Abstract

Precise weight measurements of stainless steel, PZT and PMMA samples were performed after groove machining with femtosecond laser pulses (150 fs, 800 nm, 5 kHz) to determine volume ablation rates and ablation threshold with good accuracy. Weighing clearly enables faster determination of such phenomenological parameters without any methodological issue compared to other methods. Comparisons of the three types of materials reveal similar monotonous trends depending on peak fluences from 0.2 to 15 J/cm2. The metallic target exhibits both the lowest volume ablation rate under the highest irradiation conditions with almost 400 µm3/pulse and the lowest ablation threshold with 0.13 J/cm2. Ceramic PZT reaches 3.103 µm3/pulse with a threshold fluence of 0.26 J/cm2 while polymer PMMA attains 104 µm3/pulse for a 0.76 J/cm2 threshold. Pros and cons of this method are also deduced from complementary results obtained on microscopic and confocal characterizations.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. H. Rizvi, “Femtosecond laser micromachining: Current status and applications,” Riken Rev.50, 107–112 (2003).
  2. X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron.33(10), 1706–1716 (1997).
    [CrossRef]
  3. H. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “Femtosecond laser drilling of alumina ceramic substrates,” Appl. Phys., A Mater. Sci. Process.101(2), 271–278 (2010).
    [CrossRef]
  4. G. Kamlage, T. Bauer, A. Ostendorf, and B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.77, 307–310 (2003).
  5. X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality laser cutting of alumina substrates,” Opt. Lasers Eng.48(6), 657–663 (2010).
    [CrossRef]
  6. F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Toward nanostructuring with femtosecond pulses,” Appl. Phys., A Mater. Sci. Process.77, 229–235 (2003).
  7. L. M. Machado, R. E. Samad, A. Z. Freitas, N. D. Vieira, and W. de Rossi, “Microchannels direct machining using the femtosecond smooth ablation method,” Phys. Proc.12, 67–75 (2011).
    [CrossRef]
  8. B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express18(3), 2913–2924 (2010).
    [CrossRef] [PubMed]
  9. S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B14(10), 2716–2722 (1997).
    [CrossRef]
  10. S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J Biophotonics2(10), 557–572 (2009).
    [CrossRef] [PubMed]
  11. R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett.80(21), 3886–3888 (2002).
    [CrossRef]
  12. S. Valette, E. Audouard, R. Le Harzic, N. Huot, P. Laporte, and R. Fortunier, “Heat affected zone in aluminum single crystals submitted to femtosecond laser irradiations,” Appl. Surf. Sci.239(3-4), 381–386 (2005).
    [CrossRef]
  13. B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picoseconds and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process.63(2), 109–115 (1996).
    [CrossRef]
  14. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
    [CrossRef] [PubMed]
  15. P. Mannion, J. Magee, E. Coyne, and G. M. O’Connor, “Ablation thresholds in ultrafast micromachining of common metals in air,” Proc. SPIE4876, 470–478 (2003).
    [CrossRef]
  16. M. Hashida, A. Semerok, O. Gobert, G. Petite, and J. F. Wagner, “Ablation thresholds of metals with femtosecond laser pulses,” Proc. SPIE4423, 178–185 (2001).
    [CrossRef]
  17. N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process.94(4), 889–897 (2009).
    [CrossRef]
  18. R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci.249(1-4), 322–331 (2005).
    [CrossRef]
  19. J. P. Desbiens and P. Masson, “ArF excimer laser micromachining of pyrex, SiC and PZT for rapid prototyping of MEMS components,” Sens. Actuators A Phys.136(2), 554–563 (2007).
    [CrossRef]
  20. J. P. Colombier, P. Combis, F. Bonneau, R. Le Harzic, and E. Audouard, “Hydrodynamic simulations of metal ablation by femtosecond laser irradiation,” Phys. Rev. B71(16), 1–6 (2005).
    [CrossRef]
  21. Y. Di Maio, J. P. Colombier, P. Cazottes, and E. Audouard, “Ultrafast laser ablation characteristics of PZT ceramic analysis methods and comparision with metals,” Opt. Lasers Eng.50(11), 1582–1591 (2012).
    [CrossRef]
  22. J. Bonse, M. Geuss, S. Baudach, H. Sturm, and W. Kautek, “The precision of the femtosecond Pulse Laser Ablation of TiN Films on Silicon,” Appl. Phys., A Mater. Sci. Process.69(7), S399–S402 (1999).
    [CrossRef]
  23. W. Wang, X. Mei, G. Jiang, S. Lei, and C. Yang, “Effect of two typical focus positions on microstructure shape and morphology in femtosecond laser multi-pulse ablation of metals,” Appl. Surf. Sci.255(5), 2303–2311 (2008).
    [CrossRef]
  24. Y. Huang, S. Liu, W. Li, Y. Liu, and W. Yang, “Two-dimensional periodic structure induced by single-beam femtosecond laser pulses irradiating titanium,” Opt. Express17(23), 20756–20761 (2009).
    [CrossRef] [PubMed]
  25. V. Kara and H. Kizil, “Titanium micromachining by femtosecond laser,” Opt. Lasers Eng.50(2), 140–147 (2012).
    [CrossRef]
  26. B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse duration from ps to fs,” Proc. SPIE8243, 824307 1–13 (2012).
  27. P. Gonzales, R. Bernath, J. Duncan, T. Olmstead, and M. Richardson, “Femtosecond ablation scaling for different materials,” Proc. SPIE5458, 265–272 (2004).
    [CrossRef]
  28. S. Y. Chan and N. H. Cheung, “Analysis of solids by laser ablation and resonance-enhanced laser-induced plasma spectroscopy,” Anal. Chem.72(9), 2087–2092 (2000).
    [CrossRef] [PubMed]
  29. B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process.79(4-6), 1051–1055 (2004).
    [CrossRef]
  30. M. K. Head and N. R. Buenfeld, “Confocal imaging of porosity in hardened concrete,” Cement Concr. Res.36(5), 896–911 (2006).
    [CrossRef]
  31. J. T. Fredrich, “3D imaging of porous media using laser scanning confocal microscopy with application to microscale transport processes,” Phys. Chem. Earth A24(7), 551–561 (1999).
    [CrossRef]
  32. T. R. Corle and G. S. Kino, Confocal scanning optical microscopy and related imaging systems (Academic Press, 1996).

