Abstract

We demonstrate the use of an extended, optically trapped probe that is capable of imaging surface topography with nanometre precision, whilst applying ultra-low, femto-Newton sized forces. This degree of precision and sensitivity is acquired through three distinct strategies. First, the probe itself is shaped in such a way as to soften the trap along the sensing axis and stiffen it in transverse directions. Next, these characteristics are enhanced by selectively position clamping independent motions of the probe. Finally, force clamping is used to refine the surface contact response. Detailed analyses are presented for each of these mechanisms. To test our sensor, we scan it laterally over a calibration sample consisting of a series of graduated steps, and demonstrate a height resolution of ∼ 11 nm. Using equipartition theory, we estimate that an average force of only ∼ 140 fN is exerted on the sample during the scan, making this technique ideal for the investigation of delicate biological samples.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of A Single-beam Gradient Force Optical Trap For Dielectric Particles,” Opt. Lett.11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  2. A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Horber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Techniq.44(5), 378–386 (1999).
    [CrossRef]
  3. A. Rohrbach, C. Tischer, D. Neumayer, E. L. Florin, and E. H. K. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum.75(6), 2197–2210 (2004).
    [CrossRef]
  4. E. L. Florin, A. Pralle, J. K. H. Horber, and E. H. K. Stelzer, “Photonic force microscope based on optical tweezers and two-photon excitation for biological applications,” J. Struct. Biol.119(2), 202–211 (1997).
    [CrossRef] [PubMed]
  5. J. E. Molloy, J. E. Burns, J. Kendrick-Jones, R. T. Tregear, and D. C. S. White, “Movement and Force Produced By A Single Myosin Head,” Nature378(6553), 209–212 (1995).
    [CrossRef] [PubMed]
  6. P. C. Seitz, E. H. K. Stelzer, and A. Rohrbach, “Interferometric tracking of optically trapped probes behind structured surfaces: a phase correction method,” Appl. Optics45(28), 7309–7315 (2006).
    [CrossRef]
  7. J. Gluckstad, A. R. Banas, T. Aabo, and D. Palima, “Structure-mediated micro-to-nano coupling using sculpted light and matter,” in Proc. SPIE., 8424, 84241L (2012).
    [CrossRef]
  8. D. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
    [CrossRef] [PubMed]
  9. P. J. Rodrigo, I. R. Perch-Nielsen, C. A. Alonzo, and J. Gluckstad, “GPC-based optical micromanipulation in 3D real-time using a single spatial light modulator,” Opt. Express14(26), 13107–13112 (2006).
    [CrossRef] [PubMed]
  10. D. Palima, A. R. Banas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Gluckstad, “Wave-guided optical waveguides,” Opt. Express20(3), 2004–2014 (2012).
    [CrossRef] [PubMed]
  11. S. H. Simpson and S. Hanna, “Holographic optical trapping of microrods and nanowires,” J. Opt. Soc. Am. A27(6), 1255–1264 (2010).
    [CrossRef]
  12. D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schaefer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt.13(4), 044023 (2011).
    [CrossRef]
  13. S. H. Simpson and S. Hanna, “Optical trapping of microrods: variation with size and refractive index,” J. Opt. Soc. Am. A28(5), 850–858 (2011).
    [CrossRef]
  14. A. La Porta and M. D. Wang, “Optical torque wrench: Angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett.92(19), 190801 (2004).
    [CrossRef] [PubMed]
  15. O. M. Marago, P. H. Jones, F. Bonaccorso, V. Scardaci, P. G. Gucciardi, A. G. Rozhin, and A. C. Ferrari, “Femtonewton Force Sensing with Optically Trapped Nanotubes,” Nano Lett.8(10), 3211–3216 (2008).
    [CrossRef] [PubMed]
  16. R. Di Leonardo, E. Cammarota, G. Bolognesi, H. Schaefer, and M. Steinhart, “Three-Dimensional to Two-Dimensional Crossover in the Hydrodynamic Interactions between Micron-Scale Rods,” Phys. Rev. Lett.107(4), 044501 (2011).
    [CrossRef] [PubMed]
  17. P. J. Reece, W. J. Toe, F. Wang, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Characterization of Semiconductor Nanowires Using Optical Tweezers,” Nano Lett.11(6), 2375–2381 (2011).
    [CrossRef] [PubMed]
  18. M. E. J. Friese, A. G. Truscott, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Three-dimensional imaging with optical tweezers,” Appl. Opt.38(31), 6597–6603 (1999).
    [CrossRef]
  19. D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnol.22(28), 285503 (2011).
    [CrossRef]
  20. D. B. Phillips, S. H. Simpson, J. A. Grieve, G. M. Gibson, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Position clamping of optically trapped microscopic non-spherical probes,” Opt. Express19(21), 20622–20627 (2011).
    [CrossRef] [PubMed]
  21. D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett.99, 58004 (2012).
    [CrossRef]
  22. G. Gibson, D. M. Carberry, G. Whyte, J. Leach, J. Courtial, J. C. Jackson, D. Robert, M. Miles, and M. Padgett, “Holographic assembly workstation for optical manipulation,” J. Opt A-Pure Appl. Op.10(4), 044009 (2008).
    [CrossRef]
  23. D. Preece, R. Bowman, A. Linnenberger, G. Gibson, S. Serati, and M. Padgett, “Increasing trap stiffness with position clamping in holographic optical tweezers,” Opt. Express17(25), 22718–22725 (2009).
    [CrossRef]
  24. R. Bowman, D. Preece, G. Gibson, and M. Padgett, “Stereoscopic particle tracking for 3D touch, vision and closed-loop control in optical tweezers,” J. Opt.13(4), 044003 (2011).
    [CrossRef]
  25. G. Gibson, J. Leach, S. Keen, A. J. Wright, and M. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express16(19), 14561–14570 (2008).
    [CrossRef] [PubMed]
  26. S. H. Simpson and S. Hanna, “First-order nonconservative motion of optically trapped nonspherical particles,” Phys. Rev. E82(3), 031141 (2010).
    [CrossRef]
  27. S. H. Simpson and S. Hanna, “Thermal motion of a holographically trapped SPM-like probe,” Nanotechnol.20(39), 395710 (2009).
    [CrossRef]
  28. K. D. Wulff, D. G. Cole, and R. L. Clark, “Servo control of an optical trap,” Appl. Opt.46(22), 4923–4931 (2007).
    [CrossRef] [PubMed]
  29. A. Rohrbach, “Switching and measuring a force of 25 femtoNewtons with an optical trap,” Opt. Express13(24), 9695–9701 (2005).
    [CrossRef] [PubMed]
  30. M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,” New J. Phys.12, 1130560 (2010).
    [CrossRef]
  31. C. Agnew, E. Borodina, N. R. Zaccai, R. Conners, N. M. Burton, J. A. Vicary, D. K. Cole, M. Antognozzi, M. Virji, and R. L. Brady, “Correlation of in situ mechanosensitive responses of the Moraxella catarrhalis adhesin UspA1 with fibronectin and receptor CEACAM1 binding,” P. Natl. Acad. Sci. USA108(37), 15174–15178 (2011).
    [CrossRef]
  32. J. B. Wills, J. R. Butler, J. Palmer, and J. P. Reid, “Using optical landscapes to control, direct and isolate aerosol particles,” Phys. Chem. Chem. Phys.11(36), 8015–8020 (2009).
    [CrossRef] [PubMed]
  33. M. P. Lee, A. Curran, G. M. Gibson, M. Tassieri, N. R. Heckenberg, and M. J. Padgett, “Optical shield: measuring viscosity of turbid fluids using optical tweezers,” Opt. Express20(11), 12127–12132 (2012).
    [CrossRef] [PubMed]

