Abstract

We describe fabrication of microstructures by two-photon polymerization using bursts of femtosecond laser pulses. With the aid of an acousto-optic modulator driven by a function generator, two-photon polymerization is performed at variable burst repetition rates. We investigate how the time between the bursts of laser pulses influences the ultimate dimensions of lines written in a photosensitive resin. We observe that when using the same laser fluence, polymer lines fabricated at different burst repetition rates have different dimensions. In particular, the widths of two-photon polymerized lines become smaller with decreasing burst repetition rates. Based on the thermal properties of the resin and experimental writing conditions, we attribute this effect to localized heat accumulation.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev.2(1-2), 100–111 (2008).
    [CrossRef]
  2. P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-migration studies using two-photon engineered polymer scaffolds,” Adv. Mater. (Deerfield Beach Fla.)20(23), 4494–4498 (2008).
    [CrossRef]
  3. F. Klein, B. S. Richter, T. Striebel, C. M. Franz, G. Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. (Deerfield Beach Fla.)23(11), 1341–1345 (2011).
    [CrossRef]
  4. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
    [CrossRef] [PubMed]
  5. L. Li, E. Gershgoren, G. Kumi, W.-Y. Chen, P. T. Ho, W. N. Herman, and J. T. Fourkas, “High-performance microring resonators fabricated with multiphoton absoprtion polymerization,” Adv. Mater. (Deerfield Beach Fla.)20(19), 3668–3671 (2008).
    [CrossRef]
  6. G. Kumi, C. O. Yanez, K. D. Belfield, and J. T. Fourkas, “High-speed multiphoton absorption polymerization: fabrication of microfluidic channels with arbitrary cross-sections and high aspect ratios,” Lab Chip10(8), 1057–1060 (2010).
    [CrossRef] [PubMed]
  7. J. Wang, Y. He, H. Xia, L. G. Niu, R. Zhang, Q. D. Chen, Y. L. Zhang, Y. F. Li, S. J. Zeng, J. H. Qin, B. C. Lin, and H. B. Sun, “Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization,” Lab Chip10(15), 1993–1996 (2010).
    [CrossRef] [PubMed]
  8. S. Maruo, A. Takaura, and Y. Saito, “Optically driven micropump with a twin spiral microrotor,” Opt. Express17(21), 18525–18532 (2009).
    [CrossRef] [PubMed]
  9. R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc.128(6), 1796–1797 (2006).
    [CrossRef] [PubMed]
  10. Y. L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today5(5), 435–448 (2010).
    [CrossRef]
  11. T. Tanaka, H.-B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett.80(2), 312–314 (2002).
    [CrossRef]
  12. S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005).
    [CrossRef]
  13. D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
    [CrossRef]
  14. S. H. Park, T. W. Lim, D. Y. Yang, N. C. Cho, and K. S. Lee, “Fabrication of a bunch of sub-30-nm nanofibers inside microchannels using photopolymerization via a long esposure technique,” Appl. Phys. Lett.89(17), 173133 (2006).
    [CrossRef]
  15. W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express15(6), 3426–3436 (2007).
    [CrossRef] [PubMed]
  16. L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009).
    [CrossRef] [PubMed]
  17. J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. (Deerfield Beach Fla.)22(32), 3578–3582 (2010).
    [CrossRef] [PubMed]
  18. J. Fischer and M. Wegener, “Ultrafast polymerization inhibition by stimulated emission depletion for three-dimensional nanolithography,” Adv. Mater. (Deerfield Beach Fla.)24(10), OP65–OP69 (2012).
    [CrossRef] [PubMed]
  19. M. P. Stocker, L. J. Li, R. R. Gattass, and J. T. Fourkas, “Multiphoton photoresists giving nanoscale resolution that is inversely dependent on exposure time,” Nat. Chem.3(3), 225–227 (2011).
    [CrossRef] [PubMed]
  20. M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett.97(22), 221102 (2010).
    [CrossRef]
  21. J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90(13), 131106 (2007).
    [CrossRef]
  22. M. Malinauskas, A. Zukauskas, G. Bickauskaite, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18(10), 10209–10221 (2010).
    [CrossRef] [PubMed]
  23. C. Decker, “Photoinitiated curing of multifunctional monomers,” Acta Polym.45(5), 333–347 (1994).
    [CrossRef]
  24. S. Jockusch, I. V. Koptyug, P. F. McGarry, G. W. Sluggett, N. J. Turro, and D. M. Watkins, “A Steady-State and Picosecond Pump-Probe Investigation of the Photophysics of an Acyl and a Bis(acyl)phosphine Oxide,” J. Am. Chem. Soc.119(47), 11495–11501 (1997).
    [CrossRef]
  25. C. S. Colley, D. C. Grills, N. A. Besley, S. Jockusch, P. Matousek, A. W. Parker, M. Towrie, N. J. Turro, P. M. W. Gill, and M. W. George, “Probing the Reactivity of Photoinitiators for Free Radical Polymerization: Time-Resolved Infrared Spectroscopic Study of Benzoyl Radicals,” J. Am. Chem. Soc.124(50), 14952–14958 (2002).
    [CrossRef] [PubMed]
  26. M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19(6), 5602–5610 (2011).
    [CrossRef] [PubMed]
  27. S. M. Eaton, H. B. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express13(12), 4708–4716 (2005).
    [CrossRef] [PubMed]
  28. R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express14(12), 5279–5284 (2006).
    [CrossRef] [PubMed]
  29. T. Baldacchini, M. Zimmerley, E. O. Potma, and R. Zadoyan, “Chemical mapping of three-dimensiona microstructures fabricated by two-photon polymerization using CARS microscopy,” in Proc. of SPIE, 2009), 72010Q–72011.
  30. T. Baldacchini, M. Zimmerley, C. H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of Microstructures Fabricated by Two-Photon Polymerization Using Coherent Anti-Stokes Raman Scattering Microscopy,” J. Phys. Chem. B113(38), 12663–12668 (2009).
    [CrossRef] [PubMed]
  31. H.-B. Sun, T. Tanaka, and S. Kawata, “Three-dimensional focal spots related to two-photon excitation,” Appl. Phys. Lett.80(20), 3673–3675 (2002).
    [CrossRef]
  32. S. Maruo, T. Hasegawa, and N. Yoshimura, “Single-anchor support and supercritical CO2 drying enable high-precision microfabrication of three-dimensional structures,” Opt. Express17(23), 20945–20951 (2009).
    [CrossRef] [PubMed]
  33. H. B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, “Shape precompesation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett.85(17), 3708–3710 (2004).
    [CrossRef]
  34. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
    [CrossRef] [PubMed]
  35. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
    [CrossRef] [PubMed]
  36. C. Martineau, R. Anemian, C. Andraud, I. Wang, M. Bouriau, and P. L. Baldeck, “Efficient initiators for two-photon induced polymerization in the visible range,” Chem. Phys. Lett.362(3-4), 291–295 (2002).
    [CrossRef]
  37. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett.28(5), 301–303 (2003).
    [CrossRef] [PubMed]
  38. W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett.84(20), 4095–4097 (2004).
    [CrossRef]
  39. N. Fang, C. Sun, and X. Zhang, “Diffusion-limited photopolymerization in scanning micro-stereolithography,” Appl. Phys., A Mater. Sci. Process.79(8), 1839–1842 (2004).
    [CrossRef]
  40. A. Pikulin and N. Bityurin, “Spatial resolution in polymerization of sample features at nanoscale,” Phys. Rev. B75(19), 195430 (2007).
    [CrossRef]
  41. I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano6(3), 2302–2311 (2012).
    [CrossRef] [PubMed]
  42. J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys., A Mater. Sci. Process.98(3), 551–556 (2010).
    [CrossRef]
  43. L. Flach and R. P. Chartoff, “A process model for nonisothermal photopolymerization with a laser light source. I: basic model development,” Polym. Eng. Sci.35(6), 483–492 (1995).
    [CrossRef]
  44. J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of femtosecond-laser-structured PMMA,” Appl. Phys., A Mater. Sci. Process.101(1), 27–31 (2010).
    [CrossRef]
  45. J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. (2012).

