Abstract

A single groove in a parallel-plate waveguide (PPWG) has been applied to a tunable terahertz (THz) notch filter with a transverse-electromagnetic (TEM) mode. When the air gap between the metal plates of the PPWG is controlled from 60 to 240 μm using a motor controlled translation stage or a piezo-actuator, the resonant frequency of the notch filter is changed from 1.75 up to 0.62 THz, respectively. Therefore, the measured tunable sensitivity of the notch filter increases to 6.28 GHz/μm. The measured resonant frequencies were found to be in good agreement with the calculation using an effective groove depth. Using a finite-difference time-domain (FDTD) simulation, we also demonstrate that the sensitivity of a THz microfluidic sensor can be increased via a small air gap, a narrow groove width, and a deep groove depth.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett.85(22), 5173–5175 (2004).
    [CrossRef]
  2. A. L. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett.87(5), 051101 (2005).
    [CrossRef]
  3. J. Kitagawa, M. Kodama, S. Koya, Y. Nishifuji, D. Armand, and Y. Kadoya, “THz wave propagation in two-dimensional metallic photonic crystal with mechanically tunable photonic-bands,” Opt. Express20(16), 17271–17280 (2012).
    [CrossRef] [PubMed]
  4. E. S. Lee, D. H. Kang, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, D. S. Kim, and T.-I. Jeon, “Bragg reflection of terahertz waves in plasmonic crystals,” Opt. Express17(11), 9212–9218 (2009).
    [CrossRef] [PubMed]
  5. N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically Tunable Terahertz Notch Filters,” J. Infrared Milli. Terahz. Waves33(3), 327–332 (2012).
    [CrossRef]
  6. J.-Y. Lu, H.-Z. Chen, C.-H. Lai, H.-C. Chang, B. You, T.-A. Liu, and J.-L. Peng, “Application of metal-clad antiresonant reflecting hollow waveguides to tunable terahertz notch filter,” Opt. Express19(1), 162–167 (2011).
    [CrossRef] [PubMed]
  7. E. S. Lee, S.-G. Lee, C.-S. Kee, and T.-I. Jeon, “Terahertz notch and low-pass filters based on band gaps properties by using metal slits in tapered parallel-plate waveguides,” Opt. Express19(16), 14852–14859 (2011).
    [CrossRef] [PubMed]
  8. R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett.97(13), 131106 (2010).
    [CrossRef]
  9. V. Astley, B. McCracken, R. Mendis, and D. M. Mittleman, “Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides,” Opt. Lett.36(8), 1452–1454 (2011).
    [CrossRef] [PubMed]
  10. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett.26(11), 846–848 (2001).
    [CrossRef] [PubMed]
  11. S.-H. Kim, E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Improvement of THz coupling using a tapered parallel-plate waveguide,” Opt. Express18(2), 1289–1295 (2010).
    [CrossRef] [PubMed]
  12. R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express17(17), 14839–14850 (2009).
    [CrossRef] [PubMed]
  13. R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett.95(17), 171113 (2009).
    [CrossRef]
  14. E. S. Lee, J.-K. So, G.-S. Park, D. Kim, C.-S. Kee, and T.-I. Jeon, “Terahertz band gaps induced by metal grooves inside parallel-plate waveguides,” Opt. Express20(6), 6116–6123 (2012).
    [CrossRef] [PubMed]
  15. E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Terahertz band gap properties by using metal slits in tapered parallel-plate waveguides,” Appl. Phys. Lett.97(18), 181112 (2010).
    [CrossRef]
  16. J. P. Laib and D. M. Mittleman, “Temperature-dependent terahertz spectroscopy of liquid n-alkanes,” J. Infrared Milli. Terahz. Waves31(9), 1015–1021 (2010).
    [CrossRef]

2012 (3)

2011 (3)

2010 (4)

S.-H. Kim, E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Improvement of THz coupling using a tapered parallel-plate waveguide,” Opt. Express18(2), 1289–1295 (2010).
[CrossRef] [PubMed]

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett.97(13), 131106 (2010).
[CrossRef]

E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Terahertz band gap properties by using metal slits in tapered parallel-plate waveguides,” Appl. Phys. Lett.97(18), 181112 (2010).
[CrossRef]

J. P. Laib and D. M. Mittleman, “Temperature-dependent terahertz spectroscopy of liquid n-alkanes,” J. Infrared Milli. Terahz. Waves31(9), 1015–1021 (2010).
[CrossRef]

2009 (3)

2005 (1)

A. L. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett.87(5), 051101 (2005).
[CrossRef]

2004 (1)

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett.85(22), 5173–5175 (2004).
[CrossRef]

2001 (1)

Al-Naib, I.

N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically Tunable Terahertz Notch Filters,” J. Infrared Milli. Terahz. Waves33(3), 327–332 (2012).
[CrossRef]

Armand, D.

Astley, V.

V. Astley, B. McCracken, R. Mendis, and D. M. Mittleman, “Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides,” Opt. Lett.36(8), 1452–1454 (2011).
[CrossRef] [PubMed]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett.95(17), 171113 (2009).
[CrossRef]

Baker, C.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett.85(22), 5173–5175 (2004).
[CrossRef]

Bingham, A. L.

A. L. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett.87(5), 051101 (2005).
[CrossRef]

Born, N.

N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically Tunable Terahertz Notch Filters,” J. Infrared Milli. Terahz. Waves33(3), 327–332 (2012).
[CrossRef]

Chang, H.-C.

Chen, F.

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett.97(13), 131106 (2010).
[CrossRef]

Chen, H.-Z.