2012 (4)

J. Gluckstad, A. R. Banas, T. Aabo, and D. Palima, “Structure-mediated micro-to-nano coupling using sculpted light and matter,” in Proc. SPIE., 8424, 84241L (2012).
[CrossRef]

D. Palima, A. R. Banas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Gluckstad, “Wave-guided optical waveguides,” Opt. Express20(3), 2004–2014 (2012).
[CrossRef] [PubMed]

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett.99, 58004 (2012).
[CrossRef]

M. P. Lee, A. Curran, G. M. Gibson, M. Tassieri, N. R. Heckenberg, and M. J. Padgett, “Optical shield: measuring viscosity of turbid fluids using optical tweezers,” Opt. Express20(11), 12127–12132 (2012).
[CrossRef] [PubMed]

2011 (8)

R. Bowman, D. Preece, G. Gibson, and M. Padgett, “Stereoscopic particle tracking for 3D touch, vision and closed-loop control in optical tweezers,” J. Opt.13(4), 044003 (2011).
[CrossRef]

C. Agnew, E. Borodina, N. R. Zaccai, R. Conners, N. M. Burton, J. A. Vicary, D. K. Cole, M. Antognozzi, M. Virji, and R. L. Brady, “Correlation of in situ mechanosensitive responses of the Moraxella catarrhalis adhesin UspA1 with fibronectin and receptor CEACAM1 binding,” P. Natl. Acad. Sci. USA108(37), 15174–15178 (2011).
[CrossRef]

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schaefer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt.13(4), 044023 (2011).
[CrossRef]

S. H. Simpson and S. Hanna, “Optical trapping of microrods: variation with size and refractive index,” J. Opt. Soc. Am. A28(5), 850–858 (2011).
[CrossRef]

R. Di Leonardo, E. Cammarota, G. Bolognesi, H. Schaefer, and M. Steinhart, “Three-Dimensional to Two-Dimensional Crossover in the Hydrodynamic Interactions between Micron-Scale Rods,” Phys. Rev. Lett.107(4), 044501 (2011).
[CrossRef] [PubMed]

P. J. Reece, W. J. Toe, F. Wang, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Characterization of Semiconductor Nanowires Using Optical Tweezers,” Nano Lett.11(6), 2375–2381 (2011).
[CrossRef] [PubMed]

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnol.22(28), 285503 (2011).
[CrossRef]

D. B. Phillips, S. H. Simpson, J. A. Grieve, G. M. Gibson, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Position clamping of optically trapped microscopic non-spherical probes,” Opt. Express19(21), 20622–20627 (2011).
[CrossRef] [PubMed]

2010 (3)

S. H. Simpson and S. Hanna, “Holographic optical trapping of microrods and nanowires,” J. Opt. Soc. Am. A27(6), 1255–1264 (2010).
[CrossRef]

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,” New J. Phys.12, 1130560 (2010).
[CrossRef]

S. H. Simpson and S. Hanna, “First-order nonconservative motion of optically trapped nonspherical particles,” Phys. Rev. E82(3), 031141 (2010).
[CrossRef]

2009 (3)

S. H. Simpson and S. Hanna, “Thermal motion of a holographically trapped SPM-like probe,” Nanotechnol.20(39), 395710 (2009).
[CrossRef]

D. Preece, R. Bowman, A. Linnenberger, G. Gibson, S. Serati, and M. Padgett, “Increasing trap stiffness with position clamping in holographic optical tweezers,” Opt. Express17(25), 22718–22725 (2009).
[CrossRef]

J. B. Wills, J. R. Butler, J. Palmer, and J. P. Reid, “Using optical landscapes to control, direct and isolate aerosol particles,” Phys. Chem. Chem. Phys.11(36), 8015–8020 (2009).
[CrossRef] [PubMed]

2008 (3)

G. Gibson, J. Leach, S. Keen, A. J. Wright, and M. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express16(19), 14561–14570 (2008).
[CrossRef] [PubMed]

O. M. Marago, P. H. Jones, F. Bonaccorso, V. Scardaci, P. G. Gucciardi, A. G. Rozhin, and A. C. Ferrari, “Femtonewton Force Sensing with Optically Trapped Nanotubes,” Nano Lett.8(10), 3211–3216 (2008).
[CrossRef] [PubMed]

G. Gibson, D. M. Carberry, G. Whyte, J. Leach, J. Courtial, J. C. Jackson, D. Robert, M. Miles, and M. Padgett, “Holographic assembly workstation for optical manipulation,” J. Opt A-Pure Appl. Op.10(4), 044009 (2008).
[CrossRef]

2007 (1)

2006 (2)

P. C. Seitz, E. H. K. Stelzer, and A. Rohrbach, “Interferometric tracking of optically trapped probes behind structured surfaces: a phase correction method,” Appl. Optics45(28), 7309–7315 (2006).
[CrossRef]

P. J. Rodrigo, I. R. Perch-Nielsen, C. A. Alonzo, and J. Gluckstad, “GPC-based optical micromanipulation in 3D real-time using a single spatial light modulator,” Opt. Express14(26), 13107–13112 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (2)

A. Rohrbach, C. Tischer, D. Neumayer, E. L. Florin, and E. H. K. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum.75(6), 2197–2210 (2004).
[CrossRef]

A. La Porta and M. D. Wang, “Optical torque wrench: Angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett.92(19), 190801 (2004).
[CrossRef] [PubMed]

2003 (1)

D. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
[CrossRef] [PubMed]

1999 (2)

A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Horber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Techniq.44(5), 378–386 (1999).
[CrossRef]

M. E. J. Friese, A. G. Truscott, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Three-dimensional imaging with optical tweezers,” Appl. Opt.38(31), 6597–6603 (1999).
[CrossRef]

1997 (1)

E. L. Florin, A. Pralle, J. K. H. Horber, and E. H. K. Stelzer, “Photonic force microscope based on optical tweezers and two-photon excitation for biological applications,” J. Struct. Biol.119(2), 202–211 (1997).
[CrossRef] [PubMed]

1995 (1)

J. E. Molloy, J. E. Burns, J. Kendrick-Jones, R. T. Tregear, and D. C. S. White, “Movement and Force Produced By A Single Myosin Head,” Nature378(6553), 209–212 (1995).
[CrossRef] [PubMed]

1986 (1)

Aabo, T.