2012 (2)

J. Fischer and M. Wegener, “Ultrafast polymerization inhibition by stimulated emission depletion for three-dimensional nanolithography,” Adv. Mater. (Deerfield Beach Fla.)24(10), OP65–OP69 (2012).
[CrossRef] [PubMed]

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano6(3), 2302–2311 (2012).
[CrossRef] [PubMed]

2011 (3)

M. P. Stocker, L. J. Li, R. R. Gattass, and J. T. Fourkas, “Multiphoton photoresists giving nanoscale resolution that is inversely dependent on exposure time,” Nat. Chem.3(3), 225–227 (2011).
[CrossRef] [PubMed]

F. Klein, B. S. Richter, T. Striebel, C. M. Franz, G. Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. (Deerfield Beach Fla.)23(11), 1341–1345 (2011).
[CrossRef]

M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19(6), 5602–5610 (2011).
[CrossRef] [PubMed]

2010 (8)

M. Malinauskas, A. Zukauskas, G. Bickauskaite, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18(10), 10209–10221 (2010).
[CrossRef] [PubMed]

G. Kumi, C. O. Yanez, K. D. Belfield, and J. T. Fourkas, “High-speed multiphoton absorption polymerization: fabrication of microfluidic channels with arbitrary cross-sections and high aspect ratios,” Lab Chip10(8), 1057–1060 (2010).
[CrossRef] [PubMed]

J. Wang, Y. He, H. Xia, L. G. Niu, R. Zhang, Q. D. Chen, Y. L. Zhang, Y. F. Li, S. J. Zeng, J. H. Qin, B. C. Lin, and H. B. Sun, “Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization,” Lab Chip10(15), 1993–1996 (2010).
[CrossRef] [PubMed]

Y. L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today5(5), 435–448 (2010).
[CrossRef]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett.97(22), 221102 (2010).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys., A Mater. Sci. Process.98(3), 551–556 (2010).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of femtosecond-laser-structured PMMA,” Appl. Phys., A Mater. Sci. Process.101(1), 27–31 (2010).
[CrossRef]

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. (Deerfield Beach Fla.)22(32), 3578–3582 (2010).
[CrossRef] [PubMed]

2009 (4)

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009).
[CrossRef] [PubMed]

T. Baldacchini, M. Zimmerley, C. H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of Microstructures Fabricated by Two-Photon Polymerization Using Coherent Anti-Stokes Raman Scattering Microscopy,” J. Phys. Chem. B113(38), 12663–12668 (2009).
[CrossRef] [PubMed]

S. Maruo, A. Takaura, and Y. Saito, “Optically driven micropump with a twin spiral microrotor,” Opt. Express17(21), 18525–18532 (2009).
[CrossRef] [PubMed]

S. Maruo, T. Hasegawa, and N. Yoshimura, “Single-anchor support and supercritical CO2 drying enable high-precision microfabrication of three-dimensional structures,” Opt. Express17(23), 20945–20951 (2009).
[CrossRef] [PubMed]

2008 (4)

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

L. Li, E. Gershgoren, G. Kumi, W.-Y. Chen, P. T. Ho, W. N. Herman, and J. T. Fourkas, “High-performance microring resonators fabricated with multiphoton absoprtion polymerization,” Adv. Mater. (Deerfield Beach Fla.)20(19), 3668–3671 (2008).
[CrossRef]

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev.2(1-2), 100–111 (2008).
[CrossRef]

P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-migration studies using two-photon engineered polymer scaffolds,” Adv. Mater. (Deerfield Beach Fla.)20(23), 4494–4498 (2008).
[CrossRef]

2007 (4)

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90(13), 131106 (2007).
[CrossRef]

A. Pikulin and N. Bityurin, “Spatial resolution in polymerization of sample features at nanoscale,” Phys. Rev. B75(19), 195430 (2007).
[CrossRef]

W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express15(6), 3426–3436 (2007).
[CrossRef] [PubMed]

2006 (3)

R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express14(12), 5279–5284 (2006).
[CrossRef] [PubMed]

S. H. Park, T. W. Lim, D. Y. Yang, N. C. Cho, and K. S. Lee, “Fabrication of a bunch of sub-30-nm nanofibers inside microchannels using photopolymerization via a long esposure technique,” Appl. Phys. Lett.89(17), 173133 (2006).
[CrossRef]

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc.128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (4)

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
[CrossRef] [PubMed]

H. B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, “Shape precompesation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett.85(17), 3708–3710 (2004).
[CrossRef]

W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett.84(20), 4095–4097 (2004).
[CrossRef]

N. Fang, C. Sun, and X. Zhang, “Diffusion-limited photopolymerization in scanning micro-stereolithography,” Appl. Phys., A Mater. Sci. Process.79(8), 1839–1842 (2004).
[CrossRef]

2003 (1)

2002 (4)

C. Martineau, R. Anemian, C. Andraud, I. Wang, M. Bouriau, and P. L. Baldeck, “Efficient initiators for two-photon induced polymerization in the visible range,” Chem. Phys. Lett.362(3-4), 291–295 (2002).
[CrossRef]

H.-B. Sun, T. Tanaka, and S. Kawata, “Three-dimensional focal spots related to two-photon excitation,” Appl. Phys. Lett.80(20), 3673–3675 (2002).
[CrossRef]

C. S. Colley, D. C. Grills, N. A. Besley, S. Jockusch, P. Matousek, A. W. Parker, M. Towrie, N. J. Turro, P. M. W. Gill, and M. W. George, “Probing the Reactivity of Photoinitiators for Free Radical Polymerization: Time-Resolved Infrared Spectroscopic Study of Benzoyl Radicals,” J. Am. Chem. Soc.124(50), 14952–14958 (2002).
[CrossRef] [PubMed]

T. Tanaka, H.-B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett.80(2), 312–314 (2002).
[CrossRef]

2001 (1)

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

1997 (1)

S. Jockusch, I. V. Koptyug, P. F. McGarry, G. W. Sluggett, N. J. Turro, and D. M. Watkins, “A Steady-State and Picosecond Pump-Probe Investigation of the Photophysics of an Acyl and a Bis(acyl)phosphine Oxide,” J. Am. Chem. Soc.119(47), 11495–11501 (1997).
[CrossRef]

1995 (1)

L. Flach and R. P. Chartoff, “A process model for nonisothermal photopolymerization with a laser light source. I: basic model development,” Polym. Eng. Sci.35(6), 483–492 (1995).
[CrossRef]

1994 (1)

C. Decker, “Photoinitiated curing of multifunctional monomers,” Acta Polym.45(5), 333–347 (1994).
[CrossRef]

Andraud, C.

