Abstract

In this paper, we describe and investigate the properties of a broadband source designed from a nanosecond microchip laser operating at high repetition rate and dedicated to multiplex-CARS application. We demonstrate that a strong reshaping of the initial pulse profile drastically affects the Stokes wave and therefore represents an important limitation in CARS experiment. In particular, we emphasize the saturation effect of the peak power of the Stokes wave resulting from supercontinuum generation. However, we show that this type of compact system can be particularly suitable for achieving CARS measurement.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev.99, 2957–2976 (1999).
    [CrossRef]
  2. O. Samek, H. H. Telle, L. G. Harris, M. Bloomfield, and D. Mack, “Raman spectroscopy for rapid discrimination of Staphylococcus epidermidis clones related to medical device-associated infections,” Laser Phys. Lett.5, 465–470 (2008).
    [CrossRef]
  3. I. Nabiev, I. Chourpa, and M. Manfait, “Applications of Raman and surface-enhanced Raman scattering spectroscopy in medicine,” J. Raman Spectrosc.25, 13–23 (1994).
    [CrossRef]
  4. W. Werncke, I. Latka, S. Sassning, B. Dietzek, M. E. Darvin, M. C. Meinke, J. Popp, K. König, J. W. Fluhr, and J. Lademann, “Two-color Raman spectroscopy for the simultaneous detection of chemotherapeutics and antioxidative status of human skin,” Laser Phys. Lett.8, 895–900 (2011).
    [CrossRef]
  5. M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. Hamaguchi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Angew. Chem49, 6773–6777 (2010).
    [CrossRef]
  6. J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,” Biophys. J.83, 502–509 (2002).
    [CrossRef] [PubMed]
  7. E. E. Serebryannikov and A. M. Zheltikov, “Supercontinuum generation through cascaded four-wave mixing in photonic-crystal fibers: When picoseconds do it better,” Opt. Commun.274, 433–440 (2007).
    [CrossRef]
  8. S. Gao, X. Li, and S. Zhang, “Supercontinuum generation by combining clad-pumped Er/Yb co-doped fiber amplifier and highly nonlinear photonic crystal fiber,” Optik121, 2110–2112 (2010).
    [CrossRef]
  9. J. X. Cheng and T. B. Huff, “In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue,” J. Microsc.225, 175–182 (2007).
    [CrossRef] [PubMed]
  10. K. König, H. G. Breunig, R. Bückle, M. Kellner-Höfer, M. Weinigel, E. Büttner, W. Sterry, and J. Lademann, “Optical skin biopsies by clinical CARS and multiphoton fluorescence/SHG tomography,” Laser Phys. Lett.8, 465–468 (2011).
    [CrossRef]
  11. T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.29, 2701–2703 (2004).
    [CrossRef] [PubMed]
  12. H. Kano and H. Hamaguchi, “Dispersion-compensated supercontinuum generation for ultrabroadband multiplex coherent anti-Stokes Raman scattering spectroscopy,” J. Raman Spectrosc.37, 411–415 (2006).
    [CrossRef]
  13. J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory and application,” J. Phys. Chem.108, 827–840 (2004).
    [CrossRef]
  14. G. Bergner, D. Akimov, S. Schlücker, H. Bartelt, B. Dietzek, and J. Popp, “Tunable optical setup with high flexibility for spectrally resolved coherent anti-Stokes Raman scattering microscopy,” Laser Phys. Lett.8, 541–546 (2011).
    [CrossRef]
  15. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett.82, 4142–4145 (1999).
    [CrossRef]
  16. M. Hashimoto, T. Araki, and S. Kawata, “Molecular vibration imaging in the fingerprint region by use of coherent anti-Stokes Raman scattering microscopy with collinear configuration,” Opt. Lett.25, 1768–1770 (2000).
    [CrossRef]
  17. E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, “High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers,” Opt. Lett.27, 1168–1170 (2002).
    [CrossRef]
  18. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Coté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA102, 16807 (2005).
    [CrossRef] [PubMed]
  19. H. N. Paulsen, K. M. Hilligsoe, J. Thogersen, S. R. Keiding, and J. J. Larsen, “Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,” Opt. Lett.28, 1123–1125 (2003).
    [CrossRef] [PubMed]
  20. H. Kano and H. Hamaguchi, “Vibrationally resonant imaging of a single living cell by supercontinuum-based multiplex coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Express13, 1322–1327 (2005).
    [CrossRef] [PubMed]
  21. V. P. Mitrokhin, A. B. Fedotov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, “Coherent anti-Stokes Raman scattering microspectroscopy of silicon components with a photonic-crystal fiber frequency shifter,” Opt. Lett.32, 3471–3473 (2007).
    [CrossRef] [PubMed]
  22. F. Ganikhanov, S. Carrasco, X. S. Xie, M. Katz, W. Seitz, and D. Kopf, “Broadly tunable dual-wavelength light source for coherent anti-stokes Raman scattering microscopy,” Opt. Lett.31, 1292–1294 (2006).
    [CrossRef] [PubMed]
  23. M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Ultrabroadband (>2000 cm−1) multiplex coherent anti-Stokes Raman scattering spectroscopy using a subnanosecond supercontinuum light source,” Opt. Lett.32, 3050–3052 (2007).
    [CrossRef] [PubMed]
  24. M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Ultrabroadband multiplex CARS microspectroscopy and imaging using a subnanosecond supercontinuum light source in the deep near infrared,” Opt. Lett.33, 923–925 (2008).
    [CrossRef] [PubMed]
  25. J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B105, 1277–1280 (2001).
    [CrossRef]
  26. J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express16, 3644–3651 (2008).
    [CrossRef] [PubMed]
  27. D. R. Herriott and H. J. Schulte, “Folded optical delay lines,” Appl. Opt.4, 883–889 (1965).
    [CrossRef]
  28. G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, “Modulation instability induced by cross-phase modulation in optical fibers,” Phys. Rev. A39, 3406–3413 (1989).
    [CrossRef] [PubMed]

