Abstract

Relative to homodyne coherent detection, heterodyne coherent detection has simple architecture because no 90° hybrid and only half number of photodiodes and analog-to-digital convertor (ADC) chips are required. We experimentally demonstrate that the architecture of heterodyne coherent receivers can be further simplified. When the frequency offset is one half of the channel frequency spacing, one local oscillator (LO) laser can be used for two neighboring wavelength-division-multiplexing (WDM) channels, and therefore the number of LO lasers can be reduced into half compared to homodyne detection. We experimentally demonstrate simplified heterodyne coherent detection of 4 × 196.8-Gb/s polarization-division-multiplexing carrier-suppressed return-to-zero quadrature-phase-shift-keying (PDM-CSRZ-QPSK) modulation after transmission over 1040-km single-mode fiber (SMF)-28 on a 50-GHz grid with bit-error ratio (BER) smaller than pre-forward-error-correction (pre-FEC) limit of 3.8 × 10−3. To our best knowledge, 196.8 Gb/s is the highest bit rate per channel for heterodyne coherent WDM transmission system. An arrayed waveguide grating (AWG) instead of wavelength selective switch (WSS) is used at the transmitter to spectrally shape and multiplex the WDM signal. We also experimentally demonstrate that heterodyne detection causes 3-dB optical signal-to-noise ratio (OSNR) penalty at the BER of 3.8 × 10−3 for a certain single channel compared to homodyne detection.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Colavolpe, T. Foggi, A. Modenini, and A. Piemontese, “Faster-than-Nyquist and beyond: how to improve spectral efficiency by accepting interference,” Opt. Express 19(27), 26600–26609 (2011).
    [CrossRef] [PubMed]
  2. C. Xie, “Impact of nonlinear and polarization effects in coherent systems,” Opt. Express 19(26), B915–B930 (2011).
    [CrossRef] [PubMed]
  3. C. Liu, J. Pan, T. Detwiler, A. Stark, and Y.-T. Hsueh, G.-K. Chang1, and S. E. Ralph, “Joint Digital Signal Processing for Superchannel Coherent Optical Systems: Joint CD Compensation for Joint ICI Cancellation,” in Proc. ECOC2012, Amsterdam, Netherlands, paper Th.1.A.4.
  4. J. Li, E. Tipsuwannakul, T. Eriksson, M. Karlsson, and P. A. Andrekson, “Approaching Nyquist limit in WDM systems by low-complexity receiver-side duobinary shaping,” J. Lightwave Technol. 30(11), 1664–1676 (2012).
    [CrossRef]
  5. X. Zhou, J. Yu, M. F. Huang, Y. Shao, T. Wang, L. Nelson, P. Magill, M. Birk, P. I. Borel, D. W. Peckham, R. Lingle, and B. Zhu, “64-Tb/s, 8b/s/Hz, PDM-36QAM transmission over 320km using both pre- and post- transmission digital signal processing,” J. Lightwave Technol. 29(4), 571–577 (2011).
    [CrossRef]
  6. L. G. Kazovsky, “Decision-driven phase-locked loop for optical homodyne receivers: Performance analysis and laser linewidth requirements,” IEEE Trans. Electron. Dev. 32(12), 2630–2639 (1985).
    [CrossRef]
  7. J. Zhang, Z. Dong, J. Yu, N. Chi, L. Tao, X. Li, and Y. Shao, “Simplified coherent receiver with heterodyne detection of eight-channel 50 Gb/s PDM-QPSK WDM signal after 1040 km SMF-28 transmission,” Opt. Lett. 37(19), 4050–4052 (2012).
    [CrossRef] [PubMed]
  8. J.-X. Cai, C. R. Davidson, A. Lucero, H. Zhang, D. G. Foursa, O. V. Sinkin, W. W. Patterson, A. N. Pilipetskii, G. Mohs, and N. S. Bergano, “20 Tbit/s transmission over 6860 km with sub-Nyquist channel spacing,” J. Lightwave Technol. 30(4), 651–657 (2012).
    [CrossRef]
  9. J. Yu, Z. Dong, H. C. Chien, Z. Jia, M. Gunke, and A. Schippel, “Field trial Nyquist-WDM transmission of 8×216.4Gb/s PDM-CSRZ-QPSK exceeding 4b/s/Hz spectral efficiency,” in Proc. OFC/NFOEC2012, Los Angeles, CA, paper PDP5D.3.
  10. Z. Dong, J. Yu, Z. Jia, H. C. Chien, X. Li, and G. K. Chang, “7x224 Gb/s/ch Nyquist-WDM transmission over 1600-km SMF-28 using PDM-CSRZ-QPSK modulation,” Photon. Technol. Lett. 24(13), 1157–1159 (2012).
    [CrossRef]
  11. ITU-T Recommendation G.975.1, “Forward error correction for high bit-rate DWDM submarine system,” 2004.