C. Martineau, R. Anemian, C. Andraud, I. Wang, M. Bouriau, and P. L. Baldeck, “Efficient initiators for two-photon induced polymerization in the visible range,” Chem. Phys. Lett.362(3-4), 291–295 (2002).
[CrossRef]

Anemian, R.

C. Martineau, R. Anemian, C. Andraud, I. Wang, M. Bouriau, and P. L. Baldeck, “Efficient initiators for two-photon induced polymerization in the visible range,” Chem. Phys. Lett.362(3-4), 291–295 (2002).
[CrossRef]

Arai, A.

Baldacchini, T.

T. Baldacchini, M. Zimmerley, C. H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of Microstructures Fabricated by Two-Photon Polymerization Using Coherent Anti-Stokes Raman Scattering Microscopy,” J. Phys. Chem. B113(38), 12663–12668 (2009).
[CrossRef] [PubMed]

P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-migration studies using two-photon engineered polymer scaffolds,” Adv. Mater. (Deerfield Beach Fla.)20(23), 4494–4498 (2008).
[CrossRef]

Baldeck, P. L.

C. Martineau, R. Anemian, C. Andraud, I. Wang, M. Bouriau, and P. L. Baldeck, “Efficient initiators for two-photon induced polymerization in the visible range,” Chem. Phys. Lett.362(3-4), 291–295 (2002).
[CrossRef]

Barlow, S.

Bastmeyer, M.

F. Klein, B. S. Richter, T. Striebel, C. M. Franz, G. Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. (Deerfield Beach Fla.)23(11), 1341–1345 (2011).
[CrossRef]

Belfield, K. D.

G. Kumi, C. O. Yanez, K. D. Belfield, and J. T. Fourkas, “High-speed multiphoton absorption polymerization: fabrication of microfluidic channels with arbitrary cross-sections and high aspect ratios,” Lab Chip10(8), 1057–1060 (2010).
[CrossRef] [PubMed]

Besley, N. A.

C. S. Colley, D. C. Grills, N. A. Besley, S. Jockusch, P. Matousek, A. W. Parker, M. Towrie, N. J. Turro, P. M. W. Gill, and M. W. George, “Probing the Reactivity of Photoinitiators for Free Radical Polymerization: Time-Resolved Infrared Spectroscopic Study of Benzoyl Radicals,” J. Am. Chem. Soc.124(50), 14952–14958 (2002).
[CrossRef] [PubMed]

Bickauskaite, G.

Bityurin, N.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano6(3), 2302–2311 (2012).
[CrossRef] [PubMed]

A. Pikulin and N. Bityurin, “Spatial resolution in polymerization of sample features at nanoscale,” Phys. Rev. B75(19), 195430 (2007).
[CrossRef]

Bouriau, M.

C. Martineau, R. Anemian, C. Andraud, I. Wang, M. Bouriau, and P. L. Baldeck, “Efficient initiators for two-photon induced polymerization in the visible range,” Chem. Phys. Lett.362(3-4), 291–295 (2002).
[CrossRef]

Bovatsek, J.

Busch, K.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
[CrossRef] [PubMed]

Cerami, L. R.

Chartoff, R. P.

L. Flach and R. P. Chartoff, “A process model for nonisothermal photopolymerization with a laser light source. I: basic model development,” Polym. Eng. Sci.35(6), 483–492 (1995).
[CrossRef]

Chen, Q. D.

J. Wang, Y. He, H. Xia, L. G. Niu, R. Zhang, Q. D. Chen, Y. L. Zhang, Y. F. Li, S. J. Zeng, J. H. Qin, B. C. Lin, and H. B. Sun, “Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization,” Lab Chip10(15), 1993–1996 (2010).
[CrossRef] [PubMed]

Chen, Q.-D.

Y. L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today5(5), 435–448 (2010).
[CrossRef]

Chen, V. W.

Chen, W. Q.

J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90(13), 131106 (2007).
[CrossRef]

Chen, W.-Y.

L. Li, E. Gershgoren, G. Kumi, W.-Y. Chen, P. T. Ho, W. N. Herman, and J. T. Fourkas, “High-performance microring resonators fabricated with multiphoton absoprtion polymerization,” Adv. Mater. (Deerfield Beach Fla.)20(19), 3668–3671 (2008).
[CrossRef]

Chichkov, B.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Chichkov, B. N.

Cho, N. C.

S. H. Park, T. W. Lim, D. Y. Yang, N. C. Cho, and K. S. Lee, “Fabrication of a bunch of sub-30-nm nanofibers inside microchannels using photopolymerization via a long esposure technique,” Appl. Phys. Lett.89(17), 173133 (2006).
[CrossRef]

Colley, C. S.

C. S. Colley, D. C. Grills, N. A. Besley, S. Jockusch, P. Matousek, A. W. Parker, M. Towrie, N. J. Turro, P. M. W. Gill, and M. W. George, “Probing the Reactivity of Photoinitiators for Free Radical Polymerization: Time-Resolved Infrared Spectroscopic Study of Benzoyl Radicals,” J. Am. Chem. Soc.124(50), 14952–14958 (2002).
[CrossRef] [PubMed]

Cronauer, C.

Danilevicius, P.

Decker, C.

C. Decker, “Photoinitiated curing of multifunctional monomers,” Acta Polym.45(5), 333–347 (1994).
[CrossRef]

Deubel, M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
[CrossRef] [PubMed]

Domann, G.

Dong, W.

Dong, X.

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

Dong, X. Z.

J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90(13), 131106 (2007).
[CrossRef]

Drechsler, U.

W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett.84(20), 4095–4097 (2004).
[CrossRef]

Duan, X.

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

Duan, X. M.

J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90(13), 131106 (2007).
[CrossRef]

Durig, U.

W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett.84(20), 4095–4097 (2004).
[CrossRef]

Eaton, S. M.

Egbert, A.

Fang, N.

N. Fang, C. Sun, and X. Zhang, “Diffusion-limited photopolymerization in scanning micro-stereolithography,” Appl. Phys., A Mater. Sci. Process.79(8), 1839–1842 (2004).
[CrossRef]

Farrer, R. A.

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc.128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

Farsari, M.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano6(3), 2302–2311 (2012).
[CrossRef] [PubMed]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Fischer, J.

J. Fischer and M. Wegener, “Ultrafast polymerization inhibition by stimulated emission depletion for three-dimensional nanolithography,” Adv. Mater. (Deerfield Beach Fla.)24(10), OP65–OP69 (2012).
[CrossRef] [PubMed]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett.97(22), 221102 (2010).
[CrossRef]

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. (Deerfield Beach Fla.)22(32), 3578–3582 (2010).
[CrossRef] [PubMed]

Flach, L.

