Abstract

We demonstrate a greater than 42 dB optical distribution network power budget in the upstream of a 1.25 Gbps self-coherent reflective PON after 100 km of installed fibers, using off-the-shelf optoelectronic components, improving our previous result by 4 dB. We discuss all system optimizations introduced in the setup in order to reach such a result, including 8B/10B high-pass filtering and Faraday rotation at the ONU.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. P. Jung, Y. Takushima, and Y. C. Chung, “Transmission of 1.25-Gb/s PSK signal generated by using RSOA in 110-km coherent WDM PON,” Opt. Express18(14), 14871–14877 (2010).
    [CrossRef] [PubMed]
  2. I. Papagiannakis, M. Omella, D. Klonidis, J. A. Lázaro Villa, A. N. Birbas, J. Kikidis, I. Tomkos, and J. Prat, “Design characteristics for a full-duplex IM/IM bidirectional transmission at 10 Gb/s using low bandwidth RSOA,” J. Lightwave Technol.28(7), 1094–1101 (2010).
    [CrossRef]
  3. K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett.20(18), 1533–1535 (2008).
    [CrossRef]
  4. Y. Takushima, K. Y. Cho, and Y. C. Chung, “Design issues in RSOA-based WDM PON,” in IEEE PhotonicsGlobal@Singapore, 2008. IPGC 2008 (IEEE, 2008), pp. C-34–C-37.
  5. B. Charbonnier, A. Lebreton, S. Straullu, V. Ferrero, A. Sanna, and R. Gaudino, “Self-coherent single wavelength SC-FDMA PON uplink for NG-PON2,”in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OW4B.4.
  6. Y. Luo, X. Zhou, F. Effenberger, X. Yan, G. Peng, Y. Qian, and Y. Ma, “Time and wavelength division multiplexed passive optical network (TWDM-PON) for next generation PON stage 2 (NG-PON2),” J. Lightwave Technol., to be published
  7. K. Y. Cho, K. Tanaka, T. Sano, S. P. Jung, J. H. Chang, Y. Takushima, A. Agata, Y. Horiuchi, M. Suzuki, and Y. C. Chung, “Long-reach coherent WDM PON employing self-polarization-stabilization technique,” J. Lightwave Technol.29(4), 456–462 (2011).
    [CrossRef]
  8. G. Rizzelli, V. Ferrero, S. Straullu, S. Abrate, F. Forghieri, and R. Gaudino “Record-high ODN power budget (more than 38 dB) in self-coherent reflective PON at 1.25 Gbit/s after propagation through 80 km installed fibers,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper We.1.B.3.
  9. International Telecommunication Union, ITU-T Recommendation G.984.2 (2003) Amendment 2 (03/08).
  10. G. Rizzelli, V. Ferrero, S. Straullu, S. Abrate, F. Forghieri, and R. Gaudino “Optimization of uncooled RSOA parameters in WDM reflective PONs based on self-coherent or direct detection OLT receivers,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper We.1.B.1.
  11. M. O. Van Deventer, “Polarization properties of Rayleigh backscattering in single-mode fibers,” J. Lightwave Technol.11(12), 1895–1899 (1993).
    [CrossRef]
  12. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express16(2), 804–817 (2008).
    [CrossRef] [PubMed]
  13. E. K. MacHale, G. Talli, P. D. Townsend, A. Borghesani, I. Lealman, D. G. Moodie, and D. W. Smith, “Signal-induced Rayleigh noise reduction using gain saturation in an integrated R-EAM-SOA,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OThA6.
  14. C. R. Doerr, L. L. Buhl, Y. Baeyens, R. Aroca, S. Chandrasekhar, X. Liu, L. Chen, and Y. K. Chen, “Packaged monolithic silicon 112-Gb/s coherent receiver,” IEEE Photon. Technol. Lett.23(12), 762–764 (2011).
    [CrossRef]