2012

2011

1985

L. G. Kazovsky, “Decision-driven phase-locked loop for optical homodyne receivers: Performance analysis and laser linewidth requirements,” IEEE Trans. Electron. Dev. 32(12), 2630–2639 (1985).
[CrossRef]

Andrekson, P. A.

Bergano, N. S.

Birk, M.

Borel, P. I.

Cai, J.-X.

Chang, G. K.

Z. Dong, J. Yu, Z. Jia, H. C. Chien, X. Li, and G. K. Chang, “7x224 Gb/s/ch Nyquist-WDM transmission over 1600-km SMF-28 using PDM-CSRZ-QPSK modulation,” Photon. Technol. Lett. 24(13), 1157–1159 (2012).
[CrossRef]

Chi, N.

Chien, H. C.

Z. Dong, J. Yu, Z. Jia, H. C. Chien, X. Li, and G. K. Chang, “7x224 Gb/s/ch Nyquist-WDM transmission over 1600-km SMF-28 using PDM-CSRZ-QPSK modulation,” Photon. Technol. Lett. 24(13), 1157–1159 (2012).
[CrossRef]

Colavolpe, G.

Davidson, C. R.

Dong, Z.

J. Zhang, Z. Dong, J. Yu, N. Chi, L. Tao, X. Li, and Y. Shao, “Simplified coherent receiver with heterodyne detection of eight-channel 50 Gb/s PDM-QPSK WDM signal after 1040 km SMF-28 transmission,” Opt. Lett. 37(19), 4050–4052 (2012).
[CrossRef] [PubMed]

Z. Dong, J. Yu, Z. Jia, H. C. Chien, X. Li, and G. K. Chang, “7x224 Gb/s/ch Nyquist-WDM transmission over 1600-km SMF-28 using PDM-CSRZ-QPSK modulation,” Photon. Technol. Lett. 24(13), 1157–1159 (2012).
[CrossRef]

Eriksson, T.

Foggi, T.

Foursa, D. G.

Huang, M. F.

Jia, Z.

Z. Dong, J. Yu, Z. Jia, H. C. Chien, X. Li, and G. K. Chang, “7x224 Gb/s/ch Nyquist-WDM transmission over 1600-km SMF-28 using PDM-CSRZ-QPSK modulation,” Photon. Technol. Lett. 24(13), 1157–1159 (2012).
[CrossRef]

Karlsson, M.

Kazovsky, L. G.

L. G. Kazovsky, “Decision-driven phase-locked loop for optical homodyne receivers: Performance analysis and laser linewidth requirements,” IEEE Trans. Electron. Dev. 32(12), 2630–2639 (1985).
[CrossRef]

Li, J.

Li, X.

J. Zhang, Z. Dong, J. Yu, N. Chi, L. Tao, X. Li, and Y. Shao, “Simplified coherent receiver with heterodyne detection of eight-channel 50 Gb/s PDM-QPSK WDM signal after 1040 km SMF-28 transmission,” Opt. Lett. 37(19), 4050–4052 (2012).
[CrossRef] [PubMed]

Z. Dong, J. Yu, Z. Jia, H. C. Chien, X. Li, and G. K. Chang, “7x224 Gb/s/ch Nyquist-WDM transmission over 1600-km SMF-28 using PDM-CSRZ-QPSK modulation,” Photon. Technol. Lett. 24(13), 1157–1159 (2012).
[CrossRef]

Lingle, R.