2011 (3)

W. Werncke, I. Latka, S. Sassning, B. Dietzek, M. E. Darvin, M. C. Meinke, J. Popp, K. König, J. W. Fluhr, and J. Lademann, “Two-color Raman spectroscopy for the simultaneous detection of chemotherapeutics and antioxidative status of human skin,” Laser Phys. Lett.8, 895–900 (2011).
[CrossRef]

K. König, H. G. Breunig, R. Bückle, M. Kellner-Höfer, M. Weinigel, E. Büttner, W. Sterry, and J. Lademann, “Optical skin biopsies by clinical CARS and multiphoton fluorescence/SHG tomography,” Laser Phys. Lett.8, 465–468 (2011).
[CrossRef]

G. Bergner, D. Akimov, S. Schlücker, H. Bartelt, B. Dietzek, and J. Popp, “Tunable optical setup with high flexibility for spectrally resolved coherent anti-Stokes Raman scattering microscopy,” Laser Phys. Lett.8, 541–546 (2011).
[CrossRef]

2010 (2)

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. Hamaguchi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Angew. Chem49, 6773–6777 (2010).
[CrossRef]

S. Gao, X. Li, and S. Zhang, “Supercontinuum generation by combining clad-pumped Er/Yb co-doped fiber amplifier and highly nonlinear photonic crystal fiber,” Optik121, 2110–2112 (2010).
[CrossRef]

2008 (3)

2007 (4)

2006 (2)

H. Kano and H. Hamaguchi, “Dispersion-compensated supercontinuum generation for ultrabroadband multiplex coherent anti-Stokes Raman scattering spectroscopy,” J. Raman Spectrosc.37, 411–415 (2006).
[CrossRef]

F. Ganikhanov, S. Carrasco, X. S. Xie, M. Katz, W. Seitz, and D. Kopf, “Broadly tunable dual-wavelength light source for coherent anti-stokes Raman scattering microscopy,” Opt. Lett.31, 1292–1294 (2006).
[CrossRef] [PubMed]

2005 (2)

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Coté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA102, 16807 (2005).
[CrossRef] [PubMed]

H. Kano and H. Hamaguchi, “Vibrationally resonant imaging of a single living cell by supercontinuum-based multiplex coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Express13, 1322–1327 (2005).
[CrossRef] [PubMed]

2004 (2)

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory and application,” J. Phys. Chem.108, 827–840 (2004).
[CrossRef]

T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.29, 2701–2703 (2004).
[CrossRef] [PubMed]

2003 (1)

2002 (2)

E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, “High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers,” Opt. Lett.27, 1168–1170 (2002).
[CrossRef]