J. Gluckstad, A. R. Banas, T. Aabo, and D. Palima, “Structure-mediated micro-to-nano coupling using sculpted light and matter,” in Proc. SPIE., 8424, 84241L (2012).
[CrossRef]

Agnew, C.

C. Agnew, E. Borodina, N. R. Zaccai, R. Conners, N. M. Burton, J. A. Vicary, D. K. Cole, M. Antognozzi, M. Virji, and R. L. Brady, “Correlation of in situ mechanosensitive responses of the Moraxella catarrhalis adhesin UspA1 with fibronectin and receptor CEACAM1 binding,” P. Natl. Acad. Sci. USA108(37), 15174–15178 (2011).
[CrossRef]

Alonzo, C. A.

Antognozzi, M.

C. Agnew, E. Borodina, N. R. Zaccai, R. Conners, N. M. Burton, J. A. Vicary, D. K. Cole, M. Antognozzi, M. Virji, and R. L. Brady, “Correlation of in situ mechanosensitive responses of the Moraxella catarrhalis adhesin UspA1 with fibronectin and receptor CEACAM1 binding,” P. Natl. Acad. Sci. USA108(37), 15174–15178 (2011).
[CrossRef]

Ashkin, A.

Banas, A. R.

J. Gluckstad, A. R. Banas, T. Aabo, and D. Palima, “Structure-mediated micro-to-nano coupling using sculpted light and matter,” in Proc. SPIE., 8424, 84241L (2012).
[CrossRef]

D. Palima, A. R. Banas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Gluckstad, “Wave-guided optical waveguides,” Opt. Express20(3), 2004–2014 (2012).
[CrossRef] [PubMed]

Bjorkholm, J. E.

Bolognesi, G.

R. Di Leonardo, E. Cammarota, G. Bolognesi, H. Schaefer, and M. Steinhart, “Three-Dimensional to Two-Dimensional Crossover in the Hydrodynamic Interactions between Micron-Scale Rods,” Phys. Rev. Lett.107(4), 044501 (2011).
[CrossRef] [PubMed]

Bonaccorso, F.

O. M. Marago, P. H. Jones, F. Bonaccorso, V. Scardaci, P. G. Gucciardi, A. G. Rozhin, and A. C. Ferrari, “Femtonewton Force Sensing with Optically Trapped Nanotubes,” Nano Lett.8(10), 3211–3216 (2008).
[CrossRef] [PubMed]

Borodina, E.

C. Agnew, E. Borodina, N. R. Zaccai, R. Conners, N. M. Burton, J. A. Vicary, D. K. Cole, M. Antognozzi, M. Virji, and R. L. Brady, “Correlation of in situ mechanosensitive responses of the Moraxella catarrhalis adhesin UspA1 with fibronectin and receptor CEACAM1 binding,” P. Natl. Acad. Sci. USA108(37), 15174–15178 (2011).
[CrossRef]

Botchway, S. W.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,” New J. Phys.12, 1130560 (2010).
[CrossRef]

Bowman, R.

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett.99, 58004 (2012).
[CrossRef]

D. B. Phillips, S. H. Simpson, J. A. Grieve, G. M. Gibson, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Position clamping of optically trapped microscopic non-spherical probes,” Opt. Express19(21), 20622–20627 (2011).
[CrossRef] [PubMed]

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnol.22(28), 285503 (2011).
[CrossRef]

R. Bowman, D. Preece, G. Gibson, and M. Padgett, “Stereoscopic particle tracking for 3D touch, vision and closed-loop control in optical tweezers,” J. Opt.13(4), 044003 (2011).
[CrossRef]

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schaefer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt.13(4), 044023 (2011).
[CrossRef]

D. Preece, R. Bowman, A. Linnenberger, G. Gibson, S. Serati, and M. Padgett, “Increasing trap stiffness with position clamping in holographic optical tweezers,” Opt. Express17(25), 22718–22725 (2009).
[CrossRef]

Brady, R. L.

C. Agnew, E. Borodina, N. R. Zaccai, R. Conners, N. M. Burton, J. A. Vicary, D. K. Cole, M. Antognozzi, M. Virji, and R. L. Brady, “Correlation of in situ mechanosensitive responses of the Moraxella catarrhalis adhesin UspA1 with fibronectin and receptor CEACAM1 binding,” P. Natl. Acad. Sci. USA108(37), 15174–15178 (2011).
[CrossRef]

Burns, J. E.

J. E. Molloy, J. E. Burns, J. Kendrick-Jones, R. T. Tregear, and D. C. S. White, “Movement and Force Produced By A Single Myosin Head,” Nature378(6553), 209–212 (1995).
[CrossRef] [PubMed]

Burton, N. M.

C. Agnew, E. Borodina, N. R. Zaccai, R. Conners, N. M. Burton, J. A. Vicary, D. K. Cole, M. Antognozzi, M. Virji, and R. L. Brady, “Correlation of in situ mechanosensitive responses of the Moraxella catarrhalis adhesin UspA1 with fibronectin and receptor CEACAM1 binding,” P. Natl. Acad. Sci. USA108(37), 15174–15178 (2011).
[CrossRef]

Butler, J. R.

J. B. Wills, J. R. Butler, J. Palmer, and J. P. Reid, “Using optical landscapes to control, direct and isolate aerosol particles,” Phys. Chem. Chem. Phys.11(36), 8015–8020 (2009).
[CrossRef] [PubMed]

Cammarota, E.

R. Di Leonardo, E. Cammarota, G. Bolognesi, H. Schaefer, and M. Steinhart, “Three-Dimensional to Two-Dimensional Crossover in the Hydrodynamic Interactions between Micron-Scale Rods,” Phys. Rev. Lett.107(4), 044501 (2011).
[CrossRef] [PubMed]

Carberry, D. M.

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett.99, 58004 (2012).
[CrossRef]

D. B. Phillips, S. H. Simpson, J. A. Grieve, G. M. Gibson, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Position clamping of optically trapped microscopic non-spherical probes,” Opt. Express19(21), 20622–20627 (2011).
[CrossRef] [PubMed]

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnol.22(28), 285503 (2011).
[CrossRef]

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schaefer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt.13(4), 044023 (2011).
[CrossRef]

G. Gibson, D. M. Carberry, G. Whyte, J. Leach, J. Courtial, J. C. Jackson, D. Robert, M. Miles, and M. Padgett, “Holographic assembly workstation for optical manipulation,” J. Opt A-Pure Appl. Op.10(4), 044009 (2008).
[CrossRef]

Chichkov, B.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,” New J. Phys.12, 1130560 (2010).
[CrossRef]

Chu, S.

Clark, R. L.

Cole, D. G.

Cole, D. K.

C. Agnew, E. Borodina, N. R. Zaccai, R. Conners, N. M. Burton, J. A. Vicary, D. K. Cole, M. Antognozzi, M. Virji, and R. L. Brady, “Correlation of in situ mechanosensitive responses of the Moraxella catarrhalis adhesin UspA1 with fibronectin and receptor CEACAM1 binding,” P. Natl. Acad. Sci. USA108(37), 15174–15178 (2011).
[CrossRef]

Conners, R.

