Abstract

Self-organized periodic structures have been observed on the surface of the ablation craters of Ge-S based chalcogenide glass produced after irradiation by a focused beam of a femtosecond Ti:sapphire laser (1 kHz, 34 fs, 806 nm). Scanning electron microscopy and atomic force microscopy images of irradiated spots show a periodic structure of ripples with a spatial period of 720 nm (close to the wavelength of fs laser pulses) and an alignment parallel to the electric field of light. With an increasing number of pulses, from 5 to 50 pulses, a characteristic evolution of ripples was observed from a random structure to a series of generally aligned peaks-and-valleys self-organized periodic structures. Additionally, at the center of the ablated spot, micro-domains appear where the ripples are still regular but are assembled in a more complex fashion. The experimental observations are interpreted in terms of strong temperature gradients combined with interference of the incident laser irradiation and a scattered surface electromagnetic wave.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys.36(11), 3688–3689 (1965).
    [CrossRef]
  2. F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express19(10), 9035–9043 (2011).
    [CrossRef] [PubMed]
  3. P. Rudolph and W. Kautek, “Composition influence of non-oxidic ceramics on self-assembled nanostructures due to fs-laser irradiation,” Thin Solid Films453, 537–541 (2004).
    [CrossRef]
  4. F. Costache, M. Henyk, and J. Reif, “Surface patterning on insulators upon femtosecond laser ablation,” Appl. Surf. Sci.208, 486–491 (2003).
    [CrossRef]
  5. T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
    [CrossRef]
  6. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
    [CrossRef] [PubMed]
  7. Q. Sun, F. Liang, R. Vallée, and S. L. Chin, “Nanograting formation on the surface of silica glass by scanning focused femtosecond laser pulses,” Opt. Lett.33(22), 2713–2715 (2008).
    [CrossRef] [PubMed]
  8. F. Liang, R. Vallée, and S. L. Chin, “Mechanism of nanograting formation on the surface of fused silica,” Opt. Express20(4), 4389–4396 (2012).
    [CrossRef] [PubMed]
  9. M. Rohloff, S. K. Das, S. Höhm, R. Grunwald, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences,” J. Appl. Phys.110(1), 014910 (2011).
    [CrossRef]
  10. D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009).
    [CrossRef]
  11. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure,” Phys. Rev. B27(2), 1141–1154 (1983).
    [CrossRef]
  12. D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 μm,” Appl. Phys. Lett.23(11), 598–600 (1973).
    [CrossRef]
  13. S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys.112(1), 014901 (2012).
    [CrossRef]
  14. Q. Zhang, H. Lin, B. Jia, L. Xu, and M. Gu, “Nanogratings and nanoholes fabricated by direct femtosecond laser writing in chalcogenide glasses,” Opt. Express18(7), 6885–6890 (2010).
    [CrossRef] [PubMed]
  15. M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett.90(13), 131113 (2007).
    [CrossRef]
  16. S. H. Messaddeq, J. P. Bérubé, M. Bernier, I. Skripachev, R. Vallée, and Y. Messaddeq, “Study of the photosensitivity of GeS binary glasses to 800 nm femtosecond pulses,” Opt. Express20(3), 2824–2831 (2012).
    [CrossRef] [PubMed]
  17. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett.7(5), 196–198 (1982).
    [CrossRef] [PubMed]
  18. P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci.233(1-4), 275–287 (2004).
    [CrossRef]
  19. J. Bonse, P. Rudolph, J. Krüger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci.154, 659–663 (2000).
    [CrossRef]
  20. S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci.154, 555–560 (2000).
    [CrossRef]
  21. D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150(1-4), 101–106 (1999).
    [CrossRef]
  22. M. Lenzner, J. Krüger, W. Kautek, and F. Krausz, “Incubation of laser ablation in fused silica with 5-fs pulses,” Appl. Phys., A Mater. Sci. Process.69(4), 465–466 (1999).
    [CrossRef]
  23. E. Gamaly, Femtosecond Laser-Matter interaction: theory, experiment and applications (Taylor & Francis Inc., 2011).
  24. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16(13), 9443–9458 (2008).
    [CrossRef] [PubMed]