J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,” Biophys. J.83, 502–509 (2002).
[CrossRef] [PubMed]

2001 (1)

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B105, 1277–1280 (2001).
[CrossRef]

2000 (1)

1999 (2)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett.82, 4142–4145 (1999).
[CrossRef]

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev.99, 2957–2976 (1999).
[CrossRef]

1994 (1)

I. Nabiev, I. Chourpa, and M. Manfait, “Applications of Raman and surface-enhanced Raman scattering spectroscopy in medicine,” J. Raman Spectrosc.25, 13–23 (1994).
[CrossRef]

1989 (1)

G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, “Modulation instability induced by cross-phase modulation in optical fibers,” Phys. Rev. A39, 3406–3413 (1989).
[CrossRef] [PubMed]

1965 (1)

Agrawal, G. P.

G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, “Modulation instability induced by cross-phase modulation in optical fibers,” Phys. Rev. A39, 3406–3413 (1989).
[CrossRef] [PubMed]

Akimov, D.

G. Bergner, D. Akimov, S. Schlücker, H. Bartelt, B. Dietzek, and J. Popp, “Tunable optical setup with high flexibility for spectrally resolved coherent anti-Stokes Raman scattering microscopy,” Laser Phys. Lett.8, 541–546 (2011).
[CrossRef]

Alfano, R. R.

G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, “Modulation instability induced by cross-phase modulation in optical fibers,” Phys. Rev. A39, 3406–3413 (1989).
[CrossRef] [PubMed]

Alfimov, M. V.

Araki, T.

Baldeck, P. L.

G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, “Modulation instability induced by cross-phase modulation in optical fibers,” Phys. Rev. A39, 3406–3413 (1989).
[CrossRef] [PubMed]

Bartelt, H.

G. Bergner, D. Akimov, S. Schlücker, H. Bartelt, B. Dietzek, and J. Popp, “Tunable optical setup with high flexibility for spectrally resolved coherent anti-Stokes Raman scattering microscopy,” Laser Phys. Lett.8, 541–546 (2011).
[CrossRef]

Bergner, G.

G. Bergner, D. Akimov, S. Schlücker, H. Bartelt, B. Dietzek, and J. Popp, “Tunable optical setup with high flexibility for spectrally resolved coherent anti-Stokes Raman scattering microscopy,” Laser Phys. Lett.8, 541–546 (2011).
[CrossRef]

Bloomfield, M.

O. Samek, H. H. Telle, L. G. Harris, M. Bloomfield, and D. Mack, “Raman spectroscopy for rapid discrimination of Staphylococcus epidermidis clones related to medical device-associated infections,” Laser Phys. Lett.5, 465–470 (2008).
[CrossRef]

Bonn, M.

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. Hamaguchi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Angew. Chem49, 6773–6777 (2010).
[CrossRef]

Book, L. D.

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B105, 1277–1280 (2001).
[CrossRef]

Breunig, H. G.

K. König, H. G. Breunig, R. Bückle, M. Kellner-Höfer, M. Weinigel, E. Büttner, W. Sterry, and J. Lademann, “Optical skin biopsies by clinical CARS and multiphoton fluorescence/SHG tomography,” Laser Phys. Lett.8, 465–468 (2011).
[CrossRef]

Bückle, R.

K. König, H. G. Breunig, R. Bückle, M. Kellner-Höfer, M. Weinigel, E. Büttner, W. Sterry, and J. Lademann, “Optical skin biopsies by clinical CARS and multiphoton fluorescence/SHG tomography,” Laser Phys. Lett.8, 465–468 (2011).
[CrossRef]

Büttner, E.

K. König, H. G. Breunig, R. Bückle, M. Kellner-Höfer, M. Weinigel, E. Büttner, W. Sterry, and J. Lademann, “Optical skin biopsies by clinical CARS and multiphoton fluorescence/SHG tomography,” Laser Phys. Lett.8, 465–468 (2011).
[CrossRef]

Carrasco, S.

Cheng, J.

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B105, 1277–1280 (2001).
[CrossRef]

Cheng, J. X.

J. X. Cheng and T. B. Huff, “In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue,” J. Microsc.225, 175–182 (2007).
[CrossRef] [PubMed]

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory and application,” J. Phys. Chem.108, 827–840 (2004).
[CrossRef]

Cheng, J.-X.

E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, “High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers,” Opt. Lett.27, 1168–1170 (2002).
[CrossRef]

J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,” Biophys. J.83, 502–509 (2002).
[CrossRef] [PubMed]

Chourpa, I.

I. Nabiev, I. Chourpa, and M. Manfait, “Applications of Raman and surface-enhanced Raman scattering spectroscopy in medicine,” J. Raman Spectrosc.25, 13–23 (1994).
[CrossRef]

Cicerone, M. T.

Coté, D.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Coté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA102, 16807 (2005).
[CrossRef] [PubMed]

Couderc, V.

Darvin, M. E.

W. Werncke, I. Latka, S. Sassning, B. Dietzek, M. E. Darvin, M. C. Meinke, J. Popp, K. König, J. W. Fluhr, and J. Lademann, “Two-color Raman spectroscopy for the simultaneous detection of chemotherapeutics and antioxidative status of human skin,” Laser Phys. Lett.8, 895–900 (2011).
[CrossRef]

Dasari, R. R.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev.99, 2957–2976 (1999).
[CrossRef]

Day, J. P. R.

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. Hamaguchi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Angew. Chem49, 6773–6777 (2010).
[CrossRef]

Dietzek, B.

W. Werncke, I. Latka, S. Sassning, B. Dietzek, M. E. Darvin, M. C. Meinke, J. Popp, K. König, J. W. Fluhr, and J. Lademann, “Two-color Raman spectroscopy for the simultaneous detection of chemotherapeutics and antioxidative status of human skin,” Laser Phys. Lett.8, 895–900 (2011).
[CrossRef]

G. Bergner, D. Akimov, S. Schlücker, H. Bartelt, B. Dietzek, and J. Popp, “Tunable optical setup with high flexibility for spectrally resolved coherent anti-Stokes Raman scattering microscopy,” Laser Phys. Lett.8, 541–546 (2011).
[CrossRef]

Dudley, J. M.

Eggleton, B. J.

Evans, C. L.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Coté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA102, 16807 (2005).
[CrossRef] [PubMed]

Fedotov, A. B.

Feld, M. S.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev.99, 2957–2976 (1999).
[CrossRef]

Fluhr, J. W.

W. Werncke, I. Latka, S. Sassning, B. Dietzek, M. E. Darvin, M. C. Meinke, J. Popp, K. König, J. W. Fluhr, and J. Lademann, “Two-color Raman spectroscopy for the simultaneous detection of chemotherapeutics and antioxidative status of human skin,” Laser Phys. Lett.8, 895–900 (2011).
[CrossRef]

Ganikhanov, F.

Gao, S.

S. Gao, X. Li, and S. Zhang, “Supercontinuum generation by combining clad-pumped Er/Yb co-doped fiber amplifier and highly nonlinear photonic crystal fiber,” Optik121, 2110–2112 (2010).
[CrossRef]

Genty, G.

Hamaguchi, H.

Harris, L. G.

O. Samek, H. H. Telle, L. G. Harris, M. Bloomfield, and D. Mack, “Raman spectroscopy for rapid discrimination of Staphylococcus epidermidis clones related to medical device-associated infections,” Laser Phys. Lett.5, 465–470 (2008).
[CrossRef]

Hashimoto, M.

Herriott, D. R.

Hilligsoe, K. M.

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett.82, 4142–4145 (1999).
[CrossRef]

Huff, T. B.

J. X. Cheng and T. B. Huff, “In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue,” J. Microsc.225, 175–182 (2007).
[CrossRef] [PubMed]

Itzkan, I.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev.99, 2957–2976 (1999).
[CrossRef]

Ivanov, A. A.

Jia, Y. K.

J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,” Biophys. J.83, 502–509 (2002).
[CrossRef] [PubMed]

Jones, D. J.

Kano, H.

Katz, M.

Kawata, S.

Kee, T. W.

Keiding, S. R.

Kellner-Höfer, M.

K. König, H. G. Breunig, R. Bückle, M. Kellner-Höfer, M. Weinigel, E. Büttner, W. Sterry, and J. Lademann, “Optical skin biopsies by clinical CARS and multiphoton fluorescence/SHG tomography,” Laser Phys. Lett.8, 465–468 (2011).
[CrossRef]

Kneipp, H.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev.99, 2957–2976 (1999).
[CrossRef]

Kneipp, K.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev.99, 2957–2976 (1999).
[CrossRef]

König, K.

W. Werncke, I. Latka, S. Sassning, B. Dietzek, M. E. Darvin, M. C. Meinke, J. Popp, K. König, J. W. Fluhr, and J. Lademann, “Two-color Raman spectroscopy for the simultaneous detection of chemotherapeutics and antioxidative status of human skin,” Laser Phys. Lett.8, 895–900 (2011).
[CrossRef]

K. König, H. G. Breunig, R. Bückle, M. Kellner-Höfer, M. Weinigel, E. Büttner, W. Sterry, and J. Lademann, “Optical skin biopsies by clinical CARS and multiphoton fluorescence/SHG tomography,” Laser Phys. Lett.8, 465–468 (2011).
[CrossRef]

Kopf, D.

Lademann, J.

K. König, H. G. Breunig, R. Bückle, M. Kellner-Höfer, M. Weinigel, E. Büttner, W. Sterry, and J. Lademann, “Optical skin biopsies by clinical CARS and multiphoton fluorescence/SHG tomography,” Laser Phys. Lett.8, 465–468 (2011).
[CrossRef]

W. Werncke, I. Latka, S. Sassning, B. Dietzek, M. E. Darvin, M. C. Meinke, J. Popp, K. König, J. W. Fluhr, and J. Lademann, “Two-color Raman spectroscopy for the simultaneous detection of chemotherapeutics and antioxidative status of human skin,” Laser Phys. Lett.8, 895–900 (2011).
[CrossRef]

Larsen, J. J.

Latka, I.

W. Werncke, I. Latka, S. Sassning, B. Dietzek, M. E. Darvin, M. C. Meinke, J. Popp, K. König, J. W. Fluhr, and J. Lademann, “Two-color Raman spectroscopy for the simultaneous detection of chemotherapeutics and antioxidative status of human skin,” Laser Phys. Lett.8, 895–900 (2011).
[CrossRef]

Leproux, P.

Li, X.

S. Gao, X. Li, and S. Zhang, “Supercontinuum generation by combining clad-pumped Er/Yb co-doped fiber amplifier and highly nonlinear photonic crystal fiber,” Optik121, 2110–2112 (2010).
[CrossRef]

Lin, C. P.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Coté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA102, 16807 (2005).
[CrossRef] [PubMed]

Mack, D.

O. Samek, H. H. Telle, L. G. Harris, M. Bloomfield, and D. Mack, “Raman spectroscopy for rapid discrimination of Staphylococcus epidermidis clones related to medical device-associated infections,” Laser Phys. Lett.5, 465–470 (2008).
[CrossRef]

Manfait, M.

I. Nabiev, I. Chourpa, and M. Manfait, “Applications of Raman and surface-enhanced Raman scattering spectroscopy in medicine,” J. Raman Spectrosc.25, 13–23 (1994).
[CrossRef]

Meinke, M. C.

W. Werncke, I. Latka, S. Sassning, B. Dietzek, M. E. Darvin, M. C. Meinke, J. Popp, K. König, J. W. Fluhr, and J. Lademann, “Two-color Raman spectroscopy for the simultaneous detection of chemotherapeutics and antioxidative status of human skin,” Laser Phys. Lett.8, 895–900 (2011).
[CrossRef]

Mitrokhin, V. P.

Nabiev, I.

I. Nabiev, I. Chourpa, and M. Manfait, “Applications of Raman and surface-enhanced Raman scattering spectroscopy in medicine,” J. Raman Spectrosc.25, 13–23 (1994).
[CrossRef]

Okuno, M.

Paulsen, H. N.

Popp, J.

W. Werncke, I. Latka, S. Sassning, B. Dietzek, M. E. Darvin, M. C. Meinke, J. Popp, K. König, J. W. Fluhr, and J. Lademann, “Two-color Raman spectroscopy for the simultaneous detection of chemotherapeutics and antioxidative status of human skin,” Laser Phys. Lett.8, 895–900 (2011).
[CrossRef]

G. Bergner, D. Akimov, S. Schlücker, H. Bartelt, B. Dietzek, and J. Popp, “Tunable optical setup with high flexibility for spectrally resolved coherent anti-Stokes Raman scattering microscopy,” Laser Phys. Lett.8, 541–546 (2011).
[CrossRef]

Potma, E. O.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Coté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA102, 16807 (2005).
[CrossRef] [PubMed]

E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, “High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers,” Opt. Lett.27, 1168–1170 (2002).
[CrossRef]

Puoris’haag, M.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Coté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA102, 16807 (2005).
[CrossRef] [PubMed]

Samek, O.

