Abstract

We report the fabrication and characterization of a photonic crystal fiber (PCF) having a sol-gel core doped with ionic copper. Optical measurements demonstrate that the ionic copper is preserved in the silica glass all along the preparation steps up to fiber drawing. The photoluminescence results clearly show that such an ionic copper-doped fiber constitutes a potential candidate for UV-C (200-280 nm) radiation dosimetry. Indeed, the Cu+-related visible photoluminescence of the fiber shows a linear response to 244 nm light excitation measured for an irradiation power up to 2.7 mW at least on the Cu-doped PCF core. Moreover, this response was found to be fully reversible within the measurement accuracy of this study ( ± 1%), underlying the remarkable stability of copper in the Cu+ oxidation state within the pure silica core prepared by a sol-gel route. This reversibility offers possibilities for the achievement of reusable real-time optical fiber UV-C dosimeters.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Gómez, I. Urra, R. Valiente, and F. Rodríguez, “Spectroscopic study of Cu2+/Cu+ doubly doped and highly transmitting glasses for solar spectral transformation,” Sol. Energy Mater. Sol. Cells95(8), 2018–2022 (2011).
    [CrossRef]
  2. O. B. Miled, C. Sanchez, and J. Livage, “Spectroscopic studies and evanescent optical fibre wave sensing of Cu2+ based on activated mesostructured silica matrix,” J. Mater. Sci.40(17), 4523–4530 (2005).
    [CrossRef]
  3. N. S. Dhoble, S. P. Pupalwar, S. J. Dhoble, A. K. Upadhyay, and R. S. Kher, “Lyoluminescence and mechanoluminescence of Cu+ activated LiKSO4 phosphors for radiation dosimetry,” Radiat. Meas.46(12), 1890–1893 (2011).
    [CrossRef]
  4. B. L. Justus, P. Falkenstein, A. L. Huston, M. C. Plazas, H. Ning, and R. W. Miller, “Gated fiber-optic-coupled detector for in vivo real-time radiation dosimetry,” Appl. Opt.43(8), 1663–1668 (2004).
    [CrossRef] [PubMed]
  5. S. Gomez, I. Urra, R. Valiente, and F. Rodriguez, “Spectroscopic study of Cu2+ and Cu+ ions in high-transmission glass. Electronic structure and Cu2+/Cu+ concentrations,” J. Phys. Condens. Matter22(29), 295505 (2010).
    [CrossRef] [PubMed]
  6. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992).
    [CrossRef]
  7. A. Michnik, K. Michalik, and Z. Drzazga, “Effect of UVC radiation on conformational restructuring of human serum albumin,” J. Photochem. Photobiol. B90(3), 170–178 (2008).
    [CrossRef] [PubMed]
  8. H. P. Leenhouts and K. H. Chadwick, Human Exposure to Ultraviolet Radiation: Risks and Regulations, Eds: W F Passchier and B F Bosnjakovic (Elsevier, 1987).
  9. C. E. Andersen, J. M. Edmund, and S. M. S. Damkjær, “Precision of RL/OSL medical dosimetry with fiber-coupled Al2O3:C: Influence of readout delay and temperature variations,” Radiat. Meas.45(3-6), 653–657 (2010).
    [CrossRef]
  10. G. V. M. Williams and S. G. Raymond, “Fiber-optic-coupled RbMgF3:Eu2+ for remote radiation dosimetry,” Radiat. Meas.46(10), 1099–1102 (2011).
    [CrossRef]
  11. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic, 2003).
  12. H. El Hamzaoui, L. Courtheoux, V. Nguyen, E. Berrier, A. Favre, L. Bigot, M. Bouazaoui, and B. Capoen, “From porous silica xerogels to bulk optical glasses: The control of densification,” Mater. Chem. Phys.121(1-2), 83–88 (2010).
    [CrossRef]
  13. H. El Hamzaoui, L. Bigot, G. Bouwmans, I. Razdobreev, M. Bouazaoui, and B. Capoen, “From molecular precursors in solution to microstructured optical fiber: a Sol-gel polymeric route,” Opt. Mater. Express1(2), 234–242 (2011).
    [CrossRef]
  14. P. S. J. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol.24(12), 4729–4749 (2006).
    [CrossRef]
  15. Y. Fujimoto and M. Nakatsuka, “Spectroscopic properties and quantum yield of Cu-doped SiO2 glass,” J. Lumin.75(3), 213–219 (1997).
    [CrossRef]
  16. Q. Zhang, G. Chen, G. Dong, G. Zhang, X. Liu, J. Qiu, Q. Zhou, Q. Chen, and D. Chen, “The reduction of Cu2+ to Cu+ and optical properties of Cu+ ions in Cu-doped and Cu/Al-codoped high silica glasses sintered in an air atmosphere,” Chem. Phys. Lett.482(4-6), 228–233 (2009).
    [CrossRef]
  17. E. Borsella, A. Dal Vecchio, M. A. Garcìa, C. Sada, F. Gonella, R. Polloni, A. Quaranta, and L. J. G. W. van Wilderen, “Copper doping of silicate glasses by the ion-exchange technique: A photoluminescence spectroscopy study,” J. Appl. Phys.91(1), 90–98 (2002).
    [CrossRef]
  18. A. Lin, B. H. Kim, D. S. Moon, Y. Chung, and W.-T. Han, “Cu2+-doped germano-silicate glass fiber with high resonant nonlinearity,” Opt. Express15(7), 3665–3672 (2007).
    [CrossRef] [PubMed]
  19. J. Kaufmann and C. Rüssel, “Thermodynamics of the Cu+/Cu2+-redox equilibrium in alumosilicate melts,” J. Non-Cryst. Solids356(33-34), 1615–1619 (2010).
    [CrossRef]
  20. Y. Sakurai, “The 3.1 eV photoluminescence band in oxygen-deficient silica glass,” J. Non-Cryst. Solids271(3), 218–223 (2000).
    [CrossRef]
  21. S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Various types of non bridging oxygen hole center in high-purity silica glass,” J. Appl. Phys.68, 1212–1217 (1990).
  22. Y. Sakurai, K. Nagasawa, H. Nishikawa, and Y. Ohki, “Characteristic red photoluminescence band in oxygen-deficient silica glass,” J. Appl. Phys.86(1), 370–373 (1999).
    [CrossRef]
  23. Y. Hibino and H. Hanafusa, “Defect structure and formation mechanism of drawing-induced absorption at 630 nm in silica optical fibers,” J. Appl. Phys.60(5), 1797–1801 (1986).
    [CrossRef]
  24. E. J. Friebele, G. H. Sigel, and D. L. Griscom, “Drawinginduced defect centers in a fused silica core fiber,” Appl. Phys. Lett.28(9), 516–518 (1976).
    [CrossRef]
  25. G. H. Sigel and M. G. Marrone, “Photoluminescence in as-drawn and irradiated silica optical fibers: an assessment of the role of non-bridging oxygen defect centers,” J. Non-Cryst. Solids45(2), 235–247 (1981).
    [CrossRef]
  26. P. Kaiser, “Drawing-induced coloration in vitreous silica fibers,” J. Opt. Soc. Am.64(4), 475–481 (1974).
    [CrossRef]
  27. J.-W. Lee, G. H. Sigel, and J. Li, “Processing-induced defects in optical waveguide materials,” J. Non-Cryst. Solids239(1-3), 57–65 (1998).
    [CrossRef]
  28. M. A. García, E. Borsella, S. E. Paje, J. Llopis, M. A. Villegas, and R. Polloni, “Luminescence time decay from Cu+ ions in Sol-gel silica coatings,” J. Lumin.93(3), 253–259 (2001).
    [CrossRef]
  29. M. Neff, V. Romano, and W. Lüthy, “Metal-doped fibres for broadband emission: Fabrication with granulated oxides,” Opt. Mater.31(2), 247–251 (2008).
    [CrossRef]