Cumming, D. R. S.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett.85(22), 5173–5175 (2004).
[CrossRef]

Drysdale, T. D.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett.85(22), 5173–5175 (2004).
[CrossRef]

Fernandez-Dominguez, A. I.

Garcia-Vidal, F. J.

Gregory, I. S.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett.85(22), 5173–5175 (2004).
[CrossRef]

Grischkowsky, D.

A. L. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett.87(5), 051101 (2005).
[CrossRef]

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett.26(11), 846–848 (2001).
[CrossRef] [PubMed]

Jeon, T.-I.

Ji, Y. B.

E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Terahertz band gap properties by using metal slits in tapered parallel-plate waveguides,” Appl. Phys. Lett.97(18), 181112 (2010).
[CrossRef]

S.-H. Kim, E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Improvement of THz coupling using a tapered parallel-plate waveguide,” Opt. Express18(2), 1289–1295 (2010).
[CrossRef] [PubMed]

Kadoya, Y.

Kang, D. H.

Kee, C.-S.

Kim, D.

Kim, D. S.

Kim, S.-H.

Kitagawa, J.

Koch, M.

N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically Tunable Terahertz Notch Filters,” J. Infrared Milli. Terahz. Waves33(3), 327–332 (2012).
[CrossRef]

Kodama, M.

Koya, S.

Lai, C.-H.

Laib, J. P.

J. P. Laib and D. M. Mittleman, “Temperature-dependent terahertz spectroscopy of liquid n-alkanes,” J. Infrared Milli. Terahz. Waves31(9), 1015–1021 (2010).
[CrossRef]

Lee, E. S.

Lee, S.-G.

Linfield, E. H.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett.85(22), 5173–5175 (2004).
[CrossRef]

Liu, J.

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett.95(17), 171113 (2009).
[CrossRef]

Liu, T.-A.

Lu, J.-Y.

Martin-Moreno, L.

McCracken, B.

Mendis, R.

Mittleman, D. M.

V. Astley, B. McCracken, R. Mendis, and D. M. Mittleman, “Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides,” Opt. Lett.36(8), 1452–1454 (2011).
[CrossRef] [PubMed]

J. P. Laib and D. M. Mittleman, “Temperature-dependent terahertz spectroscopy of liquid n-alkanes,” J. Infrared Milli. Terahz. Waves31(9), 1015–1021 (2010).
[CrossRef]

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett.97(13), 131106 (2010).
[CrossRef]

R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express17(17), 14839–14850 (2009).
[CrossRef] [PubMed]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett.95(17), 171113 (2009).
[CrossRef]

Nag, A.

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett.97(13), 131106 (2010).
[CrossRef]

Nishifuji, Y.

Park, G.-S.

Peng, J.-L.

So, J.-K.

Tribe, W. R.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett.85(22), 5173–5175 (2004).
[CrossRef]

Vieweg, N.

N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically Tunable Terahertz Notch Filters,” J. Infrared Milli. Terahz. Waves33(3), 327–332 (2012).
[CrossRef]

You, B.

Zhao, Y.

A. L. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett.87(5), 051101 (2005).
[CrossRef]

Appl. Phys. Lett. (5)

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett.97(13), 131106 (2010).
[CrossRef]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett.95(17), 171113 (2009).
[CrossRef]

E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Terahertz band gap properties by using metal slits in tapered parallel-plate waveguides,” Appl. Phys. Lett.97(18), 181112 (2010).
[CrossRef]

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett.85(22), 5173–5175 (2004).
[CrossRef]

A. L. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett.87(5), 051101 (2005).
[CrossRef]

J. Infrared Milli. Terahz. Waves (2)

N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically Tunable Terahertz Notch Filters,” J. Infrared Milli. Terahz. Waves33(3), 327–332 (2012).
[CrossRef]

J. P. Laib and D. M. Mittleman, “Temperature-dependent terahertz spectroscopy of liquid n-alkanes,” J. Infrared Milli. Terahz. Waves31(9), 1015–1021 (2010).
[CrossRef]

Opt. Express (7)

E. S. Lee, D. H. Kang, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, D. S. Kim, and T.-I. Jeon, “Bragg reflection of terahertz waves in plasmonic crystals,” Opt. Express17(11), 9212–9218 (2009).
[CrossRef] [PubMed]

R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express17(17), 14839–14850 (2009).
[CrossRef] [PubMed]

S.-H. Kim, E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Improvement of THz coupling using a tapered parallel-plate waveguide,” Opt. Express18(2), 1289–1295 (2010).
[CrossRef] [PubMed]

J.-Y. Lu, H.-Z. Chen, C.-H. Lai, H.-C. Chang, B. You, T.-A. Liu, and J.-L. Peng, “Application of metal-clad antiresonant reflecting hollow waveguides to tunable terahertz notch filter,” Opt. Express19(1), 162–167 (2011).
[CrossRef] [PubMed]

E. S. Lee, S.-G. Lee, C.-S. Kee, and T.-I. Jeon, “Terahertz notch and low-pass filters based on band gaps properties by using metal slits in tapered parallel-plate waveguides,” Opt. Express19(16), 14852–14859 (2011).
[CrossRef] [PubMed]

E. S. Lee, J.-K. So, G.-S. Park, D. Kim, C.-S. Kee, and T.-I. Jeon, “Terahertz band gaps induced by metal grooves inside parallel-plate waveguides,” Opt. Express20(6), 6116–6123 (2012).
[CrossRef] [PubMed]

J. Kitagawa, M. Kodama, S. Koya, Y. Nishifuji, D. Armand, and Y. Kadoya, “THz wave propagation in two-dimensional metallic photonic crystal with mechanically tunable photonic-bands,” Opt. Express20(16), 17271–17280 (2012).
[CrossRef] [PubMed]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics