Abstract

Measurement and analysis of the temperature dependence of avalanche gain and excess noise in InAs electron avalanche photodiodes (eAPDs) at 77 to 250 K are reported. The avalanche gain, initiated by pure electron injection, was found to reduce with decreasing temperature. However no significant change in the excess noise was measured as the temperature was varied. For avalanche gain > 3, the InAs APDs with 3.5 µm i-region show consistently low excess noise factors between 1.45 and 1.6 at temperatures of 77 to 250 K, confirming that the eAPD characteristics are exhibited in the measured range of electric field. As the dark current drops much more rapidly than the avalanche gain and the excess noise remains very low, our results confirmed that improved signal to noise ratio can be obtained in InAs eAPDs by reducing the operating temperature. The lack of hole impact ionization, as confirmed by the very low excess noise and the exponentially rising avalanche gain, suggests that hole impact ionization enhancement due to band “resonance” does not occur in InAs APDs at the reported temperatures.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. R. David and C. H. Tan, “Material considerations for avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron.14(4), 998–1009 (2008).
    [CrossRef]
  2. G. J. Rees and J. P. R. David, “Why small avalanche photodiodes are beautiful,” Proc. SPIE4999, 349–362 (2003).
    [CrossRef]
  3. R. J. McIntyre, “Multiplication noise in uniform avalanche diodes,” IEEE Trans. Electron. Dev.13(1), 164–168 (1966).
    [CrossRef]
  4. A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett.93, 111107 (2008).
  5. A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Extremely low excess noise in InAs electron avalanche photodiodes,” IEEE Photon. Technol. Lett.21(13), 866–868 (2009).
    [CrossRef]
  6. J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater.35(6), 1166–1173 (2006).
    [CrossRef]
  7. A. R. J. Marshall, P. J. Ker, A. Krysa, J. P. R. David, and C. H. Tan, “High speed InAs electron avalanche photodiodes overcome the conventional gain-bandwidth product limit,” Opt. Express19(23), 23341–23349 (2011).
    [CrossRef] [PubMed]
  8. S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, “Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping,” Appl. Phys. Lett.101, 151124 (2012).
  9. P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011).
    [CrossRef]
  10. A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011).
    [CrossRef]
  11. D. J. Massey, J. P. R. David, and G. J. Rees, “Temperature dependence of impact ionization in submicrometer silicon devices,” IEEE Trans. Electron. Dev.53(9), 2328–2334 (2006).
    [CrossRef]
  12. C. Groves, R. Ghin, J. P. R. David, and G. J. Rees, “Temperature dependence of impact ionization in GaAs,” IEEE Trans. Electron. Dev.50(10), 2027–2031 (2003).
    [CrossRef]
  13. L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Q. Yahong, and J. P. R. David, “Temperature dependence of avalanche breakdown in InP and InAlAs,” IEEE J. Quantum Electron.46(8), 1153–1157 (2010).
    [CrossRef]
  14. C. L. F. Ma, M. J. Deen, L. E. Tarof, and J. C. H. Yu, “Temperature dependence of breakdown voltages in separate absorption, grading, charge, and multiplication InP/InGaAs avalanche photodiodes,” IEEE Trans. Electron. Dev.42(5), 810–818 (1995).
    [CrossRef]
  15. H. Kanbe, “Temperature dependence of multiplication noise in Silicon avalanche photodiodes,” Electron. Lett.14(17), 539–541 (1978).
    [CrossRef]