C. Agnew, E. Borodina, N. R. Zaccai, R. Conners, N. M. Burton, J. A. Vicary, D. K. Cole, M. Antognozzi, M. Virji, and R. L. Brady, “Correlation of in situ mechanosensitive responses of the Moraxella catarrhalis adhesin UspA1 with fibronectin and receptor CEACAM1 binding,” P. Natl. Acad. Sci. USA108(37), 15174–15178 (2011).
[CrossRef]

Courtial, J.

G. Gibson, D. M. Carberry, G. Whyte, J. Leach, J. Courtial, J. C. Jackson, D. Robert, M. Miles, and M. Padgett, “Holographic assembly workstation for optical manipulation,” J. Opt A-Pure Appl. Op.10(4), 044009 (2008).
[CrossRef]

Curran, A.

Di Leonardo, R.

R. Di Leonardo, E. Cammarota, G. Bolognesi, H. Schaefer, and M. Steinhart, “Three-Dimensional to Two-Dimensional Crossover in the Hydrodynamic Interactions between Micron-Scale Rods,” Phys. Rev. Lett.107(4), 044501 (2011).
[CrossRef] [PubMed]

Dziedzic, J. M.

Ferrari, A. C.

O. M. Marago, P. H. Jones, F. Bonaccorso, V. Scardaci, P. G. Gucciardi, A. G. Rozhin, and A. C. Ferrari, “Femtonewton Force Sensing with Optically Trapped Nanotubes,” Nano Lett.8(10), 3211–3216 (2008).
[CrossRef] [PubMed]

Florin, E. L.

A. Rohrbach, C. Tischer, D. Neumayer, E. L. Florin, and E. H. K. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum.75(6), 2197–2210 (2004).
[CrossRef]

A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Horber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Techniq.44(5), 378–386 (1999).
[CrossRef]

E. L. Florin, A. Pralle, J. K. H. Horber, and E. H. K. Stelzer, “Photonic force microscope based on optical tweezers and two-photon excitation for biological applications,” J. Struct. Biol.119(2), 202–211 (1997).
[CrossRef] [PubMed]

Freeman, E.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,” New J. Phys.12, 1130560 (2010).
[CrossRef]

Friese, M. E. J.

Gao, Q.

P. J. Reece, W. J. Toe, F. Wang, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Characterization of Semiconductor Nanowires Using Optical Tweezers,” Nano Lett.11(6), 2375–2381 (2011).
[CrossRef] [PubMed]

Gibson, G.

R. Bowman, D. Preece, G. Gibson, and M. Padgett, “Stereoscopic particle tracking for 3D touch, vision and closed-loop control in optical tweezers,” J. Opt.13(4), 044003 (2011).
[CrossRef]

D. Preece, R. Bowman, A. Linnenberger, G. Gibson, S. Serati, and M. Padgett, “Increasing trap stiffness with position clamping in holographic optical tweezers,” Opt. Express17(25), 22718–22725 (2009).
[CrossRef]

G. Gibson, D. M. Carberry, G. Whyte, J. Leach, J. Courtial, J. C. Jackson, D. Robert, M. Miles, and M. Padgett, “Holographic assembly workstation for optical manipulation,” J. Opt A-Pure Appl. Op.10(4), 044009 (2008).
[CrossRef]

G. Gibson, J. Leach, S. Keen, A. J. Wright, and M. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express16(19), 14561–14570 (2008).
[CrossRef] [PubMed]

Gibson, G. M.

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett.99, 58004 (2012).
[CrossRef]

M. P. Lee, A. Curran, G. M. Gibson, M. Tassieri, N. R. Heckenberg, and M. J. Padgett, “Optical shield: measuring viscosity of turbid fluids using optical tweezers,” Opt. Express20(11), 12127–12132 (2012).
[CrossRef] [PubMed]

D. B. Phillips, S. H. Simpson, J. A. Grieve, G. M. Gibson, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Position clamping of optically trapped microscopic non-spherical probes,” Opt. Express19(21), 20622–20627 (2011).
[CrossRef] [PubMed]

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schaefer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt.13(4), 044023 (2011).
[CrossRef]

Gluckstad, J.

Grier, D.

D. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Grieve, J. A.

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett.99, 58004 (2012).
[CrossRef]

D. B. Phillips, S. H. Simpson, J. A. Grieve, G. M. Gibson, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Position clamping of optically trapped microscopic non-spherical probes,” Opt. Express19(21), 20622–20627 (2011).
[CrossRef] [PubMed]

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnol.22(28), 285503 (2011).
[CrossRef]

Gucciardi, P. G.

O. M. Marago, P. H. Jones, F. Bonaccorso, V. Scardaci, P. G. Gucciardi, A. G. Rozhin, and A. C. Ferrari, “Femtonewton Force Sensing with Optically Trapped Nanotubes,” Nano Lett.8(10), 3211–3216 (2008).
[CrossRef] [PubMed]

Halsall, R. N. J.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,” New J. Phys.12, 1130560 (2010).
[CrossRef]

Hanna, S.

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett.99, 58004 (2012).
[CrossRef]

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schaefer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt.13(4), 044023 (2011).
[CrossRef]

S. H. Simpson and S. Hanna, “Optical trapping of microrods: variation with size and refractive index,” J. Opt. Soc. Am. A28(5), 850–858 (2011).
[CrossRef]

S. H. Simpson and S. Hanna, “Holographic optical trapping of microrods and nanowires,” J. Opt. Soc. Am. A27(6), 1255–1264 (2010).
[CrossRef]

S. H. Simpson and S. Hanna, “First-order nonconservative motion of optically trapped nonspherical particles,” Phys. Rev. E82(3), 031141 (2010).
[CrossRef]

S. H. Simpson and S. Hanna, “Thermal motion of a holographically trapped SPM-like probe,” Nanotechnol.20(39), 395710 (2009).
[CrossRef]

Heckenberg, N. R.

Horber, J. K. H.

A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Horber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Techniq.44(5), 378–386 (1999).
[CrossRef]

E. L. Florin, A. Pralle, J. K. H. Horber, and E. H. K. Stelzer, “Photonic force microscope based on optical tweezers and two-photon excitation for biological applications,” J. Struct. Biol.119(2), 202–211 (1997).
[CrossRef] [PubMed]

Jackson, J. C.

G. Gibson, D. M. Carberry, G. Whyte, J. Leach, J. Courtial, J. C. Jackson, D. Robert, M. Miles, and M. Padgett, “Holographic assembly workstation for optical manipulation,” J. Opt A-Pure Appl. Op.10(4), 044009 (2008).
[CrossRef]

Jagadish, C.