2011

S. Gómez, I. Urra, R. Valiente, and F. Rodríguez, “Spectroscopic study of Cu2+/Cu+ doubly doped and highly transmitting glasses for solar spectral transformation,” Sol. Energy Mater. Sol. Cells95(8), 2018–2022 (2011).
[CrossRef]

N. S. Dhoble, S. P. Pupalwar, S. J. Dhoble, A. K. Upadhyay, and R. S. Kher, “Lyoluminescence and mechanoluminescence of Cu+ activated LiKSO4 phosphors for radiation dosimetry,” Radiat. Meas.46(12), 1890–1893 (2011).
[CrossRef]

G. V. M. Williams and S. G. Raymond, “Fiber-optic-coupled RbMgF3:Eu2+ for remote radiation dosimetry,” Radiat. Meas.46(10), 1099–1102 (2011).
[CrossRef]

H. El Hamzaoui, L. Bigot, G. Bouwmans, I. Razdobreev, M. Bouazaoui, and B. Capoen, “From molecular precursors in solution to microstructured optical fiber: a Sol-gel polymeric route,” Opt. Mater. Express1(2), 234–242 (2011).
[CrossRef]

2010

H. El Hamzaoui, L. Courtheoux, V. Nguyen, E. Berrier, A. Favre, L. Bigot, M. Bouazaoui, and B. Capoen, “From porous silica xerogels to bulk optical glasses: The control of densification,” Mater. Chem. Phys.121(1-2), 83–88 (2010).
[CrossRef]

J. Kaufmann and C. Rüssel, “Thermodynamics of the Cu+/Cu2+-redox equilibrium in alumosilicate melts,” J. Non-Cryst. Solids356(33-34), 1615–1619 (2010).
[CrossRef]

S. Gomez, I. Urra, R. Valiente, and F. Rodriguez, “Spectroscopic study of Cu2+ and Cu+ ions in high-transmission glass. Electronic structure and Cu2+/Cu+ concentrations,” J. Phys. Condens. Matter22(29), 295505 (2010).
[CrossRef] [PubMed]

C. E. Andersen, J. M. Edmund, and S. M. S. Damkjær, “Precision of RL/OSL medical dosimetry with fiber-coupled Al2O3:C: Influence of readout delay and temperature variations,” Radiat. Meas.45(3-6), 653–657 (2010).
[CrossRef]

2009

Q. Zhang, G. Chen, G. Dong, G. Zhang, X. Liu, J. Qiu, Q. Zhou, Q. Chen, and D. Chen, “The reduction of Cu2+ to Cu+ and optical properties of Cu+ ions in Cu-doped and Cu/Al-codoped high silica glasses sintered in an air atmosphere,” Chem. Phys. Lett.482(4-6), 228–233 (2009).
[CrossRef]

2008

A. Michnik, K. Michalik, and Z. Drzazga, “Effect of UVC radiation on conformational restructuring of human serum albumin,” J. Photochem. Photobiol. B90(3), 170–178 (2008).
[CrossRef] [PubMed]

M. Neff, V. Romano, and W. Lüthy, “Metal-doped fibres for broadband emission: Fabrication with granulated oxides,” Opt. Mater.31(2), 247–251 (2008).
[CrossRef]

2007

2006

2005

O. B. Miled, C. Sanchez, and J. Livage, “Spectroscopic studies and evanescent optical fibre wave sensing of Cu2+ based on activated mesostructured silica matrix,” J. Mater. Sci.40(17), 4523–4530 (2005).
[CrossRef]

2004

2002

E. Borsella, A. Dal Vecchio, M. A. Garcìa, C. Sada, F. Gonella, R. Polloni, A. Quaranta, and L. J. G. W. van Wilderen, “Copper doping of silicate glasses by the ion-exchange technique: A photoluminescence spectroscopy study,” J. Appl. Phys.91(1), 90–98 (2002).
[CrossRef]

2001

M. A. García, E. Borsella, S. E. Paje, J. Llopis, M. A. Villegas, and R. Polloni, “Luminescence time decay from Cu+ ions in Sol-gel silica coatings,” J. Lumin.93(3), 253–259 (2001).
[CrossRef]