2012 (3)

2011 (2)

F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express19(10), 9035–9043 (2011).
[CrossRef] [PubMed]

M. Rohloff, S. K. Das, S. Höhm, R. Grunwald, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences,” J. Appl. Phys.110(1), 014910 (2011).
[CrossRef]

2010 (1)

2009 (1)

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009).
[CrossRef]

2008 (2)

2007 (1)

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett.90(13), 131113 (2007).
[CrossRef]

2005 (1)

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

2004 (2)

P. Rudolph and W. Kautek, “Composition influence of non-oxidic ceramics on self-assembled nanostructures due to fs-laser irradiation,” Thin Solid Films453, 537–541 (2004).
[CrossRef]

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci.233(1-4), 275–287 (2004).
[CrossRef]

2003 (2)

F. Costache, M. Henyk, and J. Reif, “Surface patterning on insulators upon femtosecond laser ablation,” Appl. Surf. Sci.208, 486–491 (2003).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

2000 (2)

J. Bonse, P. Rudolph, J. Krüger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci.154, 659–663 (2000).
[CrossRef]

S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci.154, 555–560 (2000).
[CrossRef]

1999 (2)

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150(1-4), 101–106 (1999).
[CrossRef]

M. Lenzner, J. Krüger, W. Kautek, and F. Krausz, “Incubation of laser ablation in fused silica with 5-fs pulses,” Appl. Phys., A Mater. Sci. Process.69(4), 465–466 (1999).
[CrossRef]

1983 (1)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

1982 (1)

1973 (1)

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 μm,” Appl. Phys. Lett.23(11), 598–600 (1973).
[CrossRef]

1965 (1)

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys.36(11), 3688–3689 (1965).
[CrossRef]

Ashkenasi, D.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150(1-4), 101–106 (1999).
[CrossRef]

Baudach, S.

J. Bonse, P. Rudolph, J. Krüger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci.154, 659–663 (2000).
[CrossRef]

S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci.154, 555–560 (2000).
[CrossRef]

Bernier, M.

Bérubé, J. P.

Birnbaum, M.

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys.36(11), 3688–3689 (1965).
[CrossRef]

Bonse, J.

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys.112(1), 014901 (2012).
[CrossRef]

M. Rohloff, S. K. Das, S. Höhm, R. Grunwald, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences,” J. Appl. Phys.110(1), 014910 (2011).
[CrossRef]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009).
[CrossRef]

S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci.154, 555–560 (2000).
[CrossRef]

J. Bonse, P. Rudolph, J. Krüger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci.154, 659–663 (2000).
[CrossRef]

Bounhalli, M.

Chen, H. X.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Chen, W. J.

Chin, S. L.

Colombier, J. P.

Costache, F.

F. Costache, M. Henyk, and J. Reif, “Surface patterning on insulators upon femtosecond laser ablation,” Appl. Surf. Sci.208, 486–491 (2003).
[CrossRef]

Coyne, E.

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci.233(1-4), 275–287 (2004).
[CrossRef]

Das, S. K.

M. Rohloff, S. K. Das, S. Höhm, R. Grunwald, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences,” J. Appl. Phys.110(1), 014910 (2011).
[CrossRef]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009).
[CrossRef]

Dufft, D.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009).
[CrossRef]

Eaton, S. M.

Emmony, D. C.

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 μm,” Appl. Phys. Lett.23(11), 598–600 (1973).
[CrossRef]

Faure, N.

Garrelie, F.

Glynn, T. J.

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci.233(1-4), 275–287 (2004).
[CrossRef]

Grunwald, R.

M. Rohloff, S. K. Das, S. Höhm, R. Grunwald, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences,” J. Appl. Phys.110(1), 014910 (2011).
[CrossRef]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009).
[CrossRef]

Gu, M.

He, X. K.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Henyk, M.