P. J. Reece, W. J. Toe, F. Wang, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Characterization of Semiconductor Nanowires Using Optical Tweezers,” Nano Lett.11(6), 2375–2381 (2011).
[CrossRef] [PubMed]

Jenkins, D. W. K.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,” New J. Phys.12, 1130560 (2010).
[CrossRef]

Jones, P. H.

O. M. Marago, P. H. Jones, F. Bonaccorso, V. Scardaci, P. G. Gucciardi, A. G. Rozhin, and A. C. Ferrari, “Femtonewton Force Sensing with Optically Trapped Nanotubes,” Nano Lett.8(10), 3211–3216 (2008).
[CrossRef] [PubMed]

Keen, S.

Kelemen, L.

Kendrick-Jones, J.

J. E. Molloy, J. E. Burns, J. Kendrick-Jones, R. T. Tregear, and D. C. S. White, “Movement and Force Produced By A Single Myosin Head,” Nature378(6553), 209–212 (1995).
[CrossRef] [PubMed]

Kocher, S. J.

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnol.22(28), 285503 (2011).
[CrossRef]

La Porta, A.

A. La Porta and M. D. Wang, “Optical torque wrench: Angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett.92(19), 190801 (2004).
[CrossRef] [PubMed]

Leach, J.

G. Gibson, J. Leach, S. Keen, A. J. Wright, and M. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express16(19), 14561–14570 (2008).
[CrossRef] [PubMed]

G. Gibson, D. M. Carberry, G. Whyte, J. Leach, J. Courtial, J. C. Jackson, D. Robert, M. Miles, and M. Padgett, “Holographic assembly workstation for optical manipulation,” J. Opt A-Pure Appl. Op.10(4), 044009 (2008).
[CrossRef]

Lee, M. P.

Linnenberger, A.

Loader, I.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,” New J. Phys.12, 1130560 (2010).
[CrossRef]

Marago, O. M.

O. M. Marago, P. H. Jones, F. Bonaccorso, V. Scardaci, P. G. Gucciardi, A. G. Rozhin, and A. C. Ferrari, “Femtonewton Force Sensing with Optically Trapped Nanotubes,” Nano Lett.8(10), 3211–3216 (2008).
[CrossRef] [PubMed]

Miles, M.

G. Gibson, D. M. Carberry, G. Whyte, J. Leach, J. Courtial, J. C. Jackson, D. Robert, M. Miles, and M. Padgett, “Holographic assembly workstation for optical manipulation,” J. Opt A-Pure Appl. Op.10(4), 044009 (2008).
[CrossRef]

Miles, M. J.

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett.99, 58004 (2012).
[CrossRef]

D. B. Phillips, S. H. Simpson, J. A. Grieve, G. M. Gibson, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Position clamping of optically trapped microscopic non-spherical probes,” Opt. Express19(21), 20622–20627 (2011).
[CrossRef] [PubMed]

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnol.22(28), 285503 (2011).
[CrossRef]

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schaefer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt.13(4), 044023 (2011).
[CrossRef]

Molloy, J. E.

J. E. Molloy, J. E. Burns, J. Kendrick-Jones, R. T. Tregear, and D. C. S. White, “Movement and Force Produced By A Single Myosin Head,” Nature378(6553), 209–212 (1995).
[CrossRef] [PubMed]

Neumayer, D.

A. Rohrbach, C. Tischer, D. Neumayer, E. L. Florin, and E. H. K. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum.75(6), 2197–2210 (2004).
[CrossRef]

Olof, S. N.

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnol.22(28), 285503 (2011).
[CrossRef]

Ormos, P.

Ovsianikov, A.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,” New J. Phys.12, 1130560 (2010).
[CrossRef]

Padgett, M.

R. Bowman, D. Preece, G. Gibson, and M. Padgett, “Stereoscopic particle tracking for 3D touch, vision and closed-loop control in optical tweezers,” J. Opt.13(4), 044003 (2011).
[CrossRef]

D. Preece, R. Bowman, A. Linnenberger, G. Gibson, S. Serati, and M. Padgett, “Increasing trap stiffness with position clamping in holographic optical tweezers,” Opt. Express17(25), 22718–22725 (2009).
[CrossRef]

G. Gibson, D. M. Carberry, G. Whyte, J. Leach, J. Courtial, J. C. Jackson, D. Robert, M. Miles, and M. Padgett, “Holographic assembly workstation for optical manipulation,” J. Opt A-Pure Appl. Op.10(4), 044009 (2008).
[CrossRef]

G. Gibson, J. Leach, S. Keen, A. J. Wright, and M. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express16(19), 14561–14570 (2008).
[CrossRef] [PubMed]

Padgett, M. J.

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett.99, 58004 (2012).
[CrossRef]

M. P. Lee, A. Curran, G. M. Gibson, M. Tassieri, N. R. Heckenberg, and M. J. Padgett, “Optical shield: measuring viscosity of turbid fluids using optical tweezers,” Opt. Express20(11), 12127–12132 (2012).
[CrossRef] [PubMed]

D. B. Phillips, S. H. Simpson, J. A. Grieve, G. M. Gibson, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Position clamping of optically trapped microscopic non-spherical probes,” Opt. Express19(21), 20622–20627 (2011).
[CrossRef] [PubMed]

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnol.22(28), 285503 (2011).
[CrossRef]

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schaefer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt.13(4), 044023 (2011).
[CrossRef]

Paiman, S.

P. J. Reece, W. J. Toe, F. Wang, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Characterization of Semiconductor Nanowires Using Optical Tweezers,” Nano Lett.11(6), 2375–2381 (2011).
[CrossRef] [PubMed]

Palima, D.

D. Palima, A. R. Banas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Gluckstad, “Wave-guided optical waveguides,” Opt. Express20(3), 2004–2014 (2012).
[CrossRef] [PubMed]

J. Gluckstad, A. R. Banas, T. Aabo, and D. Palima, “Structure-mediated micro-to-nano coupling using sculpted light and matter,” in Proc. SPIE., 8424, 84241L (2012).
[CrossRef]

Palmer, J.

J. B. Wills, J. R. Butler, J. Palmer, and J. P. Reid, “Using optical landscapes to control, direct and isolate aerosol particles,” Phys. Chem. Chem. Phys.11(36), 8015–8020 (2009).
[CrossRef] [PubMed]

Parker, A. W.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,” New J. Phys.12, 1130560 (2010).
[CrossRef]

Perch-Nielsen, I. R.

Phillips, D. B.

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett.99, 58004 (2012).
[CrossRef]

D. B. Phillips, S. H. Simpson, J. A. Grieve, G. M. Gibson, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Position clamping of optically trapped microscopic non-spherical probes,” Opt. Express19(21), 20622–20627 (2011).
[CrossRef] [PubMed]

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnol.22(28), 285503 (2011).
[CrossRef]

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schaefer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt.13(4), 044023 (2011).
[CrossRef]

Pollard, M. R.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,” New J. Phys.12, 1130560 (2010).
[CrossRef]

Pralle, A.

A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Horber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Techniq.44(5), 378–386 (1999).
[CrossRef]

E. L. Florin, A. Pralle, J. K. H. Horber, and E. H. K. Stelzer, “Photonic force microscope based on optical tweezers and two-photon excitation for biological applications,” J. Struct. Biol.119(2), 202–211 (1997).
[CrossRef] [PubMed]

Preece, D.

R. Bowman, D. Preece, G. Gibson, and M. Padgett, “Stereoscopic particle tracking for 3D touch, vision and closed-loop control in optical tweezers,” J. Opt.13(4), 044003 (2011).
[CrossRef]

D. Preece, R. Bowman, A. Linnenberger, G. Gibson, S. Serati, and M. Padgett, “Increasing trap stiffness with position clamping in holographic optical tweezers,” Opt. Express17(25), 22718–22725 (2009).
[CrossRef]

Prummer, M.

A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Horber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Techniq.44(5), 378–386 (1999).
[CrossRef]

Rarity, J. G.

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett.99, 58004 (2012).
[CrossRef]

Reece, P. J.

P. J. Reece, W. J. Toe, F. Wang, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Characterization of Semiconductor Nanowires Using Optical Tweezers,” Nano Lett.11(6), 2375–2381 (2011).
[CrossRef] [PubMed]

Reid, J. P.

J. B. Wills, J. R. Butler, J. Palmer, and J. P. Reid, “Using optical landscapes to control, direct and isolate aerosol particles,” Phys. Chem. Chem. Phys.11(36), 8015–8020 (2009).
[CrossRef] [PubMed]

Robert, D.

G. Gibson, D. M. Carberry, G. Whyte, J. Leach, J. Courtial, J. C. Jackson, D. Robert, M. Miles, and M. Padgett, “Holographic assembly workstation for optical manipulation,” J. Opt A-Pure Appl. Op.10(4), 044009 (2008).
[CrossRef]

Rodrigo, P. J.

Rohrbach, A.

P. C. Seitz, E. H. K. Stelzer, and A. Rohrbach, “Interferometric tracking of optically trapped probes behind structured surfaces: a phase correction method,” Appl. Optics45(28), 7309–7315 (2006).
[CrossRef]

A. Rohrbach, “Switching and measuring a force of 25 femtoNewtons with an optical trap,” Opt. Express13(24), 9695–9701 (2005).
[CrossRef] [PubMed]

A. Rohrbach, C. Tischer, D. Neumayer, E. L. Florin, and E. H. K. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum.75(6), 2197–2210 (2004).
[CrossRef]

Rozhin, A. G.

O. M. Marago, P. H. Jones, F. Bonaccorso, V. Scardaci, P. G. Gucciardi, A. G. Rozhin, and A. C. Ferrari, “Femtonewton Force Sensing with Optically Trapped Nanotubes,” Nano Lett.8(10), 3211–3216 (2008).
[CrossRef] [PubMed]

Rubinsztein-Dunlop, H.

Scardaci, V.

O. M. Marago, P. H. Jones, F. Bonaccorso, V. Scardaci, P. G. Gucciardi, A. G. Rozhin, and A. C. Ferrari, “Femtonewton Force Sensing with Optically Trapped Nanotubes,” Nano Lett.8(10), 3211–3216 (2008).
[CrossRef] [PubMed]

Schaefer, H.

R. Di Leonardo, E. Cammarota, G. Bolognesi, H. Schaefer, and M. Steinhart, “Three-Dimensional to Two-Dimensional Crossover in the Hydrodynamic Interactions between Micron-Scale Rods,” Phys. Rev. Lett.107(4), 044501 (2011).
[CrossRef] [PubMed]

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schaefer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt.13(4), 044023 (2011).
[CrossRef]

Seitz, P. C.

P. C. Seitz, E. H. K. Stelzer, and A. Rohrbach, “Interferometric tracking of optically trapped probes behind structured surfaces: a phase correction method,” Appl. Optics45(28), 7309–7315 (2006).
[CrossRef]

Serati, S.

Simpson, S. H.

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett.99, 58004 (2012).
[CrossRef]

D. B. Phillips, S. H. Simpson, J. A. Grieve, G. M. Gibson, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Position clamping of optically trapped microscopic non-spherical probes,” Opt. Express19(21), 20622–20627 (2011).
[CrossRef] [PubMed]

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schaefer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt.13(4), 044023 (2011).
[CrossRef]

S. H. Simpson and S. Hanna, “Optical trapping of microrods: variation with size and refractive index,” J. Opt. Soc. Am. A28(5), 850–858 (2011).
[CrossRef]

S. H. Simpson and S. Hanna, “Holographic optical trapping of microrods and nanowires,” J. Opt. Soc. Am. A27(6), 1255–1264 (2010).
[CrossRef]

S. H. Simpson and S. Hanna, “First-order nonconservative motion of optically trapped nonspherical particles,” Phys. Rev. E82(3), 031141 (2010).
[CrossRef]

S. H. Simpson and S. Hanna, “Thermal motion of a holographically trapped SPM-like probe,” Nanotechnol.20(39), 395710 (2009).
[CrossRef]

Steinhart, M.

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schaefer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt.13(4), 044023 (2011).
[CrossRef]

R. Di Leonardo, E. Cammarota, G. Bolognesi, H. Schaefer, and M. Steinhart, “Three-Dimensional to Two-Dimensional Crossover in the Hydrodynamic Interactions between Micron-Scale Rods,” Phys. Rev. Lett.107(4), 044501 (2011).
[CrossRef] [PubMed]

Stelzer, E. H. K.

P. C. Seitz, E. H. K. Stelzer, and A. Rohrbach, “Interferometric tracking of optically trapped probes behind structured surfaces: a phase correction method,” Appl. Optics45(28), 7309–7315 (2006).
[CrossRef]

A. Rohrbach, C. Tischer, D. Neumayer, E. L. Florin, and E. H. K. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum.75(6), 2197–2210 (2004).
[CrossRef]

A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Horber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Techniq.44(5), 378–386 (1999).
[CrossRef]

E. L. Florin, A. Pralle, J. K. H. Horber, and E. H. K. Stelzer, “Photonic force microscope based on optical tweezers and two-photon excitation for biological applications,” J. Struct. Biol.119(2), 202–211 (1997).
[CrossRef] [PubMed]

Stevens, R.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,” New J. Phys.12, 1130560 (2010).
[CrossRef]

Tan, H. H.

P. J. Reece, W. J. Toe, F. Wang, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Characterization of Semiconductor Nanowires Using Optical Tweezers,” Nano Lett.11(6), 2375–2381 (2011).
[CrossRef] [PubMed]

Tassieri, M.

Tischer, C.

A. Rohrbach, C. Tischer, D. Neumayer, E. L. Florin, and E. H. K. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum.75(6), 2197–2210 (2004).
[CrossRef]

Toe, W. J.

P. J. Reece, W. J. Toe, F. Wang, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Characterization of Semiconductor Nanowires Using Optical Tweezers,” Nano Lett.11(6), 2375–2381 (2011).
[CrossRef] [PubMed]

Towrie, M.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,” New J. Phys.12, 1130560 (2010).
[CrossRef]

Tregear, R. T.

