
[CrossRef] [PubMed]

2003 (1)

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D: Appl. Phys.36, R240–R249 (2003).
[CrossRef]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garvia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

2001 (1)

J. R. Lakowicz, B. Shen, Z. Gryczynski, S. D’Auria, and I. Gryczynski, “Intrinsic fluorescence from DNA can be enhanced by metallic particles,” Biochem. Biophys. Res. Commun.286, 875–879 (2001).
[CrossRef] [PubMed]

1984 (1)

C. R. Johnson, M. Ludwig, S. O’Donnell, and S. A. Asher, “UV resonance Raman spectroscopy of the aromatic amino acids and myoglobin,” J. Am. Chem. Soc.106, 5008–5010 (1984).
[CrossRef]

1967 (1)

R. F. Chen, “Fluorescence quantum yields of tryptophan and tyrosine,” Anal. Lett.1, 35–42 (1967).
[CrossRef]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Aouani, H.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett.11, 637–644 (2011).
[CrossRef] [PubMed]

Asher, S. A.

C. R. Johnson, M. Ludwig, S. O’Donnell, and S. A. Asher, “UV resonance Raman spectroscopy of the aromatic amino acids and myoglobin,” J. Am. Chem. Soc.106, 5008–5010 (1984).
[CrossRef]

Aslan, K.

K. Aslan and C. D. Geddes, “Directional surface plasmon coupled luminescence for analytical sensing applications: Which metal, what wavelength, what observation angle?,” Anal. Chem.81, 6913–6922 (2009).
[CrossRef] [PubMed]

K. Aslan, M. J. R. Previte, Y. Zhang, and C. D. Geddes, “Surface plasmon coupled fluorescence in the ultraviolet and visible spectral regions using zinc thin films,” Anal. Chem.80, 7304–7312 (2008).
[CrossRef] [PubMed]

Attavar, S.

S. Attavar, M. Diwekar, and S. Blair, “Photoactivated capture molecule immobilization in plasmonic nanoapertures in the ultraviolet,” Lab Chip11, 841–844 (2011).
[CrossRef] [PubMed]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
[CrossRef]

Blair, S.

S. Attavar, M. Diwekar, and S. Blair, “Photoactivated capture molecule immobilization in plasmonic nanoapertures in the ultraviolet,” Lab Chip11, 841–844 (2011).
[CrossRef] [PubMed]

F. Mahdavi and S. Blair, “Nanoaperture fluorescence enhancement in the ultraviolet,” Plasmonics5, 169–174 (2010).
[CrossRef]

S. Blair and J. Wenger, “Enhancing fluorescence with sub-wavelength metallic apertures,” in The Role of Plasmonic Engineering in Surface-Enhanced Fluorescence (C. D. Geddes, ed.) ch. 17 John Wiley & Sons2008.

Boltasseva, A.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser & Photon. Rev.4, 795–808 (2010).
[CrossRef]

Bonod, N.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett.11, 637–644 (2011).
[CrossRef] [PubMed]

Carretero-Palacios, S.

Chen, R. F.

R. F. Chen, “Fluorescence quantum yields of tryptophan and tyrosine,” Anal. Lett.1, 35–42 (1967).
[CrossRef]

Chowdhury, M. H.

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem.79, 6480–6487 (2007).
[CrossRef] [PubMed]

D’Auria, S.

J. R. Lakowicz, B. Shen, Z. Gryczynski, S. D’Auria, and I. Gryczynski, “Intrinsic fluorescence from DNA can be enhanced by metallic particles,” Biochem. Biophys. Res. Commun.286, 875–879 (2001).
[CrossRef] [PubMed]

Davis, C. C.

C. C. Davis, “Fluorescence: Molecules in a tight spot,” Nat. Photonics3, 608–609 (2009).
[CrossRef]

de Abajo, F. J. G.

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garvia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett.11, 637–644 (2011).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garvia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

Diwekar, M.

S. Attavar, M. Diwekar, and S. Blair, “Photoactivated capture molecule immobilization in plasmonic nanoapertures in the ultraviolet,” Lab Chip11, 841–844 (2011).
[CrossRef] [PubMed]

Duroux, M.