  16. J. Yu, L. E. Tarof, R. Bruce, D. G. Knight, K. Visvanatha, and T. Baird, “Noise performance of separate absorption, grading, charge and multiplication InP/InGaAs avalanche photodiodes,” IEEE Photon. Technol. Lett.6(5), 632–634 (1994).
    [CrossRef]
  17. Y. G. Xiao and M. J. Deen, “Temperature dependent studies of InP/InGaAs avalanche photodiodes based on time domain modeling,” IEEE Trans. Electron. Dev.48(4), 661–670 (2001).
    [CrossRef]
  18. X. G. Zheng, P. Yuan, X. Sun, G. S. Kinsey, A. L. Holmes, B. G. Streetman, and J. C. Campbell, “Temperature dependence of the ionization coefficients of AlxGa1-xAs,” IEEE J. Quantum Electron.36(10), 1168–1173 (2000).
    [CrossRef]
  19. M. P. Mikhailova, M. M. Smirnova, and S. V. Slobodchikov, “Carrier multiplication in InAs and InGaAs p-n junctions and their ionization coefficients,” Sov. Phys. Semicond.10, 509–513 (1976).
  20. P. Norton, “HgCdTe infrared detectors,” Opto-Electron. Rev.10, 159–174 (2002).
  21. C. H. Grein and H. Ehrenreich, “Impact ionization enhancements in AlxGa1 - xSb avalanche photodiodes,” Appl. Phys. Lett.77(19), 3048–3050 (2000).
    [CrossRef]
  22. Z. M. Fang, K. Y. Ma, D. H. Jaw, R. M. Cohen, and G. B. Stringfellow, “Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy,” J. Appl. Phys.67(11), 7034–7039 (1990).
    [CrossRef]
  23. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys.89(11), 5815–5875 (2001).
    [CrossRef]
  24. A. R. J. Marshall, C. H. Tan, J. P. R. David, J. S. Ng, and M. Hopkinson, “Fabrication of InAs photodiodes with reduced surface leakage current,” Proc. SPIE6740, 67400H (2007).
    [CrossRef]
  25. S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1 - xAs, and In1-xGaxAsyP1-y,” J. Appl. Phys.66(12), 6030–6040 (1989).
    [CrossRef]
  26. J. Bude and K. Hess, “Thresholds of impact ionization in semiconductors,” J. Appl. Phys.72(8), 3554–3561 (1992).
    [CrossRef]
  27. C. H. Tan, G. J. Rees, P. A. Houston, J. S. Ng, W. K. Ng, and J. P. R. David, “Temperature dependence of electron impact ionization in In0.53Ga0.47As,” Appl. Phys. Lett.84(13), 2322–2324 (2004).
    [CrossRef]
  28. J. R. Chelikowsky and M. L. Cohen, “Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors,” Phys. Rev. B14(2), 556–582 (1976).
    [CrossRef]
  29. P. J. Ker, A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Low noise high responsivity InAs electron avalanche photodiodes for infrared sensing,” Phys. Status Solidi9(2c), 310–313 (2012).
    [CrossRef]
  30. K. S. Lau, C. H. Tan, B. K. Ng, K. F. Li, R. C. Tozer, J. P. R. David, and G. J. Rees, “Excess noise measurement in avalanche photodiodes using a transimpedance amplifier front-end,” Meas. Sci. Technol.17(7), 1941–1946 (2006).
    [CrossRef]
  31. V. G. Luppov, Frequency response of low frequency probes (Wilmington, MA: Janis Research Company 2012).
  32. S. A. Plimmer, J. P. R. David, and D. S. Ong, “The merits and limitations of local impact ionization theory,” IEEE Trans. Electron. Dev.47(5), 1080–1088 (2000).
    [CrossRef]
  33. B. E. A. Saleh, M. M. Hayat, and M. C. Teich, “Effect of dead space on the excess noise factor and time response of avalanche photodiodes,” IEEE Trans. Electron. Dev.37(9), 1976–1984 (1990).
    [CrossRef]
  34. A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Impact ionization in InAs electron avalanche photodiodes,” IEEE Trans. Electron. Dev.57(10), 2631–2638 (2010).
    [CrossRef]
  35. D. S. Ong, K. F. Li, G. J. Rees, J. P. R. David, and P. N. Robson, “A simple model to determine multiplication and noise in avalanche photodiodes,” J. Appl. Phys.83(6), 3426–3428 (1998).
    [CrossRef]

2012

S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, “Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping,” Appl. Phys. Lett.101, 151124 (2012).

P. J. Ker, A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Low noise high responsivity InAs electron avalanche photodiodes for infrared sensing,” Phys. Status Solidi9(2c), 310–313 (2012).
[CrossRef]

2011

A. R. J. Marshall, P. J. Ker, A. Krysa, J. P. R. David, and C. H. Tan, “High speed InAs electron avalanche photodiodes overcome the conventional gain-bandwidth product limit,” Opt. Express19(23), 23341–23349 (2011).
[CrossRef] [PubMed]

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011).
[CrossRef]

A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011).
[CrossRef]

2010

L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Q. Yahong, and J. P. R. David, “Temperature dependence of avalanche breakdown in InP and InAlAs,” IEEE J. Quantum Electron.46(8), 1153–1157 (2010).
[CrossRef]

A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Impact ionization in InAs electron avalanche photodiodes,” IEEE Trans. Electron. Dev.57(10), 2631–2638 (2010).
[CrossRef]

2009

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Extremely low excess noise in InAs electron avalanche photodiodes,” IEEE Photon. Technol. Lett.21(13), 866–868 (2009).
[CrossRef]

2008

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett.93, 111107 (2008).

J. P. R. David and C. H. Tan, “Material considerations for avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron.14(4), 998–1009 (2008).
[CrossRef]

2007

A. R. J. Marshall, C. H. Tan, J. P. R. David, J. S. Ng, and M. Hopkinson, “Fabrication of InAs photodiodes with reduced surface leakage current,” Proc. SPIE6740, 67400H (2007).
[CrossRef]

2006

D. J. Massey, J. P. R. David, and G. J. Rees, “Temperature dependence of impact ionization in submicrometer silicon devices,” IEEE Trans. Electron. Dev.53(9), 2328–2334 (2006).
[CrossRef]

K. S. Lau, C. H. Tan, B. K. Ng, K. F. Li, R. C. Tozer, J. P. R. David, and G. J. Rees, “Excess noise measurement in avalanche photodiodes using a transimpedance amplifier front-end,” Meas. Sci. Technol.17(7), 1941–1946 (2006).
[CrossRef]

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater.35(6), 1166–1173 (2006).
[CrossRef]

2004

C. H. Tan, G. J. Rees, P. A. Houston, J. S. Ng, W. K. Ng, and J. P. R. David, “Temperature dependence of electron impact ionization in In0.53Ga0.47As,” Appl. Phys. Lett.84(13), 2322–2324 (2004).
[CrossRef]

2003

C. Groves, R. Ghin, J. P. R. David, and G. J. Rees, “Temperature dependence of impact ionization in GaAs,” IEEE Trans. Electron. Dev.50(10), 2027–2031 (2003).
[CrossRef]

G. J. Rees and J. P. R. David, “Why small avalanche photodiodes are beautiful,” Proc. SPIE4999, 349–362 (2003).
[CrossRef]

2002

P. Norton, “HgCdTe infrared detectors,” Opto-Electron. Rev.10, 159–174 (2002).

2001

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys.89(11), 5815–5875 (2001).
[CrossRef]

Y. G. Xiao and M. J. Deen, “Temperature dependent studies of InP/InGaAs avalanche photodiodes based on time domain modeling,” IEEE Trans. Electron. Dev.48(4), 661–670 (2001).
[CrossRef]

2000

X. G. Zheng, P. Yuan, X. Sun, G. S. Kinsey, A. L. Holmes, B. G. Streetman, and J. C. Campbell, “Temperature dependence of the ionization coefficients of AlxGa1-xAs,” IEEE J. Quantum Electron.36(10), 1168–1173 (2000).
[CrossRef]

C. H. Grein and H. Ehrenreich, “Impact ionization enhancements in AlxGa1 - xSb avalanche photodiodes,” Appl. Phys. Lett.77(19), 3048–3050 (2000).
[CrossRef]

S. A. Plimmer, J. P. R. David, and D. S. Ong, “The merits and limitations of local impact ionization theory,” IEEE Trans. Electron. Dev.47(5), 1080–1088 (2000).
[CrossRef]

1998

D. S. Ong, K. F. Li, G. J. Rees, J. P. R. David, and P. N. Robson, “A simple model to determine multiplication and noise in avalanche photodiodes,” J. Appl. Phys.83(6), 3426–3428 (1998).
[CrossRef]

1995

C. L. F. Ma, M. J. Deen, L. E. Tarof, and J. C. H. Yu, “Temperature dependence of breakdown voltages in separate absorption, grading, charge, and multiplication InP/InGaAs avalanche photodiodes,” IEEE Trans. Electron. Dev.42(5), 810–818 (1995).
[CrossRef]

1994

J. Yu, L. E. Tarof, R. Bruce, D. G. Knight, K. Visvanatha, and T. Baird, “Noise performance of separate absorption, grading, charge and multiplication InP/InGaAs avalanche photodiodes,” IEEE Photon. Technol. Lett.6(5), 632–634 (1994).
[CrossRef]

1992

J. Bude and K. Hess, “Thresholds of impact ionization in semiconductors,” J. Appl. Phys.72(8), 3554–3561 (1992).
[CrossRef]

1990

B. E. A. Saleh, M. M. Hayat, and M. C. Teich, “Effect of dead space on the excess noise factor and time response of avalanche photodiodes,” IEEE Trans. Electron. Dev.37(9), 1976–1984 (1990).
[CrossRef]

Z. M. Fang, K. Y. Ma, D. H. Jaw, R. M. Cohen, and G. B. Stringfellow, “Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy,” J. Appl. Phys.67(11), 7034–7039 (1990).
[CrossRef]

1989

S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1 - xAs, and In1-xGaxAsyP1-y,” J. Appl. Phys.66(12), 6030–6040 (1989).
[CrossRef]

1978

H. Kanbe, “Temperature dependence of multiplication noise in Silicon avalanche photodiodes,” Electron. Lett.14(17), 539–541 (1978).
[CrossRef]

1976

M. P. Mikhailova, M. M. Smirnova, and S. V. Slobodchikov, “Carrier multiplication in InAs and InGaAs p-n junctions and their ionization coefficients,” Sov. Phys. Semicond.10, 509–513 (1976).