F. Costache, M. Henyk, and J. Reif, “Surface patterning on insulators upon femtosecond laser ablation,” Appl. Surf. Sci.208, 486–491 (2003).
[CrossRef]

Herman, P. R.

Hewak, D.

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett.90(13), 131113 (2007).
[CrossRef]

Hirao, K.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Ho, S.

Höhm, S.

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys.112(1), 014901 (2012).
[CrossRef]

M. Rohloff, S. K. Das, S. Höhm, R. Grunwald, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences,” J. Appl. Phys.110(1), 014910 (2011).
[CrossRef]

Howson, R. P.

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 μm,” Appl. Phys. Lett.23(11), 598–600 (1973).
[CrossRef]

Huang, M.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Hughes, M.

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett.90(13), 131113 (2007).
[CrossRef]

Jia, B.

Jia, T. Q.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Kautek, W.

P. Rudolph and W. Kautek, “Composition influence of non-oxidic ceramics on self-assembled nanostructures due to fs-laser irradiation,” Thin Solid Films453, 537–541 (2004).
[CrossRef]

J. Bonse, P. Rudolph, J. Krüger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci.154, 659–663 (2000).
[CrossRef]

S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci.154, 555–560 (2000).
[CrossRef]

M. Lenzner, J. Krüger, W. Kautek, and F. Krausz, “Incubation of laser ablation in fused silica with 5-fs pulses,” Appl. Phys., A Mater. Sci. Process.69(4), 465–466 (1999).
[CrossRef]

Kazansky, P. G.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Krausz, F.

M. Lenzner, J. Krüger, W. Kautek, and F. Krausz, “Incubation of laser ablation in fused silica with 5-fs pulses,” Appl. Phys., A Mater. Sci. Process.69(4), 465–466 (1999).
[CrossRef]

Krüger, J.

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys.112(1), 014901 (2012).
[CrossRef]

M. Rohloff, S. K. Das, S. Höhm, R. Grunwald, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences,” J. Appl. Phys.110(1), 014910 (2011).
[CrossRef]

S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci.154, 555–560 (2000).
[CrossRef]

J. Bonse, P. Rudolph, J. Krüger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci.154, 659–663 (2000).
[CrossRef]

M. Lenzner, J. Krüger, W. Kautek, and F. Krausz, “Incubation of laser ablation in fused silica with 5-fs pulses,” Appl. Phys., A Mater. Sci. Process.69(4), 465–466 (1999).
[CrossRef]

Kuroda, H.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Lenzner, M.

M. Lenzner, J. Krüger, W. Kautek, and F. Krausz, “Incubation of laser ablation in fused silica with 5-fs pulses,” Appl. Phys., A Mater. Sci. Process.69(4), 465–466 (1999).
[CrossRef]

Li, J.

Li, R. X.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Liang, F.

Lin, H.

Liu, J. M.

Lorenz, M.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150(1-4), 101–106 (1999).
[CrossRef]

Magee, J.

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci.233(1-4), 275–287 (2004).
[CrossRef]

Mannion, P. T.

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci.233(1-4), 275–287 (2004).
[CrossRef]

Messaddeq, S. H.

Messaddeq, Y.

Ng, M. L.

O’Connor, G. M.

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci.233(1-4), 275–287 (2004).
[CrossRef]

Parriaux, O.

Pigeon, F.

Preston, J. S.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Qiu, J. R.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Reif, J.

F. Costache, M. Henyk, and J. Reif, “Surface patterning on insulators upon femtosecond laser ablation,” Appl. Surf. Sci.208, 486–491 (2003).
[CrossRef]

Reynaud, S.

Rohloff, M.

M. Rohloff, S. K. Das, S. Höhm, R. Grunwald, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences,” J. Appl. Phys.110(1), 014910 (2011).
[CrossRef]

Rosenfeld, A.

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys.112(1), 014901 (2012).
[CrossRef]

M. Rohloff, S. K. Das, S. Höhm, R. Grunwald, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences,” J. Appl. Phys.110(1), 014910 (2011).
[CrossRef]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009).
[CrossRef]

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150(1-4), 101–106 (1999).
[CrossRef]

Rudolph, P.