J. E. Molloy, J. E. Burns, J. Kendrick-Jones, R. T. Tregear, and D. C. S. White, “Movement and Force Produced By A Single Myosin Head,” Nature378(6553), 209–212 (1995).
[CrossRef] [PubMed]

Truscott, A. G.

Turchetta, R.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,” New J. Phys.12, 1130560 (2010).
[CrossRef]

Vicary, J. A.

C. Agnew, E. Borodina, N. R. Zaccai, R. Conners, N. M. Burton, J. A. Vicary, D. K. Cole, M. Antognozzi, M. Virji, and R. L. Brady, “Correlation of in situ mechanosensitive responses of the Moraxella catarrhalis adhesin UspA1 with fibronectin and receptor CEACAM1 binding,” P. Natl. Acad. Sci. USA108(37), 15174–15178 (2011).
[CrossRef]

Virji, M.

C. Agnew, E. Borodina, N. R. Zaccai, R. Conners, N. M. Burton, J. A. Vicary, D. K. Cole, M. Antognozzi, M. Virji, and R. L. Brady, “Correlation of in situ mechanosensitive responses of the Moraxella catarrhalis adhesin UspA1 with fibronectin and receptor CEACAM1 binding,” P. Natl. Acad. Sci. USA108(37), 15174–15178 (2011).
[CrossRef]

Vizsnyiczai, G.

Wang, F.

P. J. Reece, W. J. Toe, F. Wang, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Characterization of Semiconductor Nanowires Using Optical Tweezers,” Nano Lett.11(6), 2375–2381 (2011).
[CrossRef] [PubMed]

Wang, M. D.

A. La Porta and M. D. Wang, “Optical torque wrench: Angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett.92(19), 190801 (2004).
[CrossRef] [PubMed]

Ward, A. D.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,” New J. Phys.12, 1130560 (2010).
[CrossRef]

White, D. C. S.

J. E. Molloy, J. E. Burns, J. Kendrick-Jones, R. T. Tregear, and D. C. S. White, “Movement and Force Produced By A Single Myosin Head,” Nature378(6553), 209–212 (1995).
[CrossRef] [PubMed]

Whyte, G.

G. Gibson, D. M. Carberry, G. Whyte, J. Leach, J. Courtial, J. C. Jackson, D. Robert, M. Miles, and M. Padgett, “Holographic assembly workstation for optical manipulation,” J. Opt A-Pure Appl. Op.10(4), 044009 (2008).
[CrossRef]

Wills, J. B.

J. B. Wills, J. R. Butler, J. Palmer, and J. P. Reid, “Using optical landscapes to control, direct and isolate aerosol particles,” Phys. Chem. Chem. Phys.11(36), 8015–8020 (2009).
[CrossRef] [PubMed]

Wright, A. J.

Wulff, K. D.

Zaccai, N. R.

C. Agnew, E. Borodina, N. R. Zaccai, R. Conners, N. M. Burton, J. A. Vicary, D. K. Cole, M. Antognozzi, M. Virji, and R. L. Brady, “Correlation of in situ mechanosensitive responses of the Moraxella catarrhalis adhesin UspA1 with fibronectin and receptor CEACAM1 binding,” P. Natl. Acad. Sci. USA108(37), 15174–15178 (2011).
[CrossRef]

Appl. Opt. (2)

Appl. Optics (1)

P. C. Seitz, E. H. K. Stelzer, and A. Rohrbach, “Interferometric tracking of optically trapped probes behind structured surfaces: a phase correction method,” Appl. Optics45(28), 7309–7315 (2006).
[CrossRef]

Europhys. Lett. (1)

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett.99, 58004 (2012).
[CrossRef]

J. Opt A-Pure Appl. Op. (1)

G. Gibson, D. M. Carberry, G. Whyte, J. Leach, J. Courtial, J. C. Jackson, D. Robert, M. Miles, and M. Padgett, “Holographic assembly workstation for optical manipulation,” J. Opt A-Pure Appl. Op.10(4), 044009 (2008).
[CrossRef]

J. Opt. (2)

R. Bowman, D. Preece, G. Gibson, and M. Padgett, “Stereoscopic particle tracking for 3D touch, vision and closed-loop control in optical tweezers,” J. Opt.13(4), 044003 (2011).
[CrossRef]

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schaefer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt.13(4), 044023 (2011).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Struct. Biol. (1)

E. L. Florin, A. Pralle, J. K. H. Horber, and E. H. K. Stelzer, “Photonic force microscope based on optical tweezers and two-photon excitation for biological applications,” J. Struct. Biol.119(2), 202–211 (1997).
[CrossRef] [PubMed]

Microsc. Res. Techniq. (1)

A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Horber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Techniq.44(5), 378–386 (1999).
[CrossRef]

Nano Lett. (2)

O. M. Marago, P. H. Jones, F. Bonaccorso, V. Scardaci, P. G. Gucciardi, A. G. Rozhin, and A. C. Ferrari, “Femtonewton Force Sensing with Optically Trapped Nanotubes,” Nano Lett.8(10), 3211–3216 (2008).
[CrossRef] [PubMed]

P. J. Reece, W. J. Toe, F. Wang, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Characterization of Semiconductor Nanowires Using Optical Tweezers,” Nano Lett.11(6), 2375–2381 (2011).
[CrossRef] [PubMed]

Nanotechnol. (2)

S. H. Simpson and S. Hanna, “Thermal motion of a holographically trapped SPM-like probe,” Nanotechnol.20(39), 395710 (2009).
[CrossRef]

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnol.22(28), 285503 (2011).
[CrossRef]

Nature (2)

J. E. Molloy, J. E. Burns, J. Kendrick-Jones, R. T. Tregear, and D. C. S. White, “Movement and Force Produced By A Single Myosin Head,” Nature378(6553), 209–212 (1995).
[CrossRef] [PubMed]

D. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
[CrossRef] [PubMed]

New J. Phys. (1)

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,” New J. Phys.12, 1130560 (2010).
[CrossRef]

Opt. Express (7)

M. P. Lee, A. Curran, G. M. Gibson, M. Tassieri, N. R. Heckenberg, and M. J. Padgett, “Optical shield: measuring viscosity of turbid fluids using optical tweezers,” Opt. Express20(11), 12127–12132 (2012).
[CrossRef] [PubMed]

A. Rohrbach, “Switching and measuring a force of 25 femtoNewtons with an optical trap,” Opt. Express13(24), 9695–9701 (2005).
[CrossRef] [PubMed]

G. Gibson, J. Leach, S. Keen, A. J. Wright, and M. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express16(19), 14561–14570 (2008).
[CrossRef] [PubMed]

D. Preece, R. Bowman, A. Linnenberger, G. Gibson, S. Serati, and M. Padgett, “Increasing trap stiffness with position clamping in holographic optical tweezers,” Opt. Express17(25), 22718–22725 (2009).
[CrossRef]