2012 (3)

Y. Di Maio, J. P. Colombier, P. Cazottes, and E. Audouard, “Ultrafast laser ablation characteristics of PZT ceramic analysis methods and comparision with metals,” Opt. Lasers Eng.50(11), 1582–1591 (2012).
[CrossRef]

V. Kara and H. Kizil, “Titanium micromachining by femtosecond laser,” Opt. Lasers Eng.50(2), 140–147 (2012).
[CrossRef]

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse duration from ps to fs,” Proc. SPIE8243, 824307 1–13 (2012).

2011 (1)

L. M. Machado, R. E. Samad, A. Z. Freitas, N. D. Vieira, and W. de Rossi, “Microchannels direct machining using the femtosecond smooth ablation method,” Phys. Proc.12, 67–75 (2011).
[CrossRef]

2010 (3)

B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express18(3), 2913–2924 (2010).
[CrossRef] [PubMed]

X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality laser cutting of alumina substrates,” Opt. Lasers Eng.48(6), 657–663 (2010).
[CrossRef]

H. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “Femtosecond laser drilling of alumina ceramic substrates,” Appl. Phys., A Mater. Sci. Process.101(2), 271–278 (2010).
[CrossRef]

2009 (3)

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J Biophotonics2(10), 557–572 (2009).
[CrossRef] [PubMed]

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process.94(4), 889–897 (2009).
[CrossRef]

Y. Huang, S. Liu, W. Li, Y. Liu, and W. Yang, “Two-dimensional periodic structure induced by single-beam femtosecond laser pulses irradiating titanium,” Opt. Express17(23), 20756–20761 (2009).
[CrossRef] [PubMed]

2008 (1)

W. Wang, X. Mei, G. Jiang, S. Lei, and C. Yang, “Effect of two typical focus positions on microstructure shape and morphology in femtosecond laser multi-pulse ablation of metals,” Appl. Surf. Sci.255(5), 2303–2311 (2008).
[CrossRef]

2007 (1)

J. P. Desbiens and P. Masson, “ArF excimer laser micromachining of pyrex, SiC and PZT for rapid prototyping of MEMS components,” Sens. Actuators A Phys.136(2), 554–563 (2007).
[CrossRef]

2006 (1)

M. K. Head and N. R. Buenfeld, “Confocal imaging of porosity in hardened concrete,” Cement Concr. Res.36(5), 896–911 (2006).
[CrossRef]

2005 (3)

J. P. Colombier, P. Combis, F. Bonneau, R. Le Harzic, and E. Audouard, “Hydrodynamic simulations of metal ablation by femtosecond laser irradiation,” Phys. Rev. B71(16), 1–6 (2005).
[CrossRef]

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci.249(1-4), 322–331 (2005).
[CrossRef]

S. Valette, E. Audouard, R. Le Harzic, N. Huot, P. Laporte, and R. Fortunier, “Heat affected zone in aluminum single crystals submitted to femtosecond laser irradiations,” Appl. Surf. Sci.239(3-4), 381–386 (2005).
[CrossRef]

2004 (2)

P. Gonzales, R. Bernath, J. Duncan, T. Olmstead, and M. Richardson, “Femtosecond ablation scaling for different materials,” Proc. SPIE5458, 265–272 (2004).
[CrossRef]

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process.79(4-6), 1051–1055 (2004).
[CrossRef]

2003 (4)

P. Mannion, J. Magee, E. Coyne, and G. M. O’Connor, “Ablation thresholds in ultrafast micromachining of common metals in air,” Proc. SPIE4876, 470–478 (2003).
[CrossRef]

G. Kamlage, T. Bauer, A. Ostendorf, and B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.77, 307–310 (2003).

N. H. Rizvi, “Femtosecond laser micromachining: Current status and applications,” Riken Rev.50, 107–112 (2003).

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Toward nanostructuring with femtosecond pulses,” Appl. Phys., A Mater. Sci. Process.77, 229–235 (2003).