2000

Y. Sakurai, “The 3.1 eV photoluminescence band in oxygen-deficient silica glass,” J. Non-Cryst. Solids271(3), 218–223 (2000).
[CrossRef]

1999

Y. Sakurai, K. Nagasawa, H. Nishikawa, and Y. Ohki, “Characteristic red photoluminescence band in oxygen-deficient silica glass,” J. Appl. Phys.86(1), 370–373 (1999).
[CrossRef]

1998

J.-W. Lee, G. H. Sigel, and J. Li, “Processing-induced defects in optical waveguide materials,” J. Non-Cryst. Solids239(1-3), 57–65 (1998).
[CrossRef]

1997

Y. Fujimoto and M. Nakatsuka, “Spectroscopic properties and quantum yield of Cu-doped SiO2 glass,” J. Lumin.75(3), 213–219 (1997).
[CrossRef]

1992

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992).
[CrossRef]

1990

S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Various types of non bridging oxygen hole center in high-purity silica glass,” J. Appl. Phys.68, 1212–1217 (1990).

1986

Y. Hibino and H. Hanafusa, “Defect structure and formation mechanism of drawing-induced absorption at 630 nm in silica optical fibers,” J. Appl. Phys.60(5), 1797–1801 (1986).
[CrossRef]

1981

G. H. Sigel and M. G. Marrone, “Photoluminescence in as-drawn and irradiated silica optical fibers: an assessment of the role of non-bridging oxygen defect centers,” J. Non-Cryst. Solids45(2), 235–247 (1981).
[CrossRef]

1976

E. J. Friebele, G. H. Sigel, and D. L. Griscom, “Drawinginduced defect centers in a fused silica core fiber,” Appl. Phys. Lett.28(9), 516–518 (1976).
[CrossRef]

1974

Andersen, C. E.

C. E. Andersen, J. M. Edmund, and S. M. S. Damkjær, “Precision of RL/OSL medical dosimetry with fiber-coupled Al2O3:C: Influence of readout delay and temperature variations,” Radiat. Meas.45(3-6), 653–657 (2010).
[CrossRef]

Berrier, E.

H. El Hamzaoui, L. Courtheoux, V. Nguyen, E. Berrier, A. Favre, L. Bigot, M. Bouazaoui, and B. Capoen, “From porous silica xerogels to bulk optical glasses: The control of densification,” Mater. Chem. Phys.121(1-2), 83–88 (2010).
[CrossRef]

Bigot, L.

H. El Hamzaoui, L. Bigot, G. Bouwmans, I. Razdobreev, M. Bouazaoui, and B. Capoen, “From molecular precursors in solution to microstructured optical fiber: a Sol-gel polymeric route,” Opt. Mater. Express1(2), 234–242 (2011).
[CrossRef]

H. El Hamzaoui, L. Courtheoux, V. Nguyen, E. Berrier, A. Favre, L. Bigot, M. Bouazaoui, and B. Capoen, “From porous silica xerogels to bulk optical glasses: The control of densification,” Mater. Chem. Phys.121(1-2), 83–88 (2010).
[CrossRef]

Borsella, E.

E. Borsella, A. Dal Vecchio, M. A. Garcìa, C. Sada, F. Gonella, R. Polloni, A. Quaranta, and L. J. G. W. van Wilderen, “Copper doping of silicate glasses by the ion-exchange technique: A photoluminescence spectroscopy study,” J. Appl. Phys.91(1), 90–98 (2002).
[CrossRef]

M. A. García, E. Borsella, S. E. Paje, J. Llopis, M. A. Villegas, and R. Polloni, “Luminescence time decay from Cu+ ions in Sol-gel silica coatings,” J. Lumin.93(3), 253–259 (2001).
[CrossRef]

Bouazaoui, M.

H. El Hamzaoui, L. Bigot, G. Bouwmans, I. Razdobreev, M. Bouazaoui, and B. Capoen, “From molecular precursors in solution to microstructured optical fiber: a Sol-gel polymeric route,” Opt. Mater. Express1(2), 234–242 (2011).
[CrossRef]

H. El Hamzaoui, L. Courtheoux, V. Nguyen, E. Berrier, A. Favre, L. Bigot, M. Bouazaoui, and B. Capoen, “From porous silica xerogels to bulk optical glasses: The control of densification,” Mater. Chem. Phys.121(1-2), 83–88 (2010).
[CrossRef]

Bouwmans, G.

Capoen, B.

H. El Hamzaoui, L. Bigot, G. Bouwmans, I. Razdobreev, M. Bouazaoui, and B. Capoen, “From molecular precursors in solution to microstructured optical fiber: a Sol-gel polymeric route,” Opt. Mater. Express1(2), 234–242 (2011).
[CrossRef]

H. El Hamzaoui, L. Courtheoux, V. Nguyen, E. Berrier, A. Favre, L. Bigot, M. Bouazaoui, and B. Capoen, “From porous silica xerogels to bulk optical glasses: The control of densification,” Mater. Chem. Phys.121(1-2), 83–88 (2010).
[CrossRef]

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992).
[CrossRef]

Chen, D.

Q. Zhang, G. Chen, G. Dong, G. Zhang, X. Liu, J. Qiu, Q. Zhou, Q. Chen, and D. Chen, “The reduction of Cu2+ to Cu+ and optical properties of Cu+ ions in Cu-doped and Cu/Al-codoped high silica glasses sintered in an air atmosphere,” Chem. Phys. Lett.482(4-6), 228–233 (2009).
[CrossRef]

Chen, G.

Q. Zhang, G. Chen, G. Dong, G. Zhang, X. Liu, J. Qiu, Q. Zhou, Q. Chen, and D. Chen, “The reduction of Cu2+ to Cu+ and optical properties of Cu+ ions in Cu-doped and Cu/Al-codoped high silica glasses sintered in an air atmosphere,” Chem. Phys. Lett.482(4-6), 228–233 (2009).
[CrossRef]

Chen, Q.