2011

C. R. Doerr, L. L. Buhl, Y. Baeyens, R. Aroca, S. Chandrasekhar, X. Liu, L. Chen, and Y. K. Chen, “Packaged monolithic silicon 112-Gb/s coherent receiver,” IEEE Photon. Technol. Lett.23(12), 762–764 (2011).
[CrossRef]

K. Y. Cho, K. Tanaka, T. Sano, S. P. Jung, J. H. Chang, Y. Takushima, A. Agata, Y. Horiuchi, M. Suzuki, and Y. C. Chung, “Long-reach coherent WDM PON employing self-polarization-stabilization technique,” J. Lightwave Technol.29(4), 456–462 (2011).
[CrossRef]

2010

2008

S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express16(2), 804–817 (2008).
[CrossRef] [PubMed]

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett.20(18), 1533–1535 (2008).
[CrossRef]

1993

M. O. Van Deventer, “Polarization properties of Rayleigh backscattering in single-mode fibers,” J. Lightwave Technol.11(12), 1895–1899 (1993).
[CrossRef]

Agata, A.

Aroca, R.

C. R. Doerr, L. L. Buhl, Y. Baeyens, R. Aroca, S. Chandrasekhar, X. Liu, L. Chen, and Y. K. Chen, “Packaged monolithic silicon 112-Gb/s coherent receiver,” IEEE Photon. Technol. Lett.23(12), 762–764 (2011).
[CrossRef]

Baeyens, Y.

C. R. Doerr, L. L. Buhl, Y. Baeyens, R. Aroca, S. Chandrasekhar, X. Liu, L. Chen, and Y. K. Chen, “Packaged monolithic silicon 112-Gb/s coherent receiver,” IEEE Photon. Technol. Lett.23(12), 762–764 (2011).
[CrossRef]

Birbas, A. N.

Buhl, L. L.

C. R. Doerr, L. L. Buhl, Y. Baeyens, R. Aroca, S. Chandrasekhar, X. Liu, L. Chen, and Y. K. Chen, “Packaged monolithic silicon 112-Gb/s coherent receiver,” IEEE Photon. Technol. Lett.23(12), 762–764 (2011).
[CrossRef]

Chandrasekhar, S.

C. R. Doerr, L. L. Buhl, Y. Baeyens, R. Aroca, S. Chandrasekhar, X. Liu, L. Chen, and Y. K. Chen, “Packaged monolithic silicon 112-Gb/s coherent receiver,” IEEE Photon. Technol. Lett.23(12), 762–764 (2011).
[CrossRef]

Chang, J. H.

Chen, L.

C. R. Doerr, L. L. Buhl, Y. Baeyens, R. Aroca, S. Chandrasekhar, X. Liu, L. Chen, and Y. K. Chen, “Packaged monolithic silicon 112-Gb/s coherent receiver,” IEEE Photon. Technol. Lett.23(12), 762–764 (2011).
[CrossRef]

Chen, Y. K.

C. R. Doerr, L. L. Buhl, Y. Baeyens, R. Aroca, S. Chandrasekhar, X. Liu, L. Chen, and Y. K. Chen, “Packaged monolithic silicon 112-Gb/s coherent receiver,” IEEE Photon. Technol. Lett.23(12), 762–764 (2011).
[CrossRef]

Cho, K. Y.

Chung, Y. C.

Doerr, C. R.

C. R. Doerr, L. L. Buhl, Y. Baeyens, R. Aroca, S. Chandrasekhar, X. Liu, L. Chen, and Y. K. Chen, “Packaged monolithic silicon 112-Gb/s coherent receiver,” IEEE Photon. Technol. Lett.23(12), 762–764 (2011).
[CrossRef]

Horiuchi, Y.

Jung, S. P.

Kikidis, J.

Klonidis, D.

Lázaro Villa, J. A.

Liu, X.