2002 (1)

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett.80(21), 3886–3888 (2002).
[CrossRef]

2001 (1)

M. Hashida, A. Semerok, O. Gobert, G. Petite, and J. F. Wagner, “Ablation thresholds of metals with femtosecond laser pulses,” Proc. SPIE4423, 178–185 (2001).
[CrossRef]

2000 (1)

S. Y. Chan and N. H. Cheung, “Analysis of solids by laser ablation and resonance-enhanced laser-induced plasma spectroscopy,” Anal. Chem.72(9), 2087–2092 (2000).
[CrossRef] [PubMed]

1999 (2)

J. Bonse, M. Geuss, S. Baudach, H. Sturm, and W. Kautek, “The precision of the femtosecond Pulse Laser Ablation of TiN Films on Silicon,” Appl. Phys., A Mater. Sci. Process.69(7), S399–S402 (1999).
[CrossRef]

J. T. Fredrich, “3D imaging of porous media using laser scanning confocal microscopy with application to microscale transport processes,” Phys. Chem. Earth A24(7), 551–561 (1999).
[CrossRef]

1997 (2)

S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B14(10), 2716–2722 (1997).
[CrossRef]

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron.33(10), 1706–1716 (1997).
[CrossRef]

1996 (2)

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picoseconds and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process.63(2), 109–115 (1996).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picoseconds and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process.63(2), 109–115 (1996).
[CrossRef]

Ang, B. C. Y.

H. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “Femtosecond laser drilling of alumina ceramic substrates,” Appl. Phys., A Mater. Sci. Process.101(2), 271–278 (2010).
[CrossRef]

X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality laser cutting of alumina substrates,” Opt. Lasers Eng.48(6), 657–663 (2010).
[CrossRef]

Audouard, E.

Y. Di Maio, J. P. Colombier, P. Cazottes, and E. Audouard, “Ultrafast laser ablation characteristics of PZT ceramic analysis methods and comparision with metals,” Opt. Lasers Eng.50(11), 1582–1591 (2012).
[CrossRef]

B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express18(3), 2913–2924 (2010).
[CrossRef] [PubMed]

S. Valette, E. Audouard, R. Le Harzic, N. Huot, P. Laporte, and R. Fortunier, “Heat affected zone in aluminum single crystals submitted to femtosecond laser irradiations,” Appl. Surf. Sci.239(3-4), 381–386 (2005).
[CrossRef]

J. P. Colombier, P. Combis, F. Bonneau, R. Le Harzic, and E. Audouard, “Hydrodynamic simulations of metal ablation by femtosecond laser irradiation,” Phys. Rev. B71(16), 1–6 (2005).
[CrossRef]

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci.249(1-4), 322–331 (2005).
[CrossRef]

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett.80(21), 3886–3888 (2002).
[CrossRef]

Baudach, S.

J. Bonse, M. Geuss, S. Baudach, H. Sturm, and W. Kautek, “The precision of the femtosecond Pulse Laser Ablation of TiN Films on Silicon,” Appl. Phys., A Mater. Sci. Process.69(7), S399–S402 (1999).
[CrossRef]

Bauer, T.

G. Kamlage, T. Bauer, A. Ostendorf, and B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.77, 307–310 (2003).

Bernath, R.

P. Gonzales, R. Bernath, J. Duncan, T. Olmstead, and M. Richardson, “Femtosecond ablation scaling for different materials,” Proc. SPIE5458, 265–272 (2004).
[CrossRef]

Bonneau, F.

J. P. Colombier, P. Combis, F. Bonneau, R. Le Harzic, and E. Audouard, “Hydrodynamic simulations of metal ablation by femtosecond laser irradiation,” Phys. Rev. B71(16), 1–6 (2005).
[CrossRef]

Bonse, J.

J. Bonse, M. Geuss, S. Baudach, H. Sturm, and W. Kautek, “The precision of the femtosecond Pulse Laser Ablation of TiN Films on Silicon,” Appl. Phys., A Mater. Sci. Process.69(7), S399–S402 (1999).
[CrossRef]

Breitling, D.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci.249(1-4), 322–331 (2005).
[CrossRef]

Buenfeld, N. R.

M. K. Head and N. R. Buenfeld, “Confocal imaging of porosity in hardened concrete,” Cement Concr. Res.36(5), 896–911 (2006).
[CrossRef]

Bussiere, B.

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process.94(4), 889–897 (2009).
[CrossRef]

Cazottes, P.

Y. Di Maio, J. P. Colombier, P. Cazottes, and E. Audouard, “Ultrafast laser ablation characteristics of PZT ceramic analysis methods and comparision with metals,” Opt. Lasers Eng.50(11), 1582–1591 (2012).
[CrossRef]

Chan, S. Y.

S. Y. Chan and N. H. Cheung, “Analysis of solids by laser ablation and resonance-enhanced laser-induced plasma spectroscopy,” Anal. Chem.72(9), 2087–2092 (2000).
[CrossRef] [PubMed]

Cheung, N. H.