Q. Zhang, G. Chen, G. Dong, G. Zhang, X. Liu, J. Qiu, Q. Zhou, Q. Chen, and D. Chen, “The reduction of Cu2+ to Cu+ and optical properties of Cu+ ions in Cu-doped and Cu/Al-codoped high silica glasses sintered in an air atmosphere,” Chem. Phys. Lett.482(4-6), 228–233 (2009).
[CrossRef]

Chung, Y.

Courtheoux, L.

H. El Hamzaoui, L. Courtheoux, V. Nguyen, E. Berrier, A. Favre, L. Bigot, M. Bouazaoui, and B. Capoen, “From porous silica xerogels to bulk optical glasses: The control of densification,” Mater. Chem. Phys.121(1-2), 83–88 (2010).
[CrossRef]

Dal Vecchio, A.

E. Borsella, A. Dal Vecchio, M. A. Garcìa, C. Sada, F. Gonella, R. Polloni, A. Quaranta, and L. J. G. W. van Wilderen, “Copper doping of silicate glasses by the ion-exchange technique: A photoluminescence spectroscopy study,” J. Appl. Phys.91(1), 90–98 (2002).
[CrossRef]

Damkjær, S. M. S.

C. E. Andersen, J. M. Edmund, and S. M. S. Damkjær, “Precision of RL/OSL medical dosimetry with fiber-coupled Al2O3:C: Influence of readout delay and temperature variations,” Radiat. Meas.45(3-6), 653–657 (2010).
[CrossRef]

Dhoble, N. S.

N. S. Dhoble, S. P. Pupalwar, S. J. Dhoble, A. K. Upadhyay, and R. S. Kher, “Lyoluminescence and mechanoluminescence of Cu+ activated LiKSO4 phosphors for radiation dosimetry,” Radiat. Meas.46(12), 1890–1893 (2011).
[CrossRef]

Dhoble, S. J.

N. S. Dhoble, S. P. Pupalwar, S. J. Dhoble, A. K. Upadhyay, and R. S. Kher, “Lyoluminescence and mechanoluminescence of Cu+ activated LiKSO4 phosphors for radiation dosimetry,” Radiat. Meas.46(12), 1890–1893 (2011).
[CrossRef]

Dong, G.

Q. Zhang, G. Chen, G. Dong, G. Zhang, X. Liu, J. Qiu, Q. Zhou, Q. Chen, and D. Chen, “The reduction of Cu2+ to Cu+ and optical properties of Cu+ ions in Cu-doped and Cu/Al-codoped high silica glasses sintered in an air atmosphere,” Chem. Phys. Lett.482(4-6), 228–233 (2009).
[CrossRef]

Drzazga, Z.

A. Michnik, K. Michalik, and Z. Drzazga, “Effect of UVC radiation on conformational restructuring of human serum albumin,” J. Photochem. Photobiol. B90(3), 170–178 (2008).
[CrossRef] [PubMed]

Edmund, J. M.

C. E. Andersen, J. M. Edmund, and S. M. S. Damkjær, “Precision of RL/OSL medical dosimetry with fiber-coupled Al2O3:C: Influence of readout delay and temperature variations,” Radiat. Meas.45(3-6), 653–657 (2010).
[CrossRef]

El Hamzaoui, H.

H. El Hamzaoui, L. Bigot, G. Bouwmans, I. Razdobreev, M. Bouazaoui, and B. Capoen, “From molecular precursors in solution to microstructured optical fiber: a Sol-gel polymeric route,” Opt. Mater. Express1(2), 234–242 (2011).
[CrossRef]

H. El Hamzaoui, L. Courtheoux, V. Nguyen, E. Berrier, A. Favre, L. Bigot, M. Bouazaoui, and B. Capoen, “From porous silica xerogels to bulk optical glasses: The control of densification,” Mater. Chem. Phys.121(1-2), 83–88 (2010).
[CrossRef]

Falkenstein, P.

Favre, A.

H. El Hamzaoui, L. Courtheoux, V. Nguyen, E. Berrier, A. Favre, L. Bigot, M. Bouazaoui, and B. Capoen, “From porous silica xerogels to bulk optical glasses: The control of densification,” Mater. Chem. Phys.121(1-2), 83–88 (2010).
[CrossRef]

Friebele, E. J.

E. J. Friebele, G. H. Sigel, and D. L. Griscom, “Drawinginduced defect centers in a fused silica core fiber,” Appl. Phys. Lett.28(9), 516–518 (1976).
[CrossRef]

Fujimoto, Y.

Y. Fujimoto and M. Nakatsuka, “Spectroscopic properties and quantum yield of Cu-doped SiO2 glass,” J. Lumin.75(3), 213–219 (1997).
[CrossRef]

García, M. A.

M. A. García, E. Borsella, S. E. Paje, J. Llopis, M. A. Villegas, and R. Polloni, “Luminescence time decay from Cu+ ions in Sol-gel silica coatings,” J. Lumin.93(3), 253–259 (2001).
[CrossRef]

Garcìa, M. A.

E. Borsella, A. Dal Vecchio, M. A. Garcìa, C. Sada, F. Gonella, R. Polloni, A. Quaranta, and L. J. G. W. van Wilderen, “Copper doping of silicate glasses by the ion-exchange technique: A photoluminescence spectroscopy study,” J. Appl. Phys.91(1), 90–98 (2002).
[CrossRef]

Gomez, S.

S. Gomez, I. Urra, R. Valiente, and F. Rodriguez, “Spectroscopic study of Cu2+ and Cu+ ions in high-transmission glass. Electronic structure and Cu2+/Cu+ concentrations,” J. Phys. Condens. Matter22(29), 295505 (2010).
[CrossRef] [PubMed]

Gómez, S.

S. Gómez, I. Urra, R. Valiente, and F. Rodríguez, “Spectroscopic study of Cu2+/Cu+ doubly doped and highly transmitting glasses for solar spectral transformation,” Sol. Energy Mater. Sol. Cells95(8), 2018–2022 (2011).
[CrossRef]

Gonella, F.

E. Borsella, A. Dal Vecchio, M. A. Garcìa, C. Sada, F. Gonella, R. Polloni, A. Quaranta, and L. J. G. W. van Wilderen, “Copper doping of silicate glasses by the ion-exchange technique: A photoluminescence spectroscopy study,” J. Appl. Phys.91(1), 90–98 (2002).
[CrossRef]

Griscom, D. L.