M. T. Neves-Petersen, T. Snabe, S. Klitgaard, M. Duroux, and S. B. Petersen, “Photonic activation of disulfide bridges achieves oriented protein immobilization on biosensor surfaces,” Protein Sci.15, 343–351 (2006).
[CrossRef] [PubMed]

Ebbesen, T. W.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett.11, 637–644 (2011).
[CrossRef] [PubMed]

S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express19, 10429–10442 (2011).
[CrossRef] [PubMed]

O. Mahboub, S. C. Palacios, C. Genet, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and T. W. Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express18, 11292–11299 (2010).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garvia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser & Photon. Rev.4, 795–808 (2010).
[CrossRef]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
[CrossRef]

Fischer, H.

Furusawa, K.

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced raman scattering,” J. Raman Spectrosc.40, 1324–1330 (2009).
[CrossRef]

Garcia-Vidal, F. J.

Garvia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garvia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

Geddes, C. D.

K. Aslan and C. D. Geddes, “Directional surface plasmon coupled luminescence for analytical sensing applications: Which metal, what wavelength, what observation angle?,” Anal. Chem.81, 6913–6922 (2009).
[CrossRef] [PubMed]

K. Aslan, M. J. R. Previte, Y. Zhang, and C. D. Geddes, “Surface plasmon coupled fluorescence in the ultraviolet and visible spectral regions using zinc thin films,” Anal. Chem.80, 7304–7312 (2008).
[CrossRef] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D: Appl. Phys.36, R240–R249 (2003).
[CrossRef]

Genet, C.

Gryczynski, I.

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D: Appl. Phys.36, R240–R249 (2003).
[CrossRef]

J. R. Lakowicz, B. Shen, Z. Gryczynski, S. D’Auria, and I. Gryczynski, “Intrinsic fluorescence from DNA can be enhanced by metallic particles,” Biochem. Biophys. Res. Commun.286, 875–879 (2001).
[CrossRef] [PubMed]

Gryczynski, Z.

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D: Appl. Phys.36, R240–R249 (2003).
[CrossRef]

J. R. Lakowicz, B. Shen, Z. Gryczynski, S. D’Auria, and I. Gryczynski, “Intrinsic fluorescence from DNA can be enhanced by metallic particles,” Biochem. Biophys. Res. Commun.286, 875–879 (2001).
[CrossRef] [PubMed]

Hayazawa, N.

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced raman scattering,” J. Raman Spectrosc.40, 1324–1330 (2009).
[CrossRef]

Hecht, B.

L. Novotny and B. Hecht, “Principles of Nano-Optics,” Cambridge University Press, Cambridge, (2006).
[CrossRef]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser & Photon. Rev.4, 795–808 (2010).
[CrossRef]

Ishitobi, H.

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced raman scattering,” J. Raman Spectrosc.40, 1324–1330 (2009).
[CrossRef]

Johnson, C. R.

C. R. Johnson, M. Ludwig, S. O’Donnell, and S. A. Asher, “UV resonance Raman spectroscopy of the aromatic amino acids and myoglobin,” J. Am. Chem. Soc.106, 5008–5010 (1984).
[CrossRef]

Kawata, S.

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced raman scattering,” J. Raman Spectrosc.40, 1324–1330 (2009).
[CrossRef]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
[CrossRef]

Klitgaard, S.

M. T. Neves-Petersen, T. Snabe, S. Klitgaard, M. Duroux, and S. B. Petersen, “Photonic activation of disulfide bridges achieves oriented protein immobilization on biosensor surfaces,” Protein Sci.15, 343–351 (2006).
[CrossRef] [PubMed]

Kuttge, M.

Lakowicz, J. R.