S. Y. Chan and N. H. Cheung, “Analysis of solids by laser ablation and resonance-enhanced laser-induced plasma spectroscopy,” Anal. Chem.72(9), 2087–2092 (2000).
[CrossRef] [PubMed]

Chichkov, B. N.

G. Kamlage, T. Bauer, A. Ostendorf, and B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.77, 307–310 (2003).

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Toward nanostructuring with femtosecond pulses,” Appl. Phys., A Mater. Sci. Process.77, 229–235 (2003).

S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B14(10), 2716–2722 (1997).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picoseconds and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process.63(2), 109–115 (1996).
[CrossRef]

Chu, P. L.

X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality laser cutting of alumina substrates,” Opt. Lasers Eng.48(6), 657–663 (2010).
[CrossRef]

H. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “Femtosecond laser drilling of alumina ceramic substrates,” Appl. Phys., A Mater. Sci. Process.101(2), 271–278 (2010).
[CrossRef]

Chung, S. H.

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J Biophotonics2(10), 557–572 (2009).
[CrossRef] [PubMed]

Colombier, J. P.

Y. Di Maio, J. P. Colombier, P. Cazottes, and E. Audouard, “Ultrafast laser ablation characteristics of PZT ceramic analysis methods and comparision with metals,” Opt. Lasers Eng.50(11), 1582–1591 (2012).
[CrossRef]

B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express18(3), 2913–2924 (2010).
[CrossRef] [PubMed]

J. P. Colombier, P. Combis, F. Bonneau, R. Le Harzic, and E. Audouard, “Hydrodynamic simulations of metal ablation by femtosecond laser irradiation,” Phys. Rev. B71(16), 1–6 (2005).
[CrossRef]

Combis, P.

J. P. Colombier, P. Combis, F. Bonneau, R. Le Harzic, and E. Audouard, “Hydrodynamic simulations of metal ablation by femtosecond laser irradiation,” Phys. Rev. B71(16), 1–6 (2005).
[CrossRef]

Coustillier, G.

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process.94(4), 889–897 (2009).
[CrossRef]

Coyne, E.

P. Mannion, J. Magee, E. Coyne, and G. M. O’Connor, “Ablation thresholds in ultrafast micromachining of common metals in air,” Proc. SPIE4876, 470–478 (2003).
[CrossRef]

Dausinger, F.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci.249(1-4), 322–331 (2005).
[CrossRef]

de Rossi, W.

L. M. Machado, R. E. Samad, A. Z. Freitas, N. D. Vieira, and W. de Rossi, “Microchannels direct machining using the femtosecond smooth ablation method,” Phys. Proc.12, 67–75 (2011).
[CrossRef]

Desbiens, J. P.

J. P. Desbiens and P. Masson, “ArF excimer laser micromachining of pyrex, SiC and PZT for rapid prototyping of MEMS components,” Sens. Actuators A Phys.136(2), 554–563 (2007).
[CrossRef]

Di Maio, Y.

Y. Di Maio, J. P. Colombier, P. Cazottes, and E. Audouard, “Ultrafast laser ablation characteristics of PZT ceramic analysis methods and comparision with metals,” Opt. Lasers Eng.50(11), 1582–1591 (2012).
[CrossRef]

Donnet, C.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci.249(1-4), 322–331 (2005).
[CrossRef]

Du, D.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron.33(10), 1706–1716 (1997).
[CrossRef]

Du, K.-M.

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process.79(4-6), 1051–1055 (2004).
[CrossRef]

Duering, M.

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process.79(4-6), 1051–1055 (2004).
[CrossRef]

Duncan, J.

P. Gonzales, R. Bernath, J. Duncan, T. Olmstead, and M. Richardson, “Femtosecond ablation scaling for different materials,” Proc. SPIE5458, 265–272 (2004).
[CrossRef]

Dusser, B.

Egbert, A.

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Toward nanostructuring with femtosecond pulses,” Appl. Phys., A Mater. Sci. Process.77, 229–235 (2003).

Fallnich, C.

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Toward nanostructuring with femtosecond pulses,” Appl. Phys., A Mater. Sci. Process.77, 229–235 (2003).

Faure, N.

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Föhl, C.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci.249(1-4), 322–331 (2005).
[CrossRef]

Fortunier, R.

S. Valette, E. Audouard, R. Le Harzic, N. Huot, P. Laporte, and R. Fortunier, “Heat affected zone in aluminum single crystals submitted to femtosecond laser irradiations,” Appl. Surf. Sci.239(3-4), 381–386 (2005).
[CrossRef]

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett.80(21), 3886–3888 (2002).
[CrossRef]

Fraczkiewicz, A.

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett.80(21), 3886–3888 (2002).
[CrossRef]

Fredrich, J. T.

J. T. Fredrich, “3D imaging of porous media using laser scanning confocal microscopy with application to microscale transport processes,” Phys. Chem. Earth A24(7), 551–561 (1999).
[CrossRef]

Freitas, A. Z.

L. M. Machado, R. E. Samad, A. Z. Freitas, N. D. Vieira, and W. de Rossi, “Microchannels direct machining using the femtosecond smooth ablation method,” Phys. Proc.12, 67–75 (2011).
[CrossRef]

Geuss, M.