L. Flach and R. P. Chartoff, “A process model for nonisothermal photopolymerization with a laser light source. I: basic model development,” Polym. Eng. Sci.35(6), 483–492 (1995).
[CrossRef]

Fotakis, C.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano6(3), 2302–2311 (2012).
[CrossRef] [PubMed]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Fourkas, J. T.

M. P. Stocker, L. J. Li, R. R. Gattass, and J. T. Fourkas, “Multiphoton photoresists giving nanoscale resolution that is inversely dependent on exposure time,” Nat. Chem.3(3), 225–227 (2011).
[CrossRef] [PubMed]

G. Kumi, C. O. Yanez, K. D. Belfield, and J. T. Fourkas, “High-speed multiphoton absorption polymerization: fabrication of microfluidic channels with arbitrary cross-sections and high aspect ratios,” Lab Chip10(8), 1057–1060 (2010).
[CrossRef] [PubMed]

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009).
[CrossRef] [PubMed]

L. Li, E. Gershgoren, G. Kumi, W.-Y. Chen, P. T. Ho, W. N. Herman, and J. T. Fourkas, “High-performance microring resonators fabricated with multiphoton absoprtion polymerization,” Adv. Mater. (Deerfield Beach Fla.)20(19), 3668–3671 (2008).
[CrossRef]

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev.2(1-2), 100–111 (2008).
[CrossRef]

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc.128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

Franz, C. M.

F. Klein, B. S. Richter, T. Striebel, C. M. Franz, G. Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. (Deerfield Beach Fla.)23(11), 1341–1345 (2011).
[CrossRef]

Freymann, G.

F. Klein, B. S. Richter, T. Striebel, C. M. Franz, G. Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. (Deerfield Beach Fla.)23(11), 1341–1345 (2011).
[CrossRef]

Fröhlich, L.

Gadonas, R.

Gattass, R. R.

M. P. Stocker, L. J. Li, R. R. Gattass, and J. T. Fourkas, “Multiphoton photoresists giving nanoscale resolution that is inversely dependent on exposure time,” Nat. Chem.3(3), 225–227 (2011).
[CrossRef] [PubMed]

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009).
[CrossRef] [PubMed]

R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express14(12), 5279–5284 (2006).
[CrossRef] [PubMed]

George, M. W.

C. S. Colley, D. C. Grills, N. A. Besley, S. Jockusch, P. Matousek, A. W. Parker, M. Towrie, N. J. Turro, P. M. W. Gill, and M. W. George, “Probing the Reactivity of Photoinitiators for Free Radical Polymerization: Time-Resolved Infrared Spectroscopic Study of Benzoyl Radicals,” J. Am. Chem. Soc.124(50), 14952–14958 (2002).
[CrossRef] [PubMed]

Gershgoren, E.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009).
[CrossRef] [PubMed]

L. Li, E. Gershgoren, G. Kumi, W.-Y. Chen, P. T. Ho, W. N. Herman, and J. T. Fourkas, “High-performance microring resonators fabricated with multiphoton absoprtion polymerization,” Adv. Mater. (Deerfield Beach Fla.)20(19), 3668–3671 (2008).
[CrossRef]

Giakoumaki, A.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Gill, P. M. W.

C. S. Colley, D. C. Grills, N. A. Besley, S. Jockusch, P. Matousek, A. W. Parker, M. Towrie, N. J. Turro, P. M. W. Gill, and M. W. George, “Probing the Reactivity of Photoinitiators for Free Radical Polymerization: Time-Resolved Infrared Spectroscopic Study of Benzoyl Radicals,” J. Am. Chem. Soc.124(50), 14952–14958 (2002).
[CrossRef] [PubMed]

Gong, Q.

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

Gray, D.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano6(3), 2302–2311 (2012).
[CrossRef] [PubMed]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Grills, D. C.

C. S. Colley, D. C. Grills, N. A. Besley, S. Jockusch, P. Matousek, A. W. Parker, M. Towrie, N. J. Turro, P. M. W. Gill, and M. W. George, “Probing the Reactivity of Photoinitiators for Free Radical Polymerization: Time-Resolved Infrared Spectroscopic Study of Benzoyl Radicals,” J. Am. Chem. Soc.124(50), 14952–14958 (2002).
[CrossRef] [PubMed]

Guntherodt, H. J.

W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett.84(20), 4095–4097 (2004).
[CrossRef]

Hales, J. M.

Harbers, R.

W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett.84(20), 4095–4097 (2004).
[CrossRef]

Hasegawa, T.

Hashimoto, T.

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys., A Mater. Sci. Process.98(3), 551–556 (2010).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of femtosecond-laser-structured PMMA,” Appl. Phys., A Mater. Sci. Process.101(1), 27–31 (2010).
[CrossRef]

Haske, W.

He, Y.

J. Wang, Y. He, H. Xia, L. G. Niu, R. Zhang, Q. D. Chen, Y. L. Zhang, Y. F. Li, S. J. Zeng, J. H. Qin, B. C. Lin, and H. B. Sun, “Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization,” Lab Chip10(15), 1993–1996 (2010).
[CrossRef] [PubMed]

Herman, P. R.

Herman, W. N.

L. Li, E. Gershgoren, G. Kumi, W.-Y. Chen, P. T. Ho, W. N. Herman, and J. T. Fourkas, “High-performance microring resonators fabricated with multiphoton absoprtion polymerization,” Adv. Mater. (Deerfield Beach Fla.)20(19), 3668–3671 (2008).
[CrossRef]

Ho, P. T.

L. Li, E. Gershgoren, G. Kumi, W.-Y. Chen, P. T. Ho, W. N. Herman, and J. T. Fourkas, “High-performance microring resonators fabricated with multiphoton absoprtion polymerization,” Adv. Mater. (Deerfield Beach Fla.)20(19), 3668–3671 (2008).
[CrossRef]

Houbertz, R.

Hwang, H.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009).
[CrossRef] [PubMed]

Jockusch, S.

C. S. Colley, D. C. Grills, N. A. Besley, S. Jockusch, P. Matousek, A. W. Parker, M. Towrie, N. J. Turro, P. M. W. Gill, and M. W. George, “Probing the Reactivity of Photoinitiators for Free Radical Polymerization: Time-Resolved Infrared Spectroscopic Study of Benzoyl Radicals,” J. Am. Chem. Soc.124(50), 14952–14958 (2002).
[CrossRef] [PubMed]

S. Jockusch, I. V. Koptyug, P. F. McGarry, G. W. Sluggett, N. J. Turro, and D. M. Watkins, “A Steady-State and Picosecond Pump-Probe Investigation of the Photophysics of an Acyl and a Bis(acyl)phosphine Oxide,” J. Am. Chem. Soc.119(47), 11495–11501 (1997).
[CrossRef]

Juodkazis, S.

M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19(6), 5602–5610 (2011).
[CrossRef] [PubMed]

M. Malinauskas, A. Zukauskas, G. Bickauskaite, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18(10), 10209–10221 (2010).
[CrossRef] [PubMed]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of femtosecond-laser-structured PMMA,” Appl. Phys., A Mater. Sci. Process.101(1), 27–31 (2010).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys., A Mater. Sci. Process.98(3), 551–556 (2010).
[CrossRef]

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005).
[CrossRef]

Kabouraki, E.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano6(3), 2302–2311 (2012).
[CrossRef] [PubMed]

Kawata, S.