O. Samek, H. H. Telle, L. G. Harris, M. Bloomfield, and D. Mack, “Raman spectroscopy for rapid discrimination of Staphylococcus epidermidis clones related to medical device-associated infections,” Laser Phys. Lett.5, 465–470 (2008).
[CrossRef]

Sassning, S.

W. Werncke, I. Latka, S. Sassning, B. Dietzek, M. E. Darvin, M. C. Meinke, J. Popp, K. König, J. W. Fluhr, and J. Lademann, “Two-color Raman spectroscopy for the simultaneous detection of chemotherapeutics and antioxidative status of human skin,” Laser Phys. Lett.8, 895–900 (2011).
[CrossRef]

Schlücker, S.

G. Bergner, D. Akimov, S. Schlücker, H. Bartelt, B. Dietzek, and J. Popp, “Tunable optical setup with high flexibility for spectrally resolved coherent anti-Stokes Raman scattering microscopy,” Laser Phys. Lett.8, 541–546 (2011).
[CrossRef]

Schulte, H. J.

Seitz, W.

Serebryannikov, E. E.

E. E. Serebryannikov and A. M. Zheltikov, “Supercontinuum generation through cascaded four-wave mixing in photonic-crystal fibers: When picoseconds do it better,” Opt. Commun.274, 433–440 (2007).
[CrossRef]

Sterry, W.

K. König, H. G. Breunig, R. Bückle, M. Kellner-Höfer, M. Weinigel, E. Büttner, W. Sterry, and J. Lademann, “Optical skin biopsies by clinical CARS and multiphoton fluorescence/SHG tomography,” Laser Phys. Lett.8, 465–468 (2011).
[CrossRef]

Telle, H. H.

O. Samek, H. H. Telle, L. G. Harris, M. Bloomfield, and D. Mack, “Raman spectroscopy for rapid discrimination of Staphylococcus epidermidis clones related to medical device-associated infections,” Laser Phys. Lett.5, 465–470 (2008).
[CrossRef]

Thogersen, J.

Volkmer, A.

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B105, 1277–1280 (2001).
[CrossRef]

Weinigel, M.

K. König, H. G. Breunig, R. Bückle, M. Kellner-Höfer, M. Weinigel, E. Büttner, W. Sterry, and J. Lademann, “Optical skin biopsies by clinical CARS and multiphoton fluorescence/SHG tomography,” Laser Phys. Lett.8, 465–468 (2011).
[CrossRef]

Werncke, W.

W. Werncke, I. Latka, S. Sassning, B. Dietzek, M. E. Darvin, M. C. Meinke, J. Popp, K. König, J. W. Fluhr, and J. Lademann, “Two-color Raman spectroscopy for the simultaneous detection of chemotherapeutics and antioxidative status of human skin,” Laser Phys. Lett.8, 895–900 (2011).
[CrossRef]

Xie, X. S.

F. Ganikhanov, S. Carrasco, X. S. Xie, M. Katz, W. Seitz, and D. Kopf, “Broadly tunable dual-wavelength light source for coherent anti-stokes Raman scattering microscopy,” Opt. Lett.31, 1292–1294 (2006).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Coté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA102, 16807 (2005).
[CrossRef] [PubMed]

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory and application,” J. Phys. Chem.108, 827–840 (2004).
[CrossRef]

J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,” Biophys. J.83, 502–509 (2002).
[CrossRef] [PubMed]

E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, “High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers,” Opt. Lett.27, 1168–1170 (2002).
[CrossRef]

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B105, 1277–1280 (2001).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett.82, 4142–4145 (1999).
[CrossRef]

Ye, J.

Zhang, S.

S. Gao, X. Li, and S. Zhang, “Supercontinuum generation by combining clad-pumped Er/Yb co-doped fiber amplifier and highly nonlinear photonic crystal fiber,” Optik121, 2110–2112 (2010).
[CrossRef]

Zheltikov, A. M.