E. J. Friebele, G. H. Sigel, and D. L. Griscom, “Drawinginduced defect centers in a fused silica core fiber,” Appl. Phys. Lett.28(9), 516–518 (1976).
[CrossRef]

Hama, Y.

S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Various types of non bridging oxygen hole center in high-purity silica glass,” J. Appl. Phys.68, 1212–1217 (1990).

Han, W.-T.

Hanafusa, H.

Y. Hibino and H. Hanafusa, “Defect structure and formation mechanism of drawing-induced absorption at 630 nm in silica optical fibers,” J. Appl. Phys.60(5), 1797–1801 (1986).
[CrossRef]

Hibino, Y.

Y. Hibino and H. Hanafusa, “Defect structure and formation mechanism of drawing-induced absorption at 630 nm in silica optical fibers,” J. Appl. Phys.60(5), 1797–1801 (1986).
[CrossRef]

Huston, A. L.

Justus, B. L.

Kaiser, P.

Kaufmann, J.

J. Kaufmann and C. Rüssel, “Thermodynamics of the Cu+/Cu2+-redox equilibrium in alumosilicate melts,” J. Non-Cryst. Solids356(33-34), 1615–1619 (2010).
[CrossRef]

Kher, R. S.

N. S. Dhoble, S. P. Pupalwar, S. J. Dhoble, A. K. Upadhyay, and R. S. Kher, “Lyoluminescence and mechanoluminescence of Cu+ activated LiKSO4 phosphors for radiation dosimetry,” Radiat. Meas.46(12), 1890–1893 (2011).
[CrossRef]

Kim, B. H.

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992).
[CrossRef]

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992).
[CrossRef]

Lee, J.-W.

J.-W. Lee, G. H. Sigel, and J. Li, “Processing-induced defects in optical waveguide materials,” J. Non-Cryst. Solids239(1-3), 57–65 (1998).
[CrossRef]

Li, J.

J.-W. Lee, G. H. Sigel, and J. Li, “Processing-induced defects in optical waveguide materials,” J. Non-Cryst. Solids239(1-3), 57–65 (1998).
[CrossRef]

Lin, A.

Liu, X.

Q. Zhang, G. Chen, G. Dong, G. Zhang, X. Liu, J. Qiu, Q. Zhou, Q. Chen, and D. Chen, “The reduction of Cu2+ to Cu+ and optical properties of Cu+ ions in Cu-doped and Cu/Al-codoped high silica glasses sintered in an air atmosphere,” Chem. Phys. Lett.482(4-6), 228–233 (2009).
[CrossRef]

Livage, J.

O. B. Miled, C. Sanchez, and J. Livage, “Spectroscopic studies and evanescent optical fibre wave sensing of Cu2+ based on activated mesostructured silica matrix,” J. Mater. Sci.40(17), 4523–4530 (2005).
[CrossRef]

Llopis, J.

M. A. García, E. Borsella, S. E. Paje, J. Llopis, M. A. Villegas, and R. Polloni, “Luminescence time decay from Cu+ ions in Sol-gel silica coatings,” J. Lumin.93(3), 253–259 (2001).
[CrossRef]

Lüthy, W.

M. Neff, V. Romano, and W. Lüthy, “Metal-doped fibres for broadband emission: Fabrication with granulated oxides,” Opt. Mater.31(2), 247–251 (2008).
[CrossRef]

Marrone, M. G.

G. H. Sigel and M. G. Marrone, “Photoluminescence in as-drawn and irradiated silica optical fibers: an assessment of the role of non-bridging oxygen defect centers,” J. Non-Cryst. Solids45(2), 235–247 (1981).
[CrossRef]

Michalik, K.

A. Michnik, K. Michalik, and Z. Drzazga, “Effect of UVC radiation on conformational restructuring of human serum albumin,” J. Photochem. Photobiol. B90(3), 170–178 (2008).
[CrossRef] [PubMed]

Michnik, A.

A. Michnik, K. Michalik, and Z. Drzazga, “Effect of UVC radiation on conformational restructuring of human serum albumin,” J. Photochem. Photobiol. B90(3), 170–178 (2008).
[CrossRef] [PubMed]

Miled, O. B.

O. B. Miled, C. Sanchez, and J. Livage, “Spectroscopic studies and evanescent optical fibre wave sensing of Cu2+ based on activated mesostructured silica matrix,” J. Mater. Sci.40(17), 4523–4530 (2005).
[CrossRef]

Miller, R. W.

Moon, D. S.

Munekuni, S.

S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Various types of non bridging oxygen hole center in high-purity silica glass,” J. Appl. Phys.68, 1212–1217 (1990).

Nagasawa, K.

Y. Sakurai, K. Nagasawa, H. Nishikawa, and Y. Ohki, “Characteristic red photoluminescence band in oxygen-deficient silica glass,” J. Appl. Phys.86(1), 370–373 (1999).
[CrossRef]

S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Various types of non bridging oxygen hole center in high-purity silica glass,” J. Appl. Phys.68, 1212–1217 (1990).

Nakatsuka, M.

Y. Fujimoto and M. Nakatsuka, “Spectroscopic properties and quantum yield of Cu-doped SiO2 glass,” J. Lumin.75(3), 213–219 (1997).
[CrossRef]

Neff, M.

M. Neff, V. Romano, and W. Lüthy, “Metal-doped fibres for broadband emission: Fabrication with granulated oxides,” Opt. Mater.31(2), 247–251 (2008).
[CrossRef]

Nguyen, V.

H. El Hamzaoui, L. Courtheoux, V. Nguyen, E. Berrier, A. Favre, L. Bigot, M. Bouazaoui, and B. Capoen, “From porous silica xerogels to bulk optical glasses: The control of densification,” Mater. Chem. Phys.121(1-2), 83–88 (2010).
[CrossRef]

Ning, H.

Nishikawa, H.