J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90(13), 131106 (2007).
[CrossRef]

H. B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, “Shape precompesation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett.85(17), 3708–3710 (2004).
[CrossRef]

H.-B. Sun, T. Tanaka, and S. Kawata, “Three-dimensional focal spots related to two-photon excitation,” Appl. Phys. Lett.80(20), 3673–3675 (2002).
[CrossRef]

T. Tanaka, H.-B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett.80(2), 312–314 (2002).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Kim, M. S.

H. B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, “Shape precompesation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett.85(17), 3708–3710 (2004).
[CrossRef]

Klein, F.

F. Klein, B. S. Richter, T. Striebel, C. M. Franz, G. Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. (Deerfield Beach Fla.)23(11), 1341–1345 (2011).
[CrossRef]

Koptyug, I. V.

S. Jockusch, I. V. Koptyug, P. F. McGarry, G. W. Sluggett, N. J. Turro, and D. M. Watkins, “A Steady-State and Picosecond Pump-Probe Investigation of the Photophysics of an Acyl and a Bis(acyl)phosphine Oxide,” J. Am. Chem. Soc.119(47), 11495–11501 (1997).
[CrossRef]

Kumi, G.

G. Kumi, C. O. Yanez, K. D. Belfield, and J. T. Fourkas, “High-speed multiphoton absorption polymerization: fabrication of microfluidic channels with arbitrary cross-sections and high aspect ratios,” Lab Chip10(8), 1057–1060 (2010).
[CrossRef] [PubMed]

L. Li, E. Gershgoren, G. Kumi, W.-Y. Chen, P. T. Ho, W. N. Herman, and J. T. Fourkas, “High-performance microring resonators fabricated with multiphoton absoprtion polymerization,” Adv. Mater. (Deerfield Beach Fla.)20(19), 3668–3671 (2008).
[CrossRef]

Kuo, C. H.

T. Baldacchini, M. Zimmerley, C. H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of Microstructures Fabricated by Two-Photon Polymerization Using Coherent Anti-Stokes Raman Scattering Microscopy,” J. Phys. Chem. B113(38), 12663–12668 (2009).
[CrossRef] [PubMed]

LaFratta, C. N.

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc.128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

Lee, K. S.

S. H. Park, T. W. Lim, D. Y. Yang, N. C. Cho, and K. S. Lee, “Fabrication of a bunch of sub-30-nm nanofibers inside microchannels using photopolymerization via a long esposure technique,” Appl. Phys. Lett.89(17), 173133 (2006).
[CrossRef]

H. B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, “Shape precompesation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett.85(17), 3708–3710 (2004).
[CrossRef]

Li, L.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009).
[CrossRef] [PubMed]

L. Li, E. Gershgoren, G. Kumi, W.-Y. Chen, P. T. Ho, W. N. Herman, and J. T. Fourkas, “High-performance microring resonators fabricated with multiphoton absoprtion polymerization,” Adv. Mater. (Deerfield Beach Fla.)20(19), 3668–3671 (2008).
[CrossRef]

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc.128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

Li, L. J.

M. P. Stocker, L. J. Li, R. R. Gattass, and J. T. Fourkas, “Multiphoton photoresists giving nanoscale resolution that is inversely dependent on exposure time,” Nat. Chem.3(3), 225–227 (2011).
[CrossRef] [PubMed]

Li, Y.

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

Li, Y. F.

J. Wang, Y. He, H. Xia, L. G. Niu, R. Zhang, Q. D. Chen, Y. L. Zhang, Y. F. Li, S. J. Zeng, J. H. Qin, B. C. Lin, and H. B. Sun, “Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization,” Lab Chip10(15), 1993–1996 (2010).
[CrossRef] [PubMed]

Lim, T. W.

S. H. Park, T. W. Lim, D. Y. Yang, N. C. Cho, and K. S. Lee, “Fabrication of a bunch of sub-30-nm nanofibers inside microchannels using photopolymerization via a long esposure technique,” Appl. Phys. Lett.89(17), 173133 (2006).
[CrossRef]

Lin, B. C.

J. Wang, Y. He, H. Xia, L. G. Niu, R. Zhang, Q. D. Chen, Y. L. Zhang, Y. F. Li, S. J. Zeng, J. H. Qin, B. C. Lin, and H. B. Sun, “Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization,” Lab Chip10(15), 1993–1996 (2010).
[CrossRef] [PubMed]

MacCraith, B.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Mahrt, R. F.

W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett.84(20), 4095–4097 (2004).
[CrossRef]

Malinauskas, M.

Marder, S. R.

Martineau, C.

C. Martineau, R. Anemian, C. Andraud, I. Wang, M. Bouriau, and P. L. Baldeck, “Efficient initiators for two-photon induced polymerization in the visible range,” Chem. Phys. Lett.362(3-4), 291–295 (2002).
[CrossRef]

Maruo, S.

Matousek, P.

C. S. Colley, D. C. Grills, N. A. Besley, S. Jockusch, P. Matousek, A. W. Parker, M. Towrie, N. J. Turro, P. M. W. Gill, and M. W. George, “Probing the Reactivity of Photoinitiators for Free Radical Polymerization: Time-Resolved Infrared Spectroscopic Study of Benzoyl Radicals,” J. Am. Chem. Soc.124(50), 14952–14958 (2002).
[CrossRef] [PubMed]

Mazur, E.

P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-migration studies using two-photon engineered polymer scaffolds,” Adv. Mater. (Deerfield Beach Fla.)20(23), 4494–4498 (2008).
[CrossRef]

R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express14(12), 5279–5284 (2006).
[CrossRef] [PubMed]

McGarry, P. F.

S. Jockusch, I. V. Koptyug, P. F. McGarry, G. W. Sluggett, N. J. Turro, and D. M. Watkins, “A Steady-State and Picosecond Pump-Probe Investigation of the Photophysics of an Acyl and a Bis(acyl)phosphine Oxide,” J. Am. Chem. Soc.119(47), 11495–11501 (1997).
[CrossRef]

Mendonca, C. R.

P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-migration studies using two-photon engineered polymer scaffolds,” Adv. Mater. (Deerfield Beach Fla.)20(23), 4494–4498 (2008).
[CrossRef]

Misawa, H.

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005).
[CrossRef]

Miwa, M.

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005).
[CrossRef]

Mizeikis, V.

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005).
[CrossRef]

Mooney, D. J.

P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-migration studies using two-photon engineered polymer scaffolds,” Adv. Mater. (Deerfield Beach Fla.)20(23), 4494–4498 (2008).
[CrossRef]

Morikawa, J.

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys., A Mater. Sci. Process.98(3), 551–556 (2010).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of femtosecond-laser-structured PMMA,” Appl. Phys., A Mater. Sci. Process.101(1), 27–31 (2010).
[CrossRef]

Naughton, M. J.

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc.128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

Niu, L. G.

J. Wang, Y. He, H. Xia, L. G. Niu, R. Zhang, Q. D. Chen, Y. L. Zhang, Y. F. Li, S. J. Zeng, J. H. Qin, B. C. Lin, and H. B. Sun, “Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization,” Lab Chip10(15), 1993–1996 (2010).
[CrossRef] [PubMed]

Orie, A.