J. Bonse, M. Geuss, S. Baudach, H. Sturm, and W. Kautek, “The precision of the femtosecond Pulse Laser Ablation of TiN Films on Silicon,” Appl. Phys., A Mater. Sci. Process.69(7), S399–S402 (1999).
[CrossRef]

Giesekus, J.

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process.79(4-6), 1051–1055 (2004).
[CrossRef]

Gobert, O.

M. Hashida, A. Semerok, O. Gobert, G. Petite, and J. F. Wagner, “Ablation thresholds of metals with femtosecond laser pulses,” Proc. SPIE4423, 178–185 (2001).
[CrossRef]

Gonzales, P.

P. Gonzales, R. Bernath, J. Duncan, T. Olmstead, and M. Richardson, “Femtosecond ablation scaling for different materials,” Proc. SPIE5458, 265–272 (2004).
[CrossRef]

Hashida, M.

M. Hashida, A. Semerok, O. Gobert, G. Petite, and J. F. Wagner, “Ablation thresholds of metals with femtosecond laser pulses,” Proc. SPIE4423, 178–185 (2001).
[CrossRef]

Head, M. K.

M. K. Head and N. R. Buenfeld, “Confocal imaging of porosity in hardened concrete,” Cement Concr. Res.36(5), 896–911 (2006).
[CrossRef]

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Huang, Y.

Huot, N.

S. Valette, E. Audouard, R. Le Harzic, N. Huot, P. Laporte, and R. Fortunier, “Heat affected zone in aluminum single crystals submitted to femtosecond laser irradiations,” Appl. Surf. Sci.239(3-4), 381–386 (2005).
[CrossRef]

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett.80(21), 3886–3888 (2002).
[CrossRef]

Itina, T.

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process.94(4), 889–897 (2009).
[CrossRef]

Jacobs, H.

Jaeggi, B.

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse duration from ps to fs,” Proc. SPIE8243, 824307 1–13 (2012).

Jiang, G.

W. Wang, X. Mei, G. Jiang, S. Lei, and C. Yang, “Effect of two typical focus positions on microstructure shape and morphology in femtosecond laser multi-pulse ablation of metals,” Appl. Surf. Sci.255(5), 2303–2311 (2008).
[CrossRef]

Jonin, C.

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett.80(21), 3886–3888 (2002).
[CrossRef]

Jourlin, M.

Kamlage, G.

G. Kamlage, T. Bauer, A. Ostendorf, and B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.77, 307–310 (2003).

Kara, V.

V. Kara and H. Kizil, “Titanium micromachining by femtosecond laser,” Opt. Lasers Eng.50(2), 140–147 (2012).
[CrossRef]

Kautek, W.

J. Bonse, M. Geuss, S. Baudach, H. Sturm, and W. Kautek, “The precision of the femtosecond Pulse Laser Ablation of TiN Films on Silicon,” Appl. Phys., A Mater. Sci. Process.69(7), S399–S402 (1999).
[CrossRef]

Kizil, H.

V. Kara and H. Kizil, “Titanium micromachining by femtosecond laser,” Opt. Lasers Eng.50(2), 140–147 (2012).
[CrossRef]

Koch, J.

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Toward nanostructuring with femtosecond pulses,” Appl. Phys., A Mater. Sci. Process.77, 229–235 (2003).

Kolev, V. Z.

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process.79(4-6), 1051–1055 (2004).
[CrossRef]

Korte, F.

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Toward nanostructuring with femtosecond pulses,” Appl. Phys., A Mater. Sci. Process.77, 229–235 (2003).

Laporte, P.

S. Valette, E. Audouard, R. Le Harzic, N. Huot, P. Laporte, and R. Fortunier, “Heat affected zone in aluminum single crystals submitted to femtosecond laser irradiations,” Appl. Surf. Sci.239(3-4), 381–386 (2005).
[CrossRef]

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett.80(21), 3886–3888 (2002).
[CrossRef]

Le Harzic, R.

S. Valette, E. Audouard, R. Le Harzic, N. Huot, P. Laporte, and R. Fortunier, “Heat affected zone in aluminum single crystals submitted to femtosecond laser irradiations,” Appl. Surf. Sci.239(3-4), 381–386 (2005).
[CrossRef]

J. P. Colombier, P. Combis, F. Bonneau, R. Le Harzic, and E. Audouard, “Hydrodynamic simulations of metal ablation by femtosecond laser irradiation,” Phys. Rev. B71(16), 1–6 (2005).
[CrossRef]

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci.249(1-4), 322–331 (2005).
[CrossRef]

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett.80(21), 3886–3888 (2002).
[CrossRef]

Lederer, M. J.

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process.79(4-6), 1051–1055 (2004).
[CrossRef]

Lei, S.

W. Wang, X. Mei, G. Jiang, S. Lei, and C. Yang, “Effect of two typical focus positions on microstructure shape and morphology in femtosecond laser multi-pulse ablation of metals,” Appl. Surf. Sci.255(5), 2303–2311 (2008).
[CrossRef]

Leray, A.

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process.94(4), 889–897 (2009).
[CrossRef]

Li, W.

Liu, S.

Liu, T.