Y. Sakurai, K. Nagasawa, H. Nishikawa, and Y. Ohki, “Characteristic red photoluminescence band in oxygen-deficient silica glass,” J. Appl. Phys.86(1), 370–373 (1999).
[CrossRef]

Ohki, Y.

Y. Sakurai, K. Nagasawa, H. Nishikawa, and Y. Ohki, “Characteristic red photoluminescence band in oxygen-deficient silica glass,” J. Appl. Phys.86(1), 370–373 (1999).
[CrossRef]

S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Various types of non bridging oxygen hole center in high-purity silica glass,” J. Appl. Phys.68, 1212–1217 (1990).

Paje, S. E.

M. A. García, E. Borsella, S. E. Paje, J. Llopis, M. A. Villegas, and R. Polloni, “Luminescence time decay from Cu+ ions in Sol-gel silica coatings,” J. Lumin.93(3), 253–259 (2001).
[CrossRef]

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992).
[CrossRef]

Plazas, M. C.

Polloni, R.

E. Borsella, A. Dal Vecchio, M. A. Garcìa, C. Sada, F. Gonella, R. Polloni, A. Quaranta, and L. J. G. W. van Wilderen, “Copper doping of silicate glasses by the ion-exchange technique: A photoluminescence spectroscopy study,” J. Appl. Phys.91(1), 90–98 (2002).
[CrossRef]

M. A. García, E. Borsella, S. E. Paje, J. Llopis, M. A. Villegas, and R. Polloni, “Luminescence time decay from Cu+ ions in Sol-gel silica coatings,” J. Lumin.93(3), 253–259 (2001).
[CrossRef]

Pupalwar, S. P.

N. S. Dhoble, S. P. Pupalwar, S. J. Dhoble, A. K. Upadhyay, and R. S. Kher, “Lyoluminescence and mechanoluminescence of Cu+ activated LiKSO4 phosphors for radiation dosimetry,” Radiat. Meas.46(12), 1890–1893 (2011).
[CrossRef]

Qiu, J.

Q. Zhang, G. Chen, G. Dong, G. Zhang, X. Liu, J. Qiu, Q. Zhou, Q. Chen, and D. Chen, “The reduction of Cu2+ to Cu+ and optical properties of Cu+ ions in Cu-doped and Cu/Al-codoped high silica glasses sintered in an air atmosphere,” Chem. Phys. Lett.482(4-6), 228–233 (2009).
[CrossRef]

Quaranta, A.

E. Borsella, A. Dal Vecchio, M. A. Garcìa, C. Sada, F. Gonella, R. Polloni, A. Quaranta, and L. J. G. W. van Wilderen, “Copper doping of silicate glasses by the ion-exchange technique: A photoluminescence spectroscopy study,” J. Appl. Phys.91(1), 90–98 (2002).
[CrossRef]

Raymond, S. G.

G. V. M. Williams and S. G. Raymond, “Fiber-optic-coupled RbMgF3:Eu2+ for remote radiation dosimetry,” Radiat. Meas.46(10), 1099–1102 (2011).
[CrossRef]

Razdobreev, I.

Rodriguez, F.

S. Gomez, I. Urra, R. Valiente, and F. Rodriguez, “Spectroscopic study of Cu2+ and Cu+ ions in high-transmission glass. Electronic structure and Cu2+/Cu+ concentrations,” J. Phys. Condens. Matter22(29), 295505 (2010).
[CrossRef] [PubMed]

Rodríguez, F.

S. Gómez, I. Urra, R. Valiente, and F. Rodríguez, “Spectroscopic study of Cu2+/Cu+ doubly doped and highly transmitting glasses for solar spectral transformation,” Sol. Energy Mater. Sol. Cells95(8), 2018–2022 (2011).
[CrossRef]

Romano, V.

M. Neff, V. Romano, and W. Lüthy, “Metal-doped fibres for broadband emission: Fabrication with granulated oxides,” Opt. Mater.31(2), 247–251 (2008).
[CrossRef]

Rüssel, C.

J. Kaufmann and C. Rüssel, “Thermodynamics of the Cu+/Cu2+-redox equilibrium in alumosilicate melts,” J. Non-Cryst. Solids356(33-34), 1615–1619 (2010).
[CrossRef]

Russell, P. S. J.

Sada, C.

E. Borsella, A. Dal Vecchio, M. A. Garcìa, C. Sada, F. Gonella, R. Polloni, A. Quaranta, and L. J. G. W. van Wilderen, “Copper doping of silicate glasses by the ion-exchange technique: A photoluminescence spectroscopy study,” J. Appl. Phys.91(1), 90–98 (2002).
[CrossRef]

Sakurai, Y.

Y. Sakurai, “The 3.1 eV photoluminescence band in oxygen-deficient silica glass,” J. Non-Cryst. Solids271(3), 218–223 (2000).
[CrossRef]

Y. Sakurai, K. Nagasawa, H. Nishikawa, and Y. Ohki, “Characteristic red photoluminescence band in oxygen-deficient silica glass,” J. Appl. Phys.86(1), 370–373 (1999).
[CrossRef]

Sanchez, C.

O. B. Miled, C. Sanchez, and J. Livage, “Spectroscopic studies and evanescent optical fibre wave sensing of Cu2+ based on activated mesostructured silica matrix,” J. Mater. Sci.40(17), 4523–4530 (2005).
[CrossRef]

Shimogaichi, Y.

S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Various types of non bridging oxygen hole center in high-purity silica glass,” J. Appl. Phys.68, 1212–1217 (1990).

Sigel, G. H.

J.-W. Lee, G. H. Sigel, and J. Li, “Processing-induced defects in optical waveguide materials,” J. Non-Cryst. Solids239(1-3), 57–65 (1998).
[CrossRef]

G. H. Sigel and M. G. Marrone, “Photoluminescence in as-drawn and irradiated silica optical fibers: an assessment of the role of non-bridging oxygen defect centers,” J. Non-Cryst. Solids45(2), 235–247 (1981).
[CrossRef]

E. J. Friebele, G. H. Sigel, and D. L. Griscom, “Drawinginduced defect centers in a fused silica core fiber,” Appl. Phys. Lett.28(9), 516–518 (1976).
[CrossRef]

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992).
[CrossRef]

Tohmon, R.