H. Szmacinski, K. Ray, and J. R. Lakowicz, “Metal-enhanced fluorescence of tryptophan residues in proteins: Application towards label-free bioassays,” Anal. Biochem.385, 358–364 (2008).
[CrossRef] [PubMed]

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem.79, 6480–6487 (2007).
[CrossRef] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D: Appl. Phys.36, R240–R249 (2003).
[CrossRef]

J. R. Lakowicz, B. Shen, Z. Gryczynski, S. D’Auria, and I. Gryczynski, “Intrinsic fluorescence from DNA can be enhanced by metallic particles,” Biochem. Biophys. Res. Commun.286, 875–879 (2001).
[CrossRef] [PubMed]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garvia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garvia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

Ludwig, M.

C. R. Johnson, M. Ludwig, S. O’Donnell, and S. A. Asher, “UV resonance Raman spectroscopy of the aromatic amino acids and myoglobin,” J. Am. Chem. Soc.106, 5008–5010 (1984).
[CrossRef]

Mahboub, O.

Mahdavi, F.

F. Mahdavi and S. Blair, “Nanoaperture fluorescence enhancement in the ultraviolet,” Plasmonics5, 169–174 (2010).
[CrossRef]

Malicka, J.

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D: Appl. Phys.36, R240–R249 (2003).
[CrossRef]

Martin, O. J. F.

Martin-Moreno, L.

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
[CrossRef]

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
[CrossRef]

Naik, G. V.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser & Photon. Rev.4, 795–808 (2010).
[CrossRef]

Neves-Petersen, M. T.

M. T. Neves-Petersen, T. Snabe, S. Klitgaard, M. Duroux, and S. B. Petersen, “Photonic activation of disulfide bridges achieves oriented protein immobilization on biosensor surfaces,” Protein Sci.15, 343–351 (2006).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny and B. Hecht, “Principles of Nano-Optics,” Cambridge University Press, Cambridge, (2006).
[CrossRef]

O’Donnell, S.

C. R. Johnson, M. Ludwig, S. O’Donnell, and S. A. Asher, “UV resonance Raman spectroscopy of the aromatic amino acids and myoglobin,” J. Am. Chem. Soc.106, 5008–5010 (1984).
[CrossRef]

Palacios, S. C.

Palik, E. D.

E. D. Palik, “Handbook of Optical Constants of Solids,” Academic Press, London (1985)

Petersen, S. B.

M. T. Neves-Petersen, T. Snabe, S. Klitgaard, M. Duroux, and S. B. Petersen, “Photonic activation of disulfide bridges achieves oriented protein immobilization on biosensor surfaces,” Protein Sci.15, 343–351 (2006).
[CrossRef] [PubMed]

Polman, A.

Popov, E.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett.11, 637–644 (2011).
[CrossRef] [PubMed]

Previte, M. J. R.

K. Aslan, M. J. R. Previte, Y. Zhang, and C. D. Geddes, “Surface plasmon coupled fluorescence in the ultraviolet and visible spectral regions using zinc thin films,” Anal. Chem.80, 7304–7312 (2008).
[CrossRef] [PubMed]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Ray, K.

H. Szmacinski, K. Ray, and J. R. Lakowicz, “Metal-enhanced fluorescence of tryptophan residues in proteins: Application towards label-free bioassays,” Anal. Biochem.385, 358–364 (2008).
[CrossRef] [PubMed]

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem.79, 6480–6487 (2007).
[CrossRef] [PubMed]

Rigneault, H.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett.11, 637–644 (2011).
[CrossRef] [PubMed]

Rodrigo, S. G.

Shalaev, V. M.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser & Photon. Rev.4, 795–808 (2010).
[CrossRef]

Shen, B.

J. R. Lakowicz, B. Shen, Z. Gryczynski, S. D’Auria, and I. Gryczynski, “Intrinsic fluorescence from DNA can be enhanced by metallic particles,” Biochem. Biophys. Res. Commun.286, 875–879 (2001).
[CrossRef] [PubMed]

Snabe, T.

M. T. Neves-Petersen, T. Snabe, S. Klitgaard, M. Duroux, and S. B. Petersen, “Photonic activation of disulfide bridges achieves oriented protein immobilization on biosensor surfaces,” Protein Sci.15, 343–351 (2006).
[CrossRef] [PubMed]

Szmacinski, H.

H. Szmacinski, K. Ray, and J. R. Lakowicz, “Metal-enhanced fluorescence of tryptophan residues in proteins: Application towards label-free bioassays,” Anal. Biochem.385, 358–364 (2008).
[CrossRef] [PubMed]

Taguchi, A.

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced raman scattering,” J. Raman Spectrosc.40, 1324–1330 (2009).
[CrossRef]

Wenger, J.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett.11, 637–644 (2011).
[CrossRef] [PubMed]

S. Blair and J. Wenger, “Enhancing fluorescence with sub-wavelength metallic apertures,” in The Role of Plasmonic Engineering in Surface-Enhanced Fluorescence (C. D. Geddes, ed.) ch. 17 John Wiley & Sons2008.

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser & Photon. Rev.4, 795–808 (2010).
[CrossRef]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
[CrossRef]

Zhang, Y.

K. Aslan, M. J. R. Previte, Y. Zhang, and C. D. Geddes, “Surface plasmon coupled fluorescence in the ultraviolet and visible spectral regions using zinc thin films,” Anal. Chem.80, 7304–7312 (2008).
[CrossRef] [PubMed]

Anal. Biochem. (1)

H. Szmacinski, K. Ray, and J. R. Lakowicz, “Metal-enhanced fluorescence of tryptophan residues in proteins: Application towards label-free bioassays,” Anal. Biochem.385, 358–364 (2008).
[CrossRef] [PubMed]

Anal. Chem. (3)

K. Aslan, M. J. R. Previte, Y. Zhang, and C. D. Geddes, “Surface plasmon coupled fluorescence in the ultraviolet and visible spectral regions using zinc thin films,” Anal. Chem.80, 7304–7312 (2008).
[CrossRef] [PubMed]

K. Aslan and C. D. Geddes, “Directional surface plasmon coupled luminescence for analytical sensing applications: Which metal, what wavelength, what observation angle?,” Anal. Chem.81, 6913–6922 (2009).
[CrossRef] [PubMed]

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem.79, 6480–6487 (2007).
[CrossRef] [PubMed]

Anal. Lett. (1)

R. F. Chen, “Fluorescence quantum yields of tryptophan and tyrosine,” Anal. Lett.1, 35–42 (1967).
[CrossRef]

Biochem. Biophys. Res. Commun. (1)

J. R. Lakowicz, B. Shen, Z. Gryczynski, S. D’Auria, and I. Gryczynski, “Intrinsic fluorescence from DNA can be enhanced by metallic particles,” Biochem. Biophys. Res. Commun.286, 875–879 (2001).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

C. R. Johnson, M. Ludwig, S. O’Donnell, and S. A. Asher, “UV resonance Raman spectroscopy of the aromatic amino acids and myoglobin,” J. Am. Chem. Soc.106, 5008–5010 (1984).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D: Appl. Phys.36, R240–R249 (2003).
[CrossRef]

J. Raman Spectrosc. (1)

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced raman scattering,” J. Raman Spectrosc.40, 1324–1330 (2009).
[CrossRef]

Lab Chip (1)

S. Attavar, M. Diwekar, and S. Blair, “Photoactivated capture molecule immobilization in plasmonic nanoapertures in the ultraviolet,” Lab Chip11, 841–844 (2011).
[CrossRef] [PubMed]

Laser & Photon. Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser & Photon. Rev.4, 795–808 (2010).
[CrossRef]

Nano Lett. (1)

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett.11, 637–644 (2011).
[CrossRef] [PubMed]

Nat. Photonics (2)

C. C. Davis, “Fluorescence: Molecules in a tight spot,” Nat. Photonics3, 608–609 (2009).
[CrossRef]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
[CrossRef]

Opt. Express (4)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Plasmonics (1)

F. Mahdavi and S. Blair, “Nanoaperture fluorescence enhancement in the ultraviolet,” Plasmonics5, 169–174 (2010).
[CrossRef]

Protein Sci. (1)

M. T. Neves-Petersen, T. Snabe, S. Klitgaard, M. Duroux, and S. B. Petersen, “Photonic activation of disulfide bridges achieves oriented protein immobilization on biosensor surfaces,” Protein Sci.15, 343–351 (2006).
[CrossRef] [PubMed]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garvia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

Other (4)

S. Blair and J. Wenger, “Enhancing fluorescence with sub-wavelength metallic apertures,” in The Role of Plasmonic Engineering in Surface-Enhanced Fluorescence (C. D. Geddes, ed.) ch. 17 John Wiley & Sons2008.

E. D. Palik, “Handbook of Optical Constants of Solids,” Academic Press, London (1985)

L. Novotny and B. Hecht, “Principles of Nano-Optics,” Cambridge University Press, Cambridge, (2006).
[CrossRef]

G. D. Fasman, ed. Practical Handbook of Biochemistry and Molecular Biology. CRC Press1989.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Plots of SPP (a) and LSPR (b) quality factors for three different metals. The quality factors for Ag and Au drop significantly at short wavelengths due to interband transitions.

Fig. 2
Fig. 2

Plan view along the interface and xz cross-section of (a) dipole antenna, (b) bull’s eye aperture and (c) aperture array. The active region with 10 nm thickness is also shown.

Fig. 3
Fig. 3

Heat maps of (a) excitation enhancement (fI), (b) Purcell factor (fPurcell), (c) and (d) radiative enhancement (frad), (e) QE enhancement (fϕ) and (f) NE (unsaturated) for an Al dipole antenna versus gap size (G) and arm length (L). (T =30 nm, W=30 nm).

Fig. 4
Fig. 4

(a) Far-field angular radiation patterns of structures corresponding to the first (L=20 nm) and second (L=120 nm) peak NE for the dipole antenna. (b), (c) Corresponding spatial distribution of |E|2 in xz cross section. An x-polarized electric dipole with 340 nm wavelength is placed in the center of the active region. (G=20 nm, W=30 nm, T=30 nm).

Fig. 5
Fig. 5

Heat maps of (a) excitation enhancement (fI), (b) Purcell factor (fPurcell), (c) and (d) radiative enhancement (frad), (e) QE enhancement (fϕ) and (f) NE (unsaturated) for the bull’s eye antenna versus hole size (D) and groove pitch (P). (A=P, W=60 nm, S =20 nm, T =100 nm)

Fig. 6
Fig. 6

(a) Far-field angular radiation patterns of the first (P=140 nm, off-resonance), the second (P=200 nm) and the third (P=300 nm) peak NE of bull’s eye. (b), (c), (d) Corresponding spatial distribution of |E|2 in the structure/glass interface (xy surface) of bull’s eye. An x-polarized electric dipole with 340 nm wavelength is placed in the center of active region. (D=50 nm, A=P, W=60 nm, S=20 nm, T=100 nm)

Fig. 7
Fig. 7

Heat maps of (a) excitation enhancement (fI), (b) Purcell factor (fPurcell), (c) and (d) radiative enhancement (frad), (e) QE enhancement (fϕ) and (f) NE (unsaturated) for an aperture array versus aperture size (D) and period (P). (T=100 nm)

Fig. 8
Fig. 8

Far-field angular radiation patterns of the first (P=120 nm, off-resonance), the second (P=200 nm) and the third (P=300 nm) peak NE of aperture array. (b), (c), (d) Corresponding spatial distribution of |E|2 in the structure/glass interface (xy surface) of aperture array. An x-polarized electric dipole with 340 nm wavelength is placed in the center of active region. (D=50 nm, T =100 nm)

Fig. 9
Fig. 9

Far-field angular radiation patterns of three nanoantennas. Only the first order emission resonances are considered and patterns are normalized. An x-polarized electric dipole with 340 nm wavelength is placed in the center of active region.

Tables (1)

Tables Icon

Table 1 Comparison of performance metrics for the three nanoantennas

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

CRM = κ ϕ σ I e 1 + I e / I s
C R M | I e I s ~ κ k rad
C R M | I e I s ~ κ ϕ σ I e
f ϕ = f rad ( 1 ϕ o ) + ϕ o f Purcell
f Purcell = k tot k tot
N E | I e I s = f κ f rad
N E | I e I s = f κ f I f ϕ
k rad k rad + k n r = P rad P o

Metrics