E. E. Serebryannikov and A. M. Zheltikov, “Supercontinuum generation through cascaded four-wave mixing in photonic-crystal fibers: When picoseconds do it better,” Opt. Commun.274, 433–440 (2007).
[CrossRef]

V. P. Mitrokhin, A. B. Fedotov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, “Coherent anti-Stokes Raman scattering microspectroscopy of silicon components with a photonic-crystal fiber frequency shifter,” Opt. Lett.32, 3471–3473 (2007).
[CrossRef] [PubMed]

Zheng, G.

J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,” Biophys. J.83, 502–509 (2002).
[CrossRef] [PubMed]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett.82, 4142–4145 (1999).
[CrossRef]

Angew. Chem (1)

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. Hamaguchi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Angew. Chem49, 6773–6777 (2010).
[CrossRef]

Appl. Opt. (1)

Biophys. J. (1)

J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,” Biophys. J.83, 502–509 (2002).
[CrossRef] [PubMed]

Chem. Rev. (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev.99, 2957–2976 (1999).
[CrossRef]

J. Microsc. (1)

J. X. Cheng and T. B. Huff, “In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue,” J. Microsc.225, 175–182 (2007).
[CrossRef] [PubMed]

J. Phys. Chem. (1)

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory and application,” J. Phys. Chem.108, 827–840 (2004).
[CrossRef]

J. Phys. Chem. B (1)

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B105, 1277–1280 (2001).
[CrossRef]

J. Raman Spectrosc. (2)

H. Kano and H. Hamaguchi, “Dispersion-compensated supercontinuum generation for ultrabroadband multiplex coherent anti-Stokes Raman scattering spectroscopy,” J. Raman Spectrosc.37, 411–415 (2006).
[CrossRef]

I. Nabiev, I. Chourpa, and M. Manfait, “Applications of Raman and surface-enhanced Raman scattering spectroscopy in medicine,” J. Raman Spectrosc.25, 13–23 (1994).
[CrossRef]

Laser Phys. Lett. (4)

W. Werncke, I. Latka, S. Sassning, B. Dietzek, M. E. Darvin, M. C. Meinke, J. Popp, K. König, J. W. Fluhr, and J. Lademann, “Two-color Raman spectroscopy for the simultaneous detection of chemotherapeutics and antioxidative status of human skin,” Laser Phys. Lett.8, 895–900 (2011).
[CrossRef]

O. Samek, H. H. Telle, L. G. Harris, M. Bloomfield, and D. Mack, “Raman spectroscopy for rapid discrimination of Staphylococcus epidermidis clones related to medical device-associated infections,” Laser Phys. Lett.5, 465–470 (2008).
[CrossRef]

G. Bergner, D. Akimov, S. Schlücker, H. Bartelt, B. Dietzek, and J. Popp, “Tunable optical setup with high flexibility for spectrally resolved coherent anti-Stokes Raman scattering microscopy,” Laser Phys. Lett.8, 541–546 (2011).
[CrossRef]

K. König, H. G. Breunig, R. Bückle, M. Kellner-Höfer, M. Weinigel, E. Büttner, W. Sterry, and J. Lademann, “Optical skin biopsies by clinical CARS and multiphoton fluorescence/SHG tomography,” Laser Phys. Lett.8, 465–468 (2011).
[CrossRef]

Opt. Commun. (1)

E. E. Serebryannikov and A. M. Zheltikov, “Supercontinuum generation through cascaded four-wave mixing in photonic-crystal fibers: When picoseconds do it better,” Opt. Commun.274, 433–440 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (8)

V. P. Mitrokhin, A. B. Fedotov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, “Coherent anti-Stokes Raman scattering microspectroscopy of silicon components with a photonic-crystal fiber frequency shifter,” Opt. Lett.32, 3471–3473 (2007).
[CrossRef] [PubMed]

F. Ganikhanov, S. Carrasco, X. S. Xie, M. Katz, W. Seitz, and D. Kopf, “Broadly tunable dual-wavelength light source for coherent anti-stokes Raman scattering microscopy,” Opt. Lett.31, 1292–1294 (2006).
[CrossRef] [PubMed]

M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Ultrabroadband (>2000 cm−1) multiplex coherent anti-Stokes Raman scattering spectroscopy using a subnanosecond supercontinuum light source,” Opt. Lett.32, 3050–3052 (2007).
[CrossRef] [PubMed]

M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Ultrabroadband multiplex CARS microspectroscopy and imaging using a subnanosecond supercontinuum light source in the deep near infrared,” Opt. Lett.33, 923–925 (2008).
[CrossRef] [PubMed]