P. Rudolph and W. Kautek, “Composition influence of non-oxidic ceramics on self-assembled nanostructures due to fs-laser irradiation,” Thin Solid Films453, 537–541 (2004).
[CrossRef]

J. Bonse, P. Rudolph, J. Krüger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci.154, 659–663 (2000).
[CrossRef]

Shimotsuma, Y.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Sipe, J. E.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

Skripachev, I.

Stoian, R.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150(1-4), 101–106 (1999).
[CrossRef]

Sun, Q.

Tonchev, S.

Vallée, R.

van Driel, H. M.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

Willis, L. J.

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 μm,” Appl. Phys. Lett.23(11), 598–600 (1973).
[CrossRef]

Xu, L.

Xu, Z. Z.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Yang, W.

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett.90(13), 131113 (2007).
[CrossRef]

Young, J. F.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

Zhang, H.

Zhang, J.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Zhang, Q.

Zhao, F. L.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett.90(13), 131113 (2007).
[CrossRef]

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 μm,” Appl. Phys. Lett.23(11), 598–600 (1973).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

M. Lenzner, J. Krüger, W. Kautek, and F. Krausz, “Incubation of laser ablation in fused silica with 5-fs pulses,” Appl. Phys., A Mater. Sci. Process.69(4), 465–466 (1999).
[CrossRef]

Appl. Surf. Sci. (5)

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci.233(1-4), 275–287 (2004).
[CrossRef]

J. Bonse, P. Rudolph, J. Krüger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci.154, 659–663 (2000).
[CrossRef]

S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci.154, 555–560 (2000).
[CrossRef]

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150(1-4), 101–106 (1999).
[CrossRef]

F. Costache, M. Henyk, and J. Reif, “Surface patterning on insulators upon femtosecond laser ablation,” Appl. Surf. Sci.208, 486–491 (2003).
[CrossRef]

J. Appl. Phys. (4)

M. Rohloff, S. K. Das, S. Höhm, R. Grunwald, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences,” J. Appl. Phys.110(1), 014910 (2011).
[CrossRef]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009).
[CrossRef]

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys.112(1), 014901 (2012).
[CrossRef]

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys.36(11), 3688–3689 (1965).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. B (2)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Thin Solid Films (1)

P. Rudolph and W. Kautek, “Composition influence of non-oxidic ceramics on self-assembled nanostructures due to fs-laser irradiation,” Thin Solid Films453, 537–541 (2004).
[CrossRef]

Other (1)

E. Gamaly, Femtosecond Laser-Matter interaction: theory, experiment and applications (Taylor & Francis Inc., 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Squared diameter of the ablated craters as a function of the incident pulse energy on the Ge-S glass sample for (a) N = 10 and (b) N = 50 successive pulses.

Fig. 2
Fig. 2

SEM images of the Ge-S glass surface after exposure to an increasing number of successive pulses. (a) Unexposed surface, (b) N = 5 at a peak pulse fluence of 0.28 J/cm2, (c) N = 50 at 0.42 J/cm2, and (d) N = 100 at 0.42 J/cm2.

Fig. 3
Fig. 3

SEM images of an ablated region exposed to N = 50 successive pulses at a peak pulse fluence of 0.42 J/cm2. (a) Profile of ablated region. (b) Full image of the exposed region. The diameter of the affected area is ≈620 µm. The ring represents the region in which straight self-organized structures are formed. (c) Zoom on the self-organized structures observed inside the ring. The arrows indicate the polarization of the electric field.

Fig. 4
Fig. 4

AFM image of typical nanogratings formed on the surface of Ge-S based glass. The surface was exposed to N = 50 successive pulses at a peak pulse fluence of 0.42 J/cm2.

Fig. 5
Fig. 5

SEM image of a typical micro-domain region exposed to N = 50 successive pulses a at peak pulse fluence of 0.42 J/cm2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D 2 =2 w 2 ln( E in E th )

Metrics