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of femtosecond-laser-structured PMMA,” Appl. Phys., A Mater. Sci. Process.101(1), 27–31 (2010).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys., A Mater. Sci. Process.98(3), 551–556 (2010).
[CrossRef]

Ostendorf, A.

Oubaha, M.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Ovsianikov, A.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Park, S. H.

S. H. Park, T. W. Lim, D. Y. Yang, N. C. Cho, and K. S. Lee, “Fabrication of a bunch of sub-30-nm nanofibers inside microchannels using photopolymerization via a long esposure technique,” Appl. Phys. Lett.89(17), 173133 (2006).
[CrossRef]

Parker, A. W.

C. S. Colley, D. C. Grills, N. A. Besley, S. Jockusch, P. Matousek, A. W. Parker, M. Towrie, N. J. Turro, P. M. W. Gill, and M. W. George, “Probing the Reactivity of Photoinitiators for Free Radical Polymerization: Time-Resolved Infrared Spectroscopic Study of Benzoyl Radicals,” J. Am. Chem. Soc.124(50), 14952–14958 (2002).
[CrossRef] [PubMed]

Pereira, S.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
[CrossRef] [PubMed]

Perry, J. W.

Pikulin, A.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano6(3), 2302–2311 (2012).
[CrossRef] [PubMed]

A. Pikulin and N. Bityurin, “Spatial resolution in polymerization of sample features at nanoscale,” Phys. Rev. B75(19), 195430 (2007).
[CrossRef]

Popall, M.

Potma, E. O.

T. Baldacchini, M. Zimmerley, C. H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of Microstructures Fabricated by Two-Photon Polymerization Using Coherent Anti-Stokes Raman Scattering Microscopy,” J. Phys. Chem. B113(38), 12663–12668 (2009).
[CrossRef] [PubMed]

Praino, J.

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc.128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

Purlys, V.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano6(3), 2302–2311 (2012).
[CrossRef] [PubMed]

Qi, F.

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

Qin, J. H.

J. Wang, Y. He, H. Xia, L. G. Niu, R. Zhang, Q. D. Chen, Y. L. Zhang, Y. F. Li, S. J. Zeng, J. H. Qin, B. C. Lin, and H. B. Sun, “Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization,” Lab Chip10(15), 1993–1996 (2010).
[CrossRef] [PubMed]

Richter, B. S.

F. Klein, B. S. Richter, T. Striebel, C. M. Franz, G. Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. (Deerfield Beach Fla.)23(11), 1341–1345 (2011).
[CrossRef]

Saito, Y.

Sakellari, I.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano6(3), 2302–2311 (2012).
[CrossRef] [PubMed]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Saleh, B. E. A.

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc.128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

Salis, G.

W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett.84(20), 4095–4097 (2004).
[CrossRef]

Schulz, J.

Seet, K. K.

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005).
[CrossRef]

Serbin, J.

Shah, L.

Sluggett, G. W.

S. Jockusch, I. V. Koptyug, P. F. McGarry, G. W. Sluggett, N. J. Turro, and D. M. Watkins, “A Steady-State and Picosecond Pump-Probe Investigation of the Photophysics of an Acyl and a Bis(acyl)phosphine Oxide,” J. Am. Chem. Soc.119(47), 11495–11501 (1997).
[CrossRef]

Smith, C. G.

W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett.84(20), 4095–4097 (2004).
[CrossRef]

Soukoulis, C. M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
[CrossRef] [PubMed]

Stocker, M. P.

M. P. Stocker, L. J. Li, R. R. Gattass, and J. T. Fourkas, “Multiphoton photoresists giving nanoscale resolution that is inversely dependent on exposure time,” Nat. Chem.3(3), 225–227 (2011).
[CrossRef] [PubMed]

Striebel, T.

F. Klein, B. S. Richter, T. Striebel, C. M. Franz, G. Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. (Deerfield Beach Fla.)23(11), 1341–1345 (2011).
[CrossRef]

Sun, C.

N. Fang, C. Sun, and X. Zhang, “Diffusion-limited photopolymerization in scanning micro-stereolithography,” Appl. Phys., A Mater. Sci. Process.79(8), 1839–1842 (2004).
[CrossRef]

Sun, H. B.

J. Wang, Y. He, H. Xia, L. G. Niu, R. Zhang, Q. D. Chen, Y. L. Zhang, Y. F. Li, S. J. Zeng, J. H. Qin, B. C. Lin, and H. B. Sun, “Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization,” Lab Chip10(15), 1993–1996 (2010).
[CrossRef] [PubMed]

H. B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, “Shape precompesation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett.85(17), 3708–3710 (2004).
[CrossRef]

Sun, H.-B.

Y. L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today5(5), 435–448 (2010).
[CrossRef]

T. Tanaka, H.-B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett.80(2), 312–314 (2002).
[CrossRef]

H.-B. Sun, T. Tanaka, and S. Kawata, “Three-dimensional focal spots related to two-photon excitation,” Appl. Phys. Lett.80(20), 3673–3675 (2002).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Suwa, T.

H. B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, “Shape precompesation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett.85(17), 3708–3710 (2004).
[CrossRef]

Takada, K.

H. B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, “Shape precompesation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett.85(17), 3708–3710 (2004).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Takaura, A.

Takeyasu, N.

J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90(13), 131106 (2007).
[CrossRef]

Tan, D.

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

Tanaka, T.

J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90(13), 131106 (2007).
[CrossRef]

H.-B. Sun, T. Tanaka, and S. Kawata, “Three-dimensional focal spots related to two-photon excitation,” Appl. Phys. Lett.80(20), 3673–3675 (2002).
[CrossRef]

T. Tanaka, H.-B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett.80(2), 312–314 (2002).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Tayalia, P.

P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-migration studies using two-photon engineered polymer scaffolds,” Adv. Mater. (Deerfield Beach Fla.)20(23), 4494–4498 (2008).
[CrossRef]

Teh, W. H.

W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett.84(20), 4095–4097 (2004).
[CrossRef]

Teich, M. C.

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc.128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

Thiel, M.

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett.97(22), 221102 (2010).
[CrossRef]

Towrie, M.

C. S. Colley, D. C. Grills, N. A. Besley, S. Jockusch, P. Matousek, A. W. Parker, M. Towrie, N. J. Turro, P. M. W. Gill, and M. W. George, “Probing the Reactivity of Photoinitiators for Free Radical Polymerization: Time-Resolved Infrared Spectroscopic Study of Benzoyl Radicals,” J. Am. Chem. Soc.124(50), 14952–14958 (2002).
[CrossRef] [PubMed]

Turro, N. J.

C. S. Colley, D. C. Grills, N. A. Besley, S. Jockusch, P. Matousek, A. W. Parker, M. Towrie, N. J. Turro, P. M. W. Gill, and M. W. George, “Probing the Reactivity of Photoinitiators for Free Radical Polymerization: Time-Resolved Infrared Spectroscopic Study of Benzoyl Radicals,” J. Am. Chem. Soc.124(50), 14952–14958 (2002).
[CrossRef] [PubMed]

S. Jockusch, I. V. Koptyug, P. F. McGarry, G. W. Sluggett, N. J. Turro, and D. M. Watkins, “A Steady-State and Picosecond Pump-Probe Investigation of the Photophysics of an Acyl and a Bis(acyl)phosphine Oxide,” J. Am. Chem. Soc.119(47), 11495–11501 (1997).
[CrossRef]

Vamvakaki, M.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano6(3), 2302–2311 (2012).
[CrossRef] [PubMed]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Viertl, J.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

von Freymann, G.