T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.29, 2701–2703 (2004).
[CrossRef] [PubMed]

H. N. Paulsen, K. M. Hilligsoe, J. Thogersen, S. R. Keiding, and J. J. Larsen, “Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,” Opt. Lett.28, 1123–1125 (2003).
[CrossRef] [PubMed]

M. Hashimoto, T. Araki, and S. Kawata, “Molecular vibration imaging in the fingerprint region by use of coherent anti-Stokes Raman scattering microscopy with collinear configuration,” Opt. Lett.25, 1768–1770 (2000).
[CrossRef]

E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, “High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers,” Opt. Lett.27, 1168–1170 (2002).
[CrossRef]

Optik (1)

S. Gao, X. Li, and S. Zhang, “Supercontinuum generation by combining clad-pumped Er/Yb co-doped fiber amplifier and highly nonlinear photonic crystal fiber,” Optik121, 2110–2112 (2010).
[CrossRef]

Phys. Rev. A (1)

G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, “Modulation instability induced by cross-phase modulation in optical fibers,” Phys. Rev. A39, 3406–3413 (1989).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett.82, 4142–4145 (1999).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Coté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA102, 16807 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Schematic representation of the dual-output light source designed for multiplex-CARS microspectroscopy applications; (b) dispersion curve for the fundamental guided mode of the PCF used in our experiment (ZDW ≃ 990 nm), and (c) air holes distribution in the section of the PCF.

Fig. 2
Fig. 2

(a) and (b) pulse and spectral profiles before amplification in the YDFA, respectively; (c) pulse profile at 1064 nm at the entrance of PCF after amplification in the YDFA; (d) spectral profile at the entrance of PCF after amplification in the YDFA.

Fig. 3
Fig. 3

Power spectrum of the Stokes beam obtained by SC generation in the PCF for four different values of the peak power measured at the entrance of the PCF.

Fig. 4
Fig. 4

Experimental setup used to measure the spectrograms. (L1)–(L2): convergent lenses; (BS1)–(BS2): beam splitters; (pd1)–(pd2): photodiodes.

Fig. 5
Fig. 5

(a) Spectrogram of the SC recorded at the output end of the PCF obtained for a peak power of 11.6 kW. (b) Different pulse profiles obtained at the wavelengths of 2013 nm, 1802 nm, 1588 nm, 1319 nm, 1177 nm and 1065 nm, respectively.

Fig. 6
Fig. 6

Spectral density of power vs. propagation distance z, for γ = 0.02 m−1W−1 and P0 = 10 W. Dotted lines stand for Γnoise and Γref = 10Γnoise, respectively. Solid line stands for the evolution of the maximum spectral power density of MI sidebands. The dashed lines indicate the maximum spectral power density of the Raman peak for the different cases when δ = 0, δ = δ0, and δ = 1.2δ0, respectively.

Fig. 7
Fig. 7

(a) Spectrogram of the SC recorded at the output end of the PCF. (b) Different pulse profiles obtained at the wavelengths of 1746 nm, 1704 nm, 1582 nm, 1329 nm, 1186 nm and 1116 nm, respectively.

Fig. 8
Fig. 8

Stokes pulses duration (circles) and group-delay difference (squares) vs. wavelength.

Fig. 9
Fig. 9

Superimposition between (a) the distorted (blue) and the gaussian (black) pump pulse, and (b) Stokes wave.

Fig. 10
Fig. 10

(a) Evolution of the pulse profile at 1204 nm at the output of the PCF for different input peak power; (b) evolution of the output pulse energy and peak power at 1204 nm vs. peak power at the input of the PCF.

Fig. 11
Fig. 11

Multiplex CARS spectra of (a) indene, (b) parafilm, and (c) human hair. These spectra are not intensity-corrected.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Γ ( Ω MI ) = Γ noise e 2 γ P 0 z ,
Γ ( Ω max ) = Γ noise e δ + g R P 0 z ,
L MI = 1 2 γ P 0 log ( Γ ref / Γ noise ) ,
L R = 1 g R P 0 [ log ( Γ ref / Γ noise ) δ ] .
δ 0 = [ 1 g R 2 γ ] log ( Γ ref / Γ noise ) = { 1 f R Im [ χ R ( Ω max ) ] } log ( Γ ref / Γ noise ) .

Metrics