C. R. Doerr, L. L. Buhl, Y. Baeyens, R. Aroca, S. Chandrasekhar, X. Liu, L. Chen, and Y. K. Chen, “Packaged monolithic silicon 112-Gb/s coherent receiver,” IEEE Photon. Technol. Lett.23(12), 762–764 (2011).
[CrossRef]

Omella, M.

Papagiannakis, I.

Prat, J.

Sano, T.

Savory, S. J.

Suzuki, M.

Takushima, Y.

Tanaka, K.

Tomkos, I.

Van Deventer, M. O.

M. O. Van Deventer, “Polarization properties of Rayleigh backscattering in single-mode fibers,” J. Lightwave Technol.11(12), 1895–1899 (1993).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett.20(18), 1533–1535 (2008).
[CrossRef]

C. R. Doerr, L. L. Buhl, Y. Baeyens, R. Aroca, S. Chandrasekhar, X. Liu, L. Chen, and Y. K. Chen, “Packaged monolithic silicon 112-Gb/s coherent receiver,” IEEE Photon. Technol. Lett.23(12), 762–764 (2011).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

E. K. MacHale, G. Talli, P. D. Townsend, A. Borghesani, I. Lealman, D. G. Moodie, and D. W. Smith, “Signal-induced Rayleigh noise reduction using gain saturation in an integrated R-EAM-SOA,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OThA6.

G. Rizzelli, V. Ferrero, S. Straullu, S. Abrate, F. Forghieri, and R. Gaudino “Record-high ODN power budget (more than 38 dB) in self-coherent reflective PON at 1.25 Gbit/s after propagation through 80 km installed fibers,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper We.1.B.3.

International Telecommunication Union, ITU-T Recommendation G.984.2 (2003) Amendment 2 (03/08).

G. Rizzelli, V. Ferrero, S. Straullu, S. Abrate, F. Forghieri, and R. Gaudino “Optimization of uncooled RSOA parameters in WDM reflective PONs based on self-coherent or direct detection OLT receivers,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper We.1.B.1.

Y. Takushima, K. Y. Cho, and Y. C. Chung, “Design issues in RSOA-based WDM PON,” in IEEE PhotonicsGlobal@Singapore, 2008. IPGC 2008 (IEEE, 2008), pp. C-34–C-37.

B. Charbonnier, A. Lebreton, S. Straullu, V. Ferrero, A. Sanna, and R. Gaudino, “Self-coherent single wavelength SC-FDMA PON uplink for NG-PON2,”in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OW4B.4.

Y. Luo, X. Zhou, F. Effenberger, X. Yan, G. Peng, Y. Qian, and Y. Ma, “Time and wavelength division multiplexed passive optical network (TWDM-PON) for next generation PON stage 2 (NG-PON2),” J. Lightwave Technol., to be published

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup, (a) “Standard” architecture and (b) “Faraday” architecture.

Fig. 2
Fig. 2

Scattering diagram for the quasi BPSK modulation at the output of the RSOA (parameters PF = 0 dBm, Ib = 75 mA, Vpp = 1.5 V).

Fig. 3
Fig. 3

BER vs. LODN for (a) the “Faraday” and (b) “standard” setup using various launched powers PF.

Fig. 4
Fig. 4

Repeated measurements for (a) the “Faraday” setup (LODN = 42.1 dB) and (b) the “standard” setup (LODN = 40.5 dB), PF = 9 dBm, 100 km.

Fig. 5
Fig. 5

Qualitative representation of relevant signals at the output of the self-coherent receiver in the frequency domain (power spectrum). Blue curve, RBS component; solid red curve, uncoded modulated signal; dashed red curve, 8B/10B coded signal; green curve, high-pass filter.

Fig. 6
Fig. 6

Received signals acquired (a) without and (b) with the HW electrical HPF (yellow, in-phase component, X polarized; red, quadrature component, X polarized; light-blue, in-phase component, Y polarized; green, quadrature component, Y polarized).

Fig. 7
Fig. 7

ODN loss vs. OLT launched power at BER = 10−3.

Metrics