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. (Deerfield Beach Fla.)22(32), 3578–3582 (2010).
[CrossRef] [PubMed]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett.97(22), 221102 (2010).
[CrossRef]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
[CrossRef] [PubMed]

Wang, I.

C. Martineau, R. Anemian, C. Andraud, I. Wang, M. Bouriau, and P. L. Baldeck, “Efficient initiators for two-photon induced polymerization in the visible range,” Chem. Phys. Lett.362(3-4), 291–295 (2002).
[CrossRef]

Wang, J.

J. Wang, Y. He, H. Xia, L. G. Niu, R. Zhang, Q. D. Chen, Y. L. Zhang, Y. F. Li, S. J. Zeng, J. H. Qin, B. C. Lin, and H. B. Sun, “Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization,” Lab Chip10(15), 1993–1996 (2010).
[CrossRef] [PubMed]

Watkins, D. M.

S. Jockusch, I. V. Koptyug, P. F. McGarry, G. W. Sluggett, N. J. Turro, and D. M. Watkins, “A Steady-State and Picosecond Pump-Probe Investigation of the Photophysics of an Acyl and a Bis(acyl)phosphine Oxide,” J. Am. Chem. Soc.119(47), 11495–11501 (1997).
[CrossRef]

Wegener, M.

J. Fischer and M. Wegener, “Ultrafast polymerization inhibition by stimulated emission depletion for three-dimensional nanolithography,” Adv. Mater. (Deerfield Beach Fla.)24(10), OP65–OP69 (2012).
[CrossRef] [PubMed]

F. Klein, B. S. Richter, T. Striebel, C. M. Franz, G. Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. (Deerfield Beach Fla.)23(11), 1341–1345 (2011).
[CrossRef]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett.97(22), 221102 (2010).
[CrossRef]

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. (Deerfield Beach Fla.)22(32), 3578–3582 (2010).
[CrossRef] [PubMed]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
[CrossRef] [PubMed]

Xia, H.

J. Wang, Y. He, H. Xia, L. G. Niu, R. Zhang, Q. D. Chen, Y. L. Zhang, Y. F. Li, S. J. Zeng, J. H. Qin, B. C. Lin, and H. B. Sun, “Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization,” Lab Chip10(15), 1993–1996 (2010).
[CrossRef] [PubMed]

Y. L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today5(5), 435–448 (2010).
[CrossRef]

Xing, J. F.

J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90(13), 131106 (2007).
[CrossRef]

Yanez, C. O.

G. Kumi, C. O. Yanez, K. D. Belfield, and J. T. Fourkas, “High-speed multiphoton absorption polymerization: fabrication of microfluidic channels with arbitrary cross-sections and high aspect ratios,” Lab Chip10(8), 1057–1060 (2010).
[CrossRef] [PubMed]

Yang, D. Y.

S. H. Park, T. W. Lim, D. Y. Yang, N. C. Cho, and K. S. Lee, “Fabrication of a bunch of sub-30-nm nanofibers inside microchannels using photopolymerization via a long esposure technique,” Appl. Phys. Lett.89(17), 173133 (2006).
[CrossRef]

Yang, H.

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

Yoshimura, N.

Yoshino, F.

Zaccaria, R. P.

H. B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, “Shape precompesation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett.85(17), 3708–3710 (2004).
[CrossRef]

Zadoyan, R.

T. Baldacchini, M. Zimmerley, C. H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of Microstructures Fabricated by Two-Photon Polymerization Using Coherent Anti-Stokes Raman Scattering Microscopy,” J. Phys. Chem. B113(38), 12663–12668 (2009).
[CrossRef] [PubMed]

Zeng, S. J.

J. Wang, Y. He, H. Xia, L. G. Niu, R. Zhang, Q. D. Chen, Y. L. Zhang, Y. F. Li, S. J. Zeng, J. H. Qin, B. C. Lin, and H. B. Sun, “Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization,” Lab Chip10(15), 1993–1996 (2010).
[CrossRef] [PubMed]

Zhang, H. B.

Zhang, R.

J. Wang, Y. He, H. Xia, L. G. Niu, R. Zhang, Q. D. Chen, Y. L. Zhang, Y. F. Li, S. J. Zeng, J. H. Qin, B. C. Lin, and H. B. Sun, “Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization,” Lab Chip10(15), 1993–1996 (2010).
[CrossRef] [PubMed]

Zhang, X.

N. Fang, C. Sun, and X. Zhang, “Diffusion-limited photopolymerization in scanning micro-stereolithography,” Appl. Phys., A Mater. Sci. Process.79(8), 1839–1842 (2004).
[CrossRef]

Zhang, Y. L.

J. Wang, Y. He, H. Xia, L. G. Niu, R. Zhang, Q. D. Chen, Y. L. Zhang, Y. F. Li, S. J. Zeng, J. H. Qin, B. C. Lin, and H. B. Sun, “Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization,” Lab Chip10(15), 1993–1996 (2010).
[CrossRef] [PubMed]

Y. L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today5(5), 435–448 (2010).
[CrossRef]

Zimmerley, M.

T. Baldacchini, M. Zimmerley, C. H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of Microstructures Fabricated by Two-Photon Polymerization Using Coherent Anti-Stokes Raman Scattering Microscopy,” J. Phys. Chem. B113(38), 12663–12668 (2009).
[CrossRef] [PubMed]

Zukauskas, A.

ACS Nano (2)

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano6(3), 2302–2311 (2012).
[CrossRef] [PubMed]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Acta Polym. (1)

C. Decker, “Photoinitiated curing of multifunctional monomers,” Acta Polym.45(5), 333–347 (1994).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (5)

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. (Deerfield Beach Fla.)22(32), 3578–3582 (2010).
[CrossRef] [PubMed]

J. Fischer and M. Wegener, “Ultrafast polymerization inhibition by stimulated emission depletion for three-dimensional nanolithography,” Adv. Mater. (Deerfield Beach Fla.)24(10), OP65–OP69 (2012).
[CrossRef] [PubMed]

P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-migration studies using two-photon engineered polymer scaffolds,” Adv. Mater. (Deerfield Beach Fla.)20(23), 4494–4498 (2008).
[CrossRef]

F. Klein, B. S. Richter, T. Striebel, C. M. Franz, G. Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. (Deerfield Beach Fla.)23(11), 1341–1345 (2011).
[CrossRef]

L. Li, E. Gershgoren, G. Kumi, W.-Y. Chen, P. T. Ho, W. N. Herman, and J. T. Fourkas, “High-performance microring resonators fabricated with multiphoton absoprtion polymerization,” Adv. Mater. (Deerfield Beach Fla.)20(19), 3668–3671 (2008).
[CrossRef]

Appl. Phys. Lett. (8)