S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Various types of non bridging oxygen hole center in high-purity silica glass,” J. Appl. Phys.68, 1212–1217 (1990).

Upadhyay, A. K.

N. S. Dhoble, S. P. Pupalwar, S. J. Dhoble, A. K. Upadhyay, and R. S. Kher, “Lyoluminescence and mechanoluminescence of Cu+ activated LiKSO4 phosphors for radiation dosimetry,” Radiat. Meas.46(12), 1890–1893 (2011).
[CrossRef]

Urra, I.

S. Gómez, I. Urra, R. Valiente, and F. Rodríguez, “Spectroscopic study of Cu2+/Cu+ doubly doped and highly transmitting glasses for solar spectral transformation,” Sol. Energy Mater. Sol. Cells95(8), 2018–2022 (2011).
[CrossRef]

S. Gomez, I. Urra, R. Valiente, and F. Rodriguez, “Spectroscopic study of Cu2+ and Cu+ ions in high-transmission glass. Electronic structure and Cu2+/Cu+ concentrations,” J. Phys. Condens. Matter22(29), 295505 (2010).
[CrossRef] [PubMed]

Valiente, R.

S. Gómez, I. Urra, R. Valiente, and F. Rodríguez, “Spectroscopic study of Cu2+/Cu+ doubly doped and highly transmitting glasses for solar spectral transformation,” Sol. Energy Mater. Sol. Cells95(8), 2018–2022 (2011).
[CrossRef]

S. Gomez, I. Urra, R. Valiente, and F. Rodriguez, “Spectroscopic study of Cu2+ and Cu+ ions in high-transmission glass. Electronic structure and Cu2+/Cu+ concentrations,” J. Phys. Condens. Matter22(29), 295505 (2010).
[CrossRef] [PubMed]

van Wilderen, L. J. G. W.

E. Borsella, A. Dal Vecchio, M. A. Garcìa, C. Sada, F. Gonella, R. Polloni, A. Quaranta, and L. J. G. W. van Wilderen, “Copper doping of silicate glasses by the ion-exchange technique: A photoluminescence spectroscopy study,” J. Appl. Phys.91(1), 90–98 (2002).
[CrossRef]

Villegas, M. A.

M. A. García, E. Borsella, S. E. Paje, J. Llopis, M. A. Villegas, and R. Polloni, “Luminescence time decay from Cu+ ions in Sol-gel silica coatings,” J. Lumin.93(3), 253–259 (2001).
[CrossRef]

Williams, G. V. M.

G. V. M. Williams and S. G. Raymond, “Fiber-optic-coupled RbMgF3:Eu2+ for remote radiation dosimetry,” Radiat. Meas.46(10), 1099–1102 (2011).
[CrossRef]

Yamanaka, T.

S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Various types of non bridging oxygen hole center in high-purity silica glass,” J. Appl. Phys.68, 1212–1217 (1990).

Zhang, G.

Q. Zhang, G. Chen, G. Dong, G. Zhang, X. Liu, J. Qiu, Q. Zhou, Q. Chen, and D. Chen, “The reduction of Cu2+ to Cu+ and optical properties of Cu+ ions in Cu-doped and Cu/Al-codoped high silica glasses sintered in an air atmosphere,” Chem. Phys. Lett.482(4-6), 228–233 (2009).
[CrossRef]

Zhang, Q.

Q. Zhang, G. Chen, G. Dong, G. Zhang, X. Liu, J. Qiu, Q. Zhou, Q. Chen, and D. Chen, “The reduction of Cu2+ to Cu+ and optical properties of Cu+ ions in Cu-doped and Cu/Al-codoped high silica glasses sintered in an air atmosphere,” Chem. Phys. Lett.482(4-6), 228–233 (2009).
[CrossRef]

Zhou, Q.

Q. Zhang, G. Chen, G. Dong, G. Zhang, X. Liu, J. Qiu, Q. Zhou, Q. Chen, and D. Chen, “The reduction of Cu2+ to Cu+ and optical properties of Cu+ ions in Cu-doped and Cu/Al-codoped high silica glasses sintered in an air atmosphere,” Chem. Phys. Lett.482(4-6), 228–233 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

E. J. Friebele, G. H. Sigel, and D. L. Griscom, “Drawinginduced defect centers in a fused silica core fiber,” Appl. Phys. Lett.28(9), 516–518 (1976).
[CrossRef]

Chem. Phys. Lett.

Q. Zhang, G. Chen, G. Dong, G. Zhang, X. Liu, J. Qiu, Q. Zhou, Q. Chen, and D. Chen, “The reduction of Cu2+ to Cu+ and optical properties of Cu+ ions in Cu-doped and Cu/Al-codoped high silica glasses sintered in an air atmosphere,” Chem. Phys. Lett.482(4-6), 228–233 (2009).
[CrossRef]

IEEE J. Quantum Electron.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992).
[CrossRef]

J. Appl. Phys.

E. Borsella, A. Dal Vecchio, M. A. Garcìa, C. Sada, F. Gonella, R. Polloni, A. Quaranta, and L. J. G. W. van Wilderen, “Copper doping of silicate glasses by the ion-exchange technique: A photoluminescence spectroscopy study,” J. Appl. Phys.91(1), 90–98 (2002).
[CrossRef]

S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Various types of non bridging oxygen hole center in high-purity silica glass,” J. Appl. Phys.68, 1212–1217 (1990).

Y. Sakurai, K. Nagasawa, H. Nishikawa, and Y. Ohki, “Characteristic red photoluminescence band in oxygen-deficient silica glass,” J. Appl. Phys.86(1), 370–373 (1999).
[CrossRef]

Y. Hibino and H. Hanafusa, “Defect structure and formation mechanism of drawing-induced absorption at 630 nm in silica optical fibers,” J. Appl. Phys.60(5), 1797–1801 (1986).
[CrossRef]

J. Lightwave Technol.

J. Lumin.

M. A. García, E. Borsella, S. E. Paje, J. Llopis, M. A. Villegas, and R. Polloni, “Luminescence time decay from Cu+ ions in Sol-gel silica coatings,” J. Lumin.93(3), 253–259 (2001).
[CrossRef]

Y. Fujimoto and M. Nakatsuka, “Spectroscopic properties and quantum yield of Cu-doped SiO2 glass,” J. Lumin.75(3), 213–219 (1997).
[CrossRef]

J. Mater. Sci.

O. B. Miled, C. Sanchez, and J. Livage, “Spectroscopic studies and evanescent optical fibre wave sensing of Cu2+ based on activated mesostructured silica matrix,” J. Mater. Sci.40(17), 4523–4530 (2005).
[CrossRef]

J. Non-Cryst. Solids

J. Kaufmann and C. Rüssel, “Thermodynamics of the Cu+/Cu2+-redox equilibrium in alumosilicate melts,” J. Non-Cryst. Solids356(33-34), 1615–1619 (2010).
[CrossRef]

Y. Sakurai, “The 3.1 eV photoluminescence band in oxygen-deficient silica glass,” J. Non-Cryst. Solids271(3), 218–223 (2000).
[CrossRef]

G. H. Sigel and M. G. Marrone, “Photoluminescence in as-drawn and irradiated silica optical fibers: an assessment of the role of non-bridging oxygen defect centers,” J. Non-Cryst. Solids45(2), 235–247 (1981).
[CrossRef]

J.-W. Lee, G. H. Sigel, and J. Li, “Processing-induced defects in optical waveguide materials,” J. Non-Cryst. Solids239(1-3), 57–65 (1998).
[CrossRef]

J. Opt. Soc. Am.

J. Photochem. Photobiol. B

A. Michnik, K. Michalik, and Z. Drzazga, “Effect of UVC radiation on conformational restructuring of human serum albumin,” J. Photochem. Photobiol. B90(3), 170–178 (2008).
[CrossRef] [PubMed]

J. Phys. Condens. Matter

S. Gomez, I. Urra, R. Valiente, and F. Rodriguez, “Spectroscopic study of Cu2+ and Cu+ ions in high-transmission glass. Electronic structure and Cu2+/Cu+ concentrations,” J. Phys. Condens. Matter22(29), 295505 (2010).
[CrossRef] [PubMed]

Mater. Chem. Phys.

H. El Hamzaoui, L. Courtheoux, V. Nguyen, E. Berrier, A. Favre, L. Bigot, M. Bouazaoui, and B. Capoen, “From porous silica xerogels to bulk optical glasses: The control of densification,” Mater. Chem. Phys.121(1-2), 83–88 (2010).
[CrossRef]

Opt. Express

Opt. Mater.

M. Neff, V. Romano, and W. Lüthy, “Metal-doped fibres for broadband emission: Fabrication with granulated oxides,” Opt. Mater.31(2), 247–251 (2008).
[CrossRef]

Opt. Mater. Express

Radiat. Meas.

N. S. Dhoble, S. P. Pupalwar, S. J. Dhoble, A. K. Upadhyay, and R. S. Kher, “Lyoluminescence and mechanoluminescence of Cu+ activated LiKSO4 phosphors for radiation dosimetry,” Radiat. Meas.46(12), 1890–1893 (2011).
[CrossRef]

C. E. Andersen, J. M. Edmund, and S. M. S. Damkjær, “Precision of RL/OSL medical dosimetry with fiber-coupled Al2O3:C: Influence of readout delay and temperature variations,” Radiat. Meas.45(3-6), 653–657 (2010).
[CrossRef]

G. V. M. Williams and S. G. Raymond, “Fiber-optic-coupled RbMgF3:Eu2+ for remote radiation dosimetry,” Radiat. Meas.46(10), 1099–1102 (2011).
[CrossRef]

Sol. Energy Mater. Sol. Cells

S. Gómez, I. Urra, R. Valiente, and F. Rodríguez, “Spectroscopic study of Cu2+/Cu+ doubly doped and highly transmitting glasses for solar spectral transformation,” Sol. Energy Mater. Sol. Cells95(8), 2018–2022 (2011).
[CrossRef]

Other

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic, 2003).

H. P. Leenhouts and K. H. Chadwick, Human Exposure to Ultraviolet Radiation: Risks and Regulations, Eds: W F Passchier and B F Bosnjakovic (Elsevier, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Absorption spectra of (a) non-doped and (b) Cu-doped pure silica glasses. Insets present their corresponding photographs.

Fig. 2
Fig. 2

Room temperature PL spectrum of a Cu-doped silica glass under 244 nm excitation wavelength.

Fig. 3
Fig. 3

PL kinetics of the Cu-doped bulk rod at different emission wavelengths (490, 500, 570 and 585 nm) under an excitation wavelength at 260 nm.

Fig. 4
Fig. 4

Attenuation spectra of Cu-doped silica sol-gel core PCF. Inset: cross-section Scanning Electron Microscope (SEM) image of this fiber.

Fig. 5
Fig. 5

(a) Room temperature µ-PL spectra of the Cu-doped PCF core and cladding zones (b) Spatial distribution of the μ-PL intensity recorded on the cross section of the Cu-doped PCF and integrated between 500 and 600 nm (λexc = 325 nm).

Fig. 6
Fig. 6

(a) PL spectrum of Cu-doped PCF under excitation at 244 nm with an incident power of 100 mW (b) Excitation spectrum of the same PCF with the integral emission intensity between 477 and 562 nm.

Fig. 7
Fig. 7

PL kinetics of the Cu-doped PCF at different emission wavelengths (490, 510, 570 and 585 nm) under excitation at 275 nm.

Fig. 8
Fig. 8

Level configuration scheme for the Cu+ ion, with the effect of a tetragonal distortion of the octahedral field (Modified from ref [17].).

Fig. 9
Fig. 9

Maximum (a) and integral (b) intensities of UV-induced luminescence fitted bands at 510 and 570 nm as a function of the excitation power (λexc = 244 nm).

Metrics