X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality laser cutting of alumina substrates,” Opt. Lasers Eng.48(6), 657–663 (2010).
[CrossRef]

H. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “Femtosecond laser drilling of alumina ceramic substrates,” Appl. Phys., A Mater. Sci. Process.101(2), 271–278 (2010).
[CrossRef]

Liu, X.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron.33(10), 1706–1716 (1997).
[CrossRef]

Liu, Y.

Luther-Davies, B.

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process.79(4-6), 1051–1055 (2004).
[CrossRef]

Machado, L. M.

L. M. Machado, R. E. Samad, A. Z. Freitas, N. D. Vieira, and W. de Rossi, “Microchannels direct machining using the femtosecond smooth ablation method,” Phys. Proc.12, 67–75 (2011).
[CrossRef]

Madsen, N. R.

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process.79(4-6), 1051–1055 (2004).
[CrossRef]

Magee, J.

P. Mannion, J. Magee, E. Coyne, and G. M. O’Connor, “Ablation thresholds in ultrafast micromachining of common metals in air,” Proc. SPIE4876, 470–478 (2003).
[CrossRef]

Mannion, P.

P. Mannion, J. Magee, E. Coyne, and G. M. O’Connor, “Ablation thresholds in ultrafast micromachining of common metals in air,” Proc. SPIE4876, 470–478 (2003).
[CrossRef]

Martin, P. E.

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse duration from ps to fs,” Proc. SPIE8243, 824307 1–13 (2012).

Masson, P.

J. P. Desbiens and P. Masson, “ArF excimer laser micromachining of pyrex, SiC and PZT for rapid prototyping of MEMS components,” Sens. Actuators A Phys.136(2), 554–563 (2007).
[CrossRef]

Mazur, E.

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J Biophotonics2(10), 557–572 (2009).
[CrossRef] [PubMed]

Mei, X.

W. Wang, X. Mei, G. Jiang, S. Lei, and C. Yang, “Effect of two typical focus positions on microstructure shape and morphology in femtosecond laser multi-pulse ablation of metals,” Appl. Surf. Sci.255(5), 2303–2311 (2008).
[CrossRef]

Momma, C.

S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B14(10), 2716–2722 (1997).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picoseconds and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process.63(2), 109–115 (1996).
[CrossRef]

Mourou, G.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron.33(10), 1706–1716 (1997).
[CrossRef]

Neuenschwander, B.

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse duration from ps to fs,” Proc. SPIE8243, 824307 1–13 (2012).

Nolte, S.

S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B14(10), 2716–2722 (1997).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picoseconds and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process.63(2), 109–115 (1996).
[CrossRef]

O’Connor, G. M.

P. Mannion, J. Magee, E. Coyne, and G. M. O’Connor, “Ablation thresholds in ultrafast micromachining of common metals in air,” Proc. SPIE4876, 470–478 (2003).
[CrossRef]

Olmstead, T.

P. Gonzales, R. Bernath, J. Duncan, T. Olmstead, and M. Richardson, “Femtosecond ablation scaling for different materials,” Proc. SPIE5458, 265–272 (2004).
[CrossRef]

Ostendorf, A.

G. Kamlage, T. Bauer, A. Ostendorf, and B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.77, 307–310 (2003).

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Toward nanostructuring with femtosecond pulses,” Appl. Phys., A Mater. Sci. Process.77, 229–235 (2003).

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Petite, G.

M. Hashida, A. Semerok, O. Gobert, G. Petite, and J. F. Wagner, “Ablation thresholds of metals with femtosecond laser pulses,” Proc. SPIE4423, 178–185 (2001).
[CrossRef]

Richardson, M.

P. Gonzales, R. Bernath, J. Duncan, T. Olmstead, and M. Richardson, “Femtosecond ablation scaling for different materials,” Proc. SPIE5458, 265–272 (2004).
[CrossRef]

Rizvi, N. H.

N. H. Rizvi, “Femtosecond laser micromachining: Current status and applications,” Riken Rev.50, 107–112 (2003).

Rode, A. V.

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process.79(4-6), 1051–1055 (2004).
[CrossRef]

Rouffiange, V.

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse duration from ps to fs,” Proc. SPIE8243, 824307 1–13 (2012).

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Sagan, Z.

Samad, R. E.

L. M. Machado, R. E. Samad, A. Z. Freitas, N. D. Vieira, and W. de Rossi, “Microchannels direct machining using the femtosecond smooth ablation method,” Phys. Proc.12, 67–75 (2011).
[CrossRef]

Sanner, N.

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process.94(4), 889–897 (2009).
[CrossRef]

Schmid, M.

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse duration from ps to fs,” Proc. SPIE8243, 824307 1–13 (2012).

Semerok, A.

M. Hashida, A. Semerok, O. Gobert, G. Petite, and J. F. Wagner, “Ablation thresholds of metals with femtosecond laser pulses,” Proc. SPIE4423, 178–185 (2001).
[CrossRef]

Sentis, M.

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process.94(4), 889–897 (2009).
[CrossRef]

Serbin, J.

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Toward nanostructuring with femtosecond pulses,” Appl. Phys., A Mater. Sci. Process.77, 229–235 (2003).