P. J. Rodrigo, I. R. Perch-Nielsen, C. A. Alonzo, and J. Gluckstad, “GPC-based optical micromanipulation in 3D real-time using a single spatial light modulator,” Opt. Express14(26), 13107–13112 (2006).
[CrossRef] [PubMed]

D. Palima, A. R. Banas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Gluckstad, “Wave-guided optical waveguides,” Opt. Express20(3), 2004–2014 (2012).
[CrossRef] [PubMed]

D. B. Phillips, S. H. Simpson, J. A. Grieve, G. M. Gibson, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Position clamping of optically trapped microscopic non-spherical probes,” Opt. Express19(21), 20622–20627 (2011).
[CrossRef] [PubMed]

Opt. Lett. (1)

P. Natl. Acad. Sci. USA (1)

C. Agnew, E. Borodina, N. R. Zaccai, R. Conners, N. M. Burton, J. A. Vicary, D. K. Cole, M. Antognozzi, M. Virji, and R. L. Brady, “Correlation of in situ mechanosensitive responses of the Moraxella catarrhalis adhesin UspA1 with fibronectin and receptor CEACAM1 binding,” P. Natl. Acad. Sci. USA108(37), 15174–15178 (2011).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

J. B. Wills, J. R. Butler, J. Palmer, and J. P. Reid, “Using optical landscapes to control, direct and isolate aerosol particles,” Phys. Chem. Chem. Phys.11(36), 8015–8020 (2009).
[CrossRef] [PubMed]

Phys. Rev. E (1)

S. H. Simpson and S. Hanna, “First-order nonconservative motion of optically trapped nonspherical particles,” Phys. Rev. E82(3), 031141 (2010).
[CrossRef]

Phys. Rev. Lett. (2)

A. La Porta and M. D. Wang, “Optical torque wrench: Angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett.92(19), 190801 (2004).
[CrossRef] [PubMed]

R. Di Leonardo, E. Cammarota, G. Bolognesi, H. Schaefer, and M. Steinhart, “Three-Dimensional to Two-Dimensional Crossover in the Hydrodynamic Interactions between Micron-Scale Rods,” Phys. Rev. Lett.107(4), 044501 (2011).
[CrossRef] [PubMed]

Proc. SPIE. (1)

J. Gluckstad, A. R. Banas, T. Aabo, and D. Palima, “Structure-mediated micro-to-nano coupling using sculpted light and matter,” in Proc. SPIE., 8424, 84241L (2012).
[CrossRef]

Rev. Sci. Instrum. (1)

A. Rohrbach, C. Tischer, D. Neumayer, E. L. Florin, and E. H. K. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum.75(6), 2197–2210 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) A rendering of our probe design showing the four cylindrical trapping handles. The axes indicate the probe equilibrium frame (see Appendix), the origin of which is at the averaged position of the three tracking spheres. The sensing axis is parallel to x. (b) An optical image of an optically trapped probe. (c) An array of micro-tools on a glass surface before they are transferred into a sample cell. Direct laser writing provides a simple and flexible technique to fabricate arbitrary probe geometries, (d) shows some examples of alternate probe designs in solution. (e) An optical image of a micro-rod held with its long axis parallel to the focal plane using two optical traps, providing the inspiration for our choice of probe geometry.

Fig. 2
Fig. 2

Variation in the diagonal elements of the stiffness matrix K with trap separation S. (a) Translational stiffnesses. The stiffness along the sensing axis x, Kx, is most strongly dependent on trap separation. (b) Rotational stiffnesses. Blue dashed lines indicate the position of peaks in Kθz, for comparison with Fig. 3(d).

Fig. 3
Fig. 3

Variation in the off-diagonal elements of the normalised correlation matrix C with trap separation S. (a) Purely translational correlations. (b) Purely rotational correlations. (c) An example of translational-rotational correlated motion between x and θz. i.e. when the probe moves forward from its equilibrium position (transparent) along x, it also rotates about z (solid). (d) to (f) Translational-rotational correlations. In (d), Cxθz shows oscillations with S, the troughs of which correspond well with peaks in Kθz (Fig. 2(b)), as shown by dashed blue lines in both cases.

Fig. 4
Fig. 4

The tip thermal volume under different clamping conditions. (a), (b) and (c) show the tip trajectory viewed along x, y and z-axes respectively, under 3 different clamping conditions. Light grey shows the unclamped trajectory. Light blue shows the trajectory when clamped in all possible modes (x, z, θx and θy). Dark blue shows the trajectory when clamped in z, θx and θy, yielding a high sensitivity (large variance) along the sensing axis x, but retaining good pointing precision (low variance) in transverse directions. (d) and (e) show the effective stiffness of these modes under increasing gain magnitude, allowing the gain to be chosen to maximise the stiffness of the desired mode. As the optimum gain peaks are broad, they are robust to any small structural differences between probes, and therefore once optimum gains have been found for a single probe they will give near optimum results for other probes too.

Fig. 5
Fig. 5

Controlling the shape of the tip thermal volume. (a) The trapping stiffness is maximised when the traps overlap the end caps of the cylindrical handles, therefore yielding the smallest tip thermal volume. (b) The traps are positioned 3 μm inside each end of the cylinders. (c) The same trapping configuration as (b), but with the trapping power reduced by ∼ 50%, and modes z, θx and θy clamped. The tip thermal volumes shown are exaggerated by a factor of 60 in each case relative to the probe sketch, for clarity.

Fig. 6
Fig. 6

Measurement of the surface topography of a test sample. (a) The trajectory of the probe tip (grey line) as it approaches the sample, and then scans laterally over steps of 100, 200 and 500 nm in depth. The red line indicates the measured interface. (b) A scan over shallower steps (40, 50, 60, 70, 80, 90, 100, and 200 nm in depth) to test the height resolution. In (b) the horizontal axis has been compressed to more clearly reveal the steps, the scale bars show the relative scaling along each axis. (c) A scan over corrugated part of another test sample, similar to that shown in (e). All scale bars on (a), (b) and (c) represent 500 nm. (d), (e), and (g) are scanning electron microscope images of the test sample. (f) ‘Left eye’ and ‘right eye’ stereo-microscope images of the probe held adjacent to the test sample prior to the start of the experiment.

Fig. 7
Fig. 7

Probe geometry for estimation of the accuracy of tip position measurement. Tracking spheres A, B and C are on the vertices of an equilateral triangle of side length V. The black sphere O represents the centre of the triangle, a distance D from each vertex. The probe tip length is L. In the analysis, we assume L and V are fixed, known constants. L for a particular probe can be calculated as described in [21], and V is taken as the average separation between tracking spheres.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f = Kq
1 2 k B T I = 1 2 K q q
t z = O z h 2 = ( 2 L 3 V + 1 ) A z ( L 3 V ) B z ( L 3 V ) C z
Δ t z = [ ( 2 L 3 V + 1 ) 2 + 2 ( L 3 V ) 2 ] 1 2 Δ h

Metrics