Lucero, A.

Magill, P.

Modenini, A.

Mohs, G.

Nelson, L.

Patterson, W. W.

Peckham, D. W.

Piemontese, A.

Pilipetskii, A. N.

Shao, Y.

Sinkin, O. V.

Tao, L.

Tipsuwannakul, E.

Wang, T.

Xie, C.

Yu, J.

Zhang, H.

Zhang, J.

Zhou, X.

Zhu, B.

IEEE Trans. Electron. Dev.

L. G. Kazovsky, “Decision-driven phase-locked loop for optical homodyne receivers: Performance analysis and laser linewidth requirements,” IEEE Trans. Electron. Dev. 32(12), 2630–2639 (1985).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Photon. Technol. Lett.

Z. Dong, J. Yu, Z. Jia, H. C. Chien, X. Li, and G. K. Chang, “7x224 Gb/s/ch Nyquist-WDM transmission over 1600-km SMF-28 using PDM-CSRZ-QPSK modulation,” Photon. Technol. Lett. 24(13), 1157–1159 (2012).
[CrossRef]

Other

ITU-T Recommendation G.975.1, “Forward error correction for high bit-rate DWDM submarine system,” 2004.

J. Yu, Z. Dong, H. C. Chien, Z. Jia, M. Gunke, and A. Schippel, “Field trial Nyquist-WDM transmission of 8×216.4Gb/s PDM-CSRZ-QPSK exceeding 4b/s/Hz spectral efficiency,” in Proc. OFC/NFOEC2012, Los Angeles, CA, paper PDP5D.3.

C. Liu, J. Pan, T. Detwiler, A. Stark, and Y.-T. Hsueh, G.-K. Chang1, and S. E. Ralph, “Joint Digital Signal Processing for Superchannel Coherent Optical Systems: Joint CD Compensation for Joint ICI Cancellation,” in Proc. ECOC2012, Amsterdam, Netherlands, paper Th.1.A.4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The principle of optimal frequency offset and spectral shaping for heterodyne coherent detection: (a) frequency offset between LO and signal is too large with signal cut-off; (b) signal spectrum is too wide with spectral overlap and cut-off; (c) good performance with optimal frequency offset and spectrally shaped signal.

Fig. 2
Fig. 2

An illustration of the advantage of the LO number reduction for heterodyne detection. (a) Four-channel DWDM signal; (b) LO for homodyne detection; (c) LO for heterodyne detection.

Fig. 3
Fig. 3

Experimental setup. Inset (a) shows optical spectrum (0.1-nm resolution) of all channels after 50-GHz AWG, while inset (b) and (c) after 400- and 1040-km SMF-28 transmission, respectively. ECL: external cavity laser, PM-OC: polarization-maintaining optical coupler, I/Q MOD: I/Q modulator, IM: intensity modulator, Pol. Mux: polarization multiplexer, DL: delay line, ATT: optical attenuator, PBC: polarization beam combiner, local oscillator.

Fig. 4
Fig. 4

(a) Transfer function (0.02-nm resolution) of the 50-GHz AWG; (b) Optical spectra (0.02-nm resolution) before and after the 50-GHz AWG, respectively.

Fig. 5
Fig. 5

(a) Transfer function (0.02-nm resolution) of the TOF; (b) Optical spectrum (0.1-nm resolution) after the TOF.

Fig. 6
Fig. 6

(a) BTB BER versus OSNR. Inset (I) and (II) respectively show the X-polarization BTB constellations after CPE and further post filtering. (b) BER versus total launched power.

Fig. 7
Fig. 7

(a) BER of all channels. Inset (I) and (II) respectively show the X- and Y-polarization constellations after CPE, while inset (III) and (IV) after further post filtering. (b) Required OSNR at the BER of 3.8 × 10−3 versus channel spacing.

Metrics