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Soder, H.

Sommer, S.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci.249(1-4), 322–331 (2005).
[CrossRef]

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Sturm, H.

J. Bonse, M. Geuss, S. Baudach, H. Sturm, and W. Kautek, “The precision of the femtosecond Pulse Laser Ablation of TiN Films on Silicon,” Appl. Phys., A Mater. Sci. Process.69(7), S399–S402 (1999).
[CrossRef]

Tan, J. L.

X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality laser cutting of alumina substrates,” Opt. Lasers Eng.48(6), 657–663 (2010).
[CrossRef]

H. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “Femtosecond laser drilling of alumina ceramic substrates,” Appl. Phys., A Mater. Sci. Process.101(2), 271–278 (2010).
[CrossRef]

Tay, G. H.

H. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “Femtosecond laser drilling of alumina ceramic substrates,” Appl. Phys., A Mater. Sci. Process.101(2), 271–278 (2010).
[CrossRef]

X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality laser cutting of alumina substrates,” Opt. Lasers Eng.48(6), 657–663 (2010).
[CrossRef]

Teh, K. M.

X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality laser cutting of alumina substrates,” Opt. Lasers Eng.48(6), 657–663 (2010).
[CrossRef]

H. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “Femtosecond laser drilling of alumina ceramic substrates,” Appl. Phys., A Mater. Sci. Process.101(2), 271–278 (2010).
[CrossRef]

Tunnermann, A.

Tünnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picoseconds and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process.63(2), 109–115 (1996).
[CrossRef]

Utéza, O.

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process.94(4), 889–897 (2009).
[CrossRef]

Valette, S.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci.249(1-4), 322–331 (2005).
[CrossRef]

S. Valette, E. Audouard, R. Le Harzic, N. Huot, P. Laporte, and R. Fortunier, “Heat affected zone in aluminum single crystals submitted to femtosecond laser irradiations,” Appl. Surf. Sci.239(3-4), 381–386 (2005).
[CrossRef]

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett.80(21), 3886–3888 (2002).
[CrossRef]

Vieira, N. D.

L. M. Machado, R. E. Samad, A. Z. Freitas, N. D. Vieira, and W. de Rossi, “Microchannels direct machining using the femtosecond smooth ablation method,” Phys. Proc.12, 67–75 (2011).
[CrossRef]

Wagner, J. F.

M. Hashida, A. Semerok, O. Gobert, G. Petite, and J. F. Wagner, “Ablation thresholds of metals with femtosecond laser pulses,” Proc. SPIE4423, 178–185 (2001).
[CrossRef]

Wang, H. C.

H. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “Femtosecond laser drilling of alumina ceramic substrates,” Appl. Phys., A Mater. Sci. Process.101(2), 271–278 (2010).
[CrossRef]

Wang, W.

W. Wang, X. Mei, G. Jiang, S. Lei, and C. Yang, “Effect of two typical focus positions on microstructure shape and morphology in femtosecond laser multi-pulse ablation of metals,” Appl. Surf. Sci.255(5), 2303–2311 (2008).
[CrossRef]

Wang, X. C.

X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality laser cutting of alumina substrates,” Opt. Lasers Eng.48(6), 657–663 (2010).
[CrossRef]

Weikert, M.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci.249(1-4), 322–331 (2005).
[CrossRef]

Wellegehausen, B.

Welling, H.

Yang, C.

W. Wang, X. Mei, G. Jiang, S. Lei, and C. Yang, “Effect of two typical focus positions on microstructure shape and morphology in femtosecond laser multi-pulse ablation of metals,” Appl. Surf. Sci.255(5), 2303–2311 (2008).
[CrossRef]

Yang, W.

Zheng, H. Y.

X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality laser cutting of alumina substrates,” Opt. Lasers Eng.48(6), 657–663 (2010).
[CrossRef]

H. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “Femtosecond laser drilling of alumina ceramic substrates,” Appl. Phys., A Mater. Sci. Process.101(2), 271–278 (2010).
[CrossRef]

Anal. Chem. (1)

S. Y. Chan and N. H. Cheung, “Analysis of solids by laser ablation and resonance-enhanced laser-induced plasma spectroscopy,” Anal. Chem.72(9), 2087–2092 (2000).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett.80(21), 3886–3888 (2002).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (7)

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process.94(4), 889–897 (2009).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picoseconds and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process.63(2), 109–115 (1996).
[CrossRef]

H. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “Femtosecond laser drilling of alumina ceramic substrates,” Appl. Phys., A Mater. Sci. Process.101(2), 271–278 (2010).
[CrossRef]

G. Kamlage, T. Bauer, A. Ostendorf, and B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.77, 307–310 (2003).

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Toward nanostructuring with femtosecond pulses,” Appl. Phys., A Mater. Sci. Process.77, 229–235 (2003).