T. Tanaka, H.-B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett.80(2), 312–314 (2002).
[CrossRef]

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

S. H. Park, T. W. Lim, D. Y. Yang, N. C. Cho, and K. S. Lee, “Fabrication of a bunch of sub-30-nm nanofibers inside microchannels using photopolymerization via a long esposure technique,” Appl. Phys. Lett.89(17), 173133 (2006).
[CrossRef]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett.97(22), 221102 (2010).
[CrossRef]

J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90(13), 131106 (2007).
[CrossRef]

H.-B. Sun, T. Tanaka, and S. Kawata, “Three-dimensional focal spots related to two-photon excitation,” Appl. Phys. Lett.80(20), 3673–3675 (2002).
[CrossRef]

W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett.84(20), 4095–4097 (2004).
[CrossRef]

H. B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, “Shape precompesation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett.85(17), 3708–3710 (2004).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (3)

N. Fang, C. Sun, and X. Zhang, “Diffusion-limited photopolymerization in scanning micro-stereolithography,” Appl. Phys., A Mater. Sci. Process.79(8), 1839–1842 (2004).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys., A Mater. Sci. Process.98(3), 551–556 (2010).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of femtosecond-laser-structured PMMA,” Appl. Phys., A Mater. Sci. Process.101(1), 27–31 (2010).
[CrossRef]

Chem. Phys. Lett. (1)

C. Martineau, R. Anemian, C. Andraud, I. Wang, M. Bouriau, and P. L. Baldeck, “Efficient initiators for two-photon induced polymerization in the visible range,” Chem. Phys. Lett.362(3-4), 291–295 (2002).
[CrossRef]

J. Am. Chem. Soc. (3)

S. Jockusch, I. V. Koptyug, P. F. McGarry, G. W. Sluggett, N. J. Turro, and D. M. Watkins, “A Steady-State and Picosecond Pump-Probe Investigation of the Photophysics of an Acyl and a Bis(acyl)phosphine Oxide,” J. Am. Chem. Soc.119(47), 11495–11501 (1997).
[CrossRef]

C. S. Colley, D. C. Grills, N. A. Besley, S. Jockusch, P. Matousek, A. W. Parker, M. Towrie, N. J. Turro, P. M. W. Gill, and M. W. George, “Probing the Reactivity of Photoinitiators for Free Radical Polymerization: Time-Resolved Infrared Spectroscopic Study of Benzoyl Radicals,” J. Am. Chem. Soc.124(50), 14952–14958 (2002).
[CrossRef] [PubMed]

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc.128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. B (1)

T. Baldacchini, M. Zimmerley, C. H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of Microstructures Fabricated by Two-Photon Polymerization Using Coherent Anti-Stokes Raman Scattering Microscopy,” J. Phys. Chem. B113(38), 12663–12668 (2009).
[CrossRef] [PubMed]

Lab Chip (2)

G. Kumi, C. O. Yanez, K. D. Belfield, and J. T. Fourkas, “High-speed multiphoton absorption polymerization: fabrication of microfluidic channels with arbitrary cross-sections and high aspect ratios,” Lab Chip10(8), 1057–1060 (2010).
[CrossRef] [PubMed]

J. Wang, Y. He, H. Xia, L. G. Niu, R. Zhang, Q. D. Chen, Y. L. Zhang, Y. F. Li, S. J. Zeng, J. H. Qin, B. C. Lin, and H. B. Sun, “Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization,” Lab Chip10(15), 1993–1996 (2010).
[CrossRef] [PubMed]

Laser Photonics Rev. (1)

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev.2(1-2), 100–111 (2008).
[CrossRef]

Nano Today (1)

Y. L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today5(5), 435–448 (2010).
[CrossRef]

Nanotechnology (1)

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005).
[CrossRef]

Nat. Chem. (1)

M. P. Stocker, L. J. Li, R. R. Gattass, and J. T. Fourkas, “Multiphoton photoresists giving nanoscale resolution that is inversely dependent on exposure time,” Nat. Chem.3(3), 225–227 (2011).
[CrossRef] [PubMed]

Nat. Mater. (1)

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
[CrossRef] [PubMed]

Nature (1)

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Opt. Express (7)

S. M. Eaton, H. B. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express13(12), 4708–4716 (2005).
[CrossRef] [PubMed]

R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express14(12), 5279–5284 (2006).
[CrossRef] [PubMed]

W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express15(6), 3426–3436 (2007).
[CrossRef] [PubMed]

S. Maruo, A. Takaura, and Y. Saito, “Optically driven micropump with a twin spiral microrotor,” Opt. Express17(21), 18525–18532 (2009).
[CrossRef] [PubMed]

S. Maruo, T. Hasegawa, and N. Yoshimura, “Single-anchor support and supercritical CO2 drying enable high-precision microfabrication of three-dimensional structures,” Opt. Express17(23), 20945–20951 (2009).
[CrossRef] [PubMed]

M. Malinauskas, A. Zukauskas, G. Bickauskaite, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18(10), 10209–10221 (2010).
[CrossRef] [PubMed]

M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19(6), 5602–5610 (2011).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (1)

A. Pikulin and N. Bityurin, “Spatial resolution in polymerization of sample features at nanoscale,” Phys. Rev. B75(19), 195430 (2007).
[CrossRef]

Polym. Eng. Sci. (1)

L. Flach and R. P. Chartoff, “A process model for nonisothermal photopolymerization with a laser light source. I: basic model development,” Polym. Eng. Sci.35(6), 483–492 (1995).
[CrossRef]

Science (1)

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009).
[CrossRef] [PubMed]

Other (2)

T. Baldacchini, M. Zimmerley, E. O. Potma, and R. Zadoyan, “Chemical mapping of three-dimensiona microstructures fabricated by two-photon polymerization using CARS microscopy,” in Proc. of SPIE, 2009), 72010Q–72011.

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the device used to perform TPP with bursts of fs laser pulses. The input is the fs laser oscillator while the output is the laser beam directed into the microfabrication workstation. M, mirror; BS, beam sampler; PD, fast photodiode; L, lens; AOM, acousto-optic modulator; I, iris; FG, digital function generator. (b) Temporal profile of the laser intensity before and after the AOM-based device, and definitions of terms that characterize the burst mode laser micromachining. Each vertical red line represents one fs pulse.

Fig. 2
Fig. 2

Top (a) and tilted (b) views of test samples recorded by SEM. Horizontal suspended lines are written under different experimental conditions (see text). The inset in (a) is a magnified view from above of representative lines used in this study.

Fig. 3
Fig. 3

(a) Widths of polymerized lines as function of writing speed under different experimental conditions (full description of terms A to E is in Table 1). The same data is graphed in a semilogarithmic scale (b) where the square of the line widths are plotted in the abscissa and the scan speeds are plotted in the ordinate. The solid lines are linear regressions using Eq. (1).

Fig. 4
Fig. 4

Burst repetition rate (Rp) dependence of the polymerized line width measured at constant net fluence (NF). The vertical line indicates the value of the material cooling time obtained under the experimental conditions employed in this work. The abscissa is expressed also in terms of T in units of microseconds.

Tables (1)

Tables Icon

Table 1 Experimental Parameters for TPP Excitationa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

W= ω 0 2ln( 2 π P ω 0 v F th )
NF= 2 ω 0 R p v F burst

Metrics