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process.79(4-6), 1051–1055 (2004).
[CrossRef]

J. Bonse, M. Geuss, S. Baudach, H. Sturm, and W. Kautek, “The precision of the femtosecond Pulse Laser Ablation of TiN Films on Silicon,” Appl. Phys., A Mater. Sci. Process.69(7), S399–S402 (1999).
[CrossRef]

Appl. Surf. Sci. (3)

W. Wang, X. Mei, G. Jiang, S. Lei, and C. Yang, “Effect of two typical focus positions on microstructure shape and morphology in femtosecond laser multi-pulse ablation of metals,” Appl. Surf. Sci.255(5), 2303–2311 (2008).
[CrossRef]

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci.249(1-4), 322–331 (2005).
[CrossRef]

S. Valette, E. Audouard, R. Le Harzic, N. Huot, P. Laporte, and R. Fortunier, “Heat affected zone in aluminum single crystals submitted to femtosecond laser irradiations,” Appl. Surf. Sci.239(3-4), 381–386 (2005).
[CrossRef]

Cement Concr. Res. (1)

M. K. Head and N. R. Buenfeld, “Confocal imaging of porosity in hardened concrete,” Cement Concr. Res.36(5), 896–911 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron.33(10), 1706–1716 (1997).
[CrossRef]

J Biophotonics (1)

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J Biophotonics2(10), 557–572 (2009).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lasers Eng. (3)

V. Kara and H. Kizil, “Titanium micromachining by femtosecond laser,” Opt. Lasers Eng.50(2), 140–147 (2012).
[CrossRef]

Y. Di Maio, J. P. Colombier, P. Cazottes, and E. Audouard, “Ultrafast laser ablation characteristics of PZT ceramic analysis methods and comparision with metals,” Opt. Lasers Eng.50(11), 1582–1591 (2012).
[CrossRef]

X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality laser cutting of alumina substrates,” Opt. Lasers Eng.48(6), 657–663 (2010).
[CrossRef]

Phys. Chem. Earth A (1)

J. T. Fredrich, “3D imaging of porous media using laser scanning confocal microscopy with application to microscale transport processes,” Phys. Chem. Earth A24(7), 551–561 (1999).
[CrossRef]

Phys. Proc. (1)

L. M. Machado, R. E. Samad, A. Z. Freitas, N. D. Vieira, and W. de Rossi, “Microchannels direct machining using the femtosecond smooth ablation method,” Phys. Proc.12, 67–75 (2011).
[CrossRef]

Phys. Rev. B (1)

J. P. Colombier, P. Combis, F. Bonneau, R. Le Harzic, and E. Audouard, “Hydrodynamic simulations of metal ablation by femtosecond laser irradiation,” Phys. Rev. B71(16), 1–6 (2005).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Proc. SPIE (4)

P. Mannion, J. Magee, E. Coyne, and G. M. O’Connor, “Ablation thresholds in ultrafast micromachining of common metals in air,” Proc. SPIE4876, 470–478 (2003).
[CrossRef]

M. Hashida, A. Semerok, O. Gobert, G. Petite, and J. F. Wagner, “Ablation thresholds of metals with femtosecond laser pulses,” Proc. SPIE4423, 178–185 (2001).
[CrossRef]

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse duration from ps to fs,” Proc. SPIE8243, 824307 1–13 (2012).

P. Gonzales, R. Bernath, J. Duncan, T. Olmstead, and M. Richardson, “Femtosecond ablation scaling for different materials,” Proc. SPIE5458, 265–272 (2004).
[CrossRef]

Riken Rev. (1)

N. H. Rizvi, “Femtosecond laser micromachining: Current status and applications,” Riken Rev.50, 107–112 (2003).

Sens. Actuators A Phys. (1)

J. P. Desbiens and P. Masson, “ArF excimer laser micromachining of pyrex, SiC and PZT for rapid prototyping of MEMS components,” Sens. Actuators A Phys.136(2), 554–563 (2007).
[CrossRef]

Other (1)

T. R. Corle and G. S. Kino, Confocal scanning optical microscopy and related imaging systems (Academic Press, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup of the laser machining. M1-2-3-4, mirrors; BS, polarizing beam splitter; P, Pinhole; FF1-2, flip-flop mirrors; L1-2, Lenses; AD, achromatic doublet lenses; BA, beam analyzer; AC, AutoCorrelator; D, Dichroïc; P, Laser Pointer; S, sample (on a x–y–z computerized stage).

Fig. 2
Fig. 2

Evolution of the volume ablation rate for stainless steel measured by confocal microscopy (circles) and DW method (squares). Waist around 34µm.

Fig. 3
Fig. 3

Topographic views of the stainless steel sample obtained by confocal microscopy and average profile for (a) 0.8 J/cm2 and (b) 4.1 J/cm2. Three examples of cross-sections directly observed by optical microscopy for (c) 0.8 J/cm2 and (d) 4.1 J/cm2.

Fig. 4
Fig. 4

Evolution of the volume ablation rate for PZT ceramic measured by confocal microscopy (circles) and DW method (squares). Waist around 34µm.

Fig. 5
Fig. 5

Evolution of the volume ablation rate for PMMA polymer measured by confocal microscopy (circles) and DW method (squares). Waist around 34µm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ΔV= Δm ρ
N p = C L tot v
L tot =k L path
N p = Ck L tot v
τ vol = ΔV N p = Δmv ρCk L path

Metrics