J. R. Chelikowsky and M. L. Cohen, “Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors,” Phys. Rev. B14(2), 556–582 (1976).
[CrossRef]

1966

R. J. McIntyre, “Multiplication noise in uniform avalanche diodes,” IEEE Trans. Electron. Dev.13(1), 164–168 (1966).
[CrossRef]

Adachi, S.

S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1 - xAs, and In1-xGaxAsyP1-y,” J. Appl. Phys.66(12), 6030–6040 (1989).
[CrossRef]

Baird, T.

J. Yu, L. E. Tarof, R. Bruce, D. G. Knight, K. Visvanatha, and T. Baird, “Noise performance of separate absorption, grading, charge and multiplication InP/InGaAs avalanche photodiodes,” IEEE Photon. Technol. Lett.6(5), 632–634 (1994).
[CrossRef]

Bank, S. R.

S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, “Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping,” Appl. Phys. Lett.101, 151124 (2012).

Beck, J.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater.35(6), 1166–1173 (2006).
[CrossRef]

Bruce, R.

J. Yu, L. E. Tarof, R. Bruce, D. G. Knight, K. Visvanatha, and T. Baird, “Noise performance of separate absorption, grading, charge and multiplication InP/InGaAs avalanche photodiodes,” IEEE Photon. Technol. Lett.6(5), 632–634 (1994).
[CrossRef]

Bude, J.

J. Bude and K. Hess, “Thresholds of impact ionization in semiconductors,” J. Appl. Phys.72(8), 3554–3561 (1992).
[CrossRef]

Campbell, J.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater.35(6), 1166–1173 (2006).
[CrossRef]

Campbell, J. C.

S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, “Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping,” Appl. Phys. Lett.101, 151124 (2012).

X. G. Zheng, P. Yuan, X. Sun, G. S. Kinsey, A. L. Holmes, B. G. Streetman, and J. C. Campbell, “Temperature dependence of the ionization coefficients of AlxGa1-xAs,” IEEE J. Quantum Electron.36(10), 1168–1173 (2000).
[CrossRef]

Chelikowsky, J. R.

J. R. Chelikowsky and M. L. Cohen, “Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors,” Phys. Rev. B14(2), 556–582 (1976).
[CrossRef]

Cohen, M. L.

J. R. Chelikowsky and M. L. Cohen, “Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors,” Phys. Rev. B14(2), 556–582 (1976).
[CrossRef]

Cohen, R. M.

Z. M. Fang, K. Y. Ma, D. H. Jaw, R. M. Cohen, and G. B. Stringfellow, “Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy,” J. Appl. Phys.67(11), 7034–7039 (1990).
[CrossRef]

David, J. P. R.

P. J. Ker, A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Low noise high responsivity InAs electron avalanche photodiodes for infrared sensing,” Phys. Status Solidi9(2c), 310–313 (2012).
[CrossRef]

A. R. J. Marshall, P. J. Ker, A. Krysa, J. P. R. David, and C. H. Tan, “High speed InAs electron avalanche photodiodes overcome the conventional gain-bandwidth product limit,” Opt. Express19(23), 23341–23349 (2011).
[CrossRef] [PubMed]

A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011).
[CrossRef]

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011).
[CrossRef]

A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Impact ionization in InAs electron avalanche photodiodes,” IEEE Trans. Electron. Dev.57(10), 2631–2638 (2010).
[CrossRef]

L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Q. Yahong, and J. P. R. David, “Temperature dependence of avalanche breakdown in InP and InAlAs,” IEEE J. Quantum Electron.46(8), 1153–1157 (2010).
[CrossRef]

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Extremely low excess noise in InAs electron avalanche photodiodes,” IEEE Photon. Technol. Lett.21(13), 866–868 (2009).
[CrossRef]

J. P. R. David and C. H. Tan, “Material considerations for avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron.14(4), 998–1009 (2008).
[CrossRef]

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett.93, 111107 (2008).

A. R. J. Marshall, C. H. Tan, J. P. R. David, J. S. Ng, and M. Hopkinson, “Fabrication of InAs photodiodes with reduced surface leakage current,” Proc. SPIE6740, 67400H (2007).
[CrossRef]

D. J. Massey, J. P. R. David, and G. J. Rees, “Temperature dependence of impact ionization in submicrometer silicon devices,” IEEE Trans. Electron. Dev.53(9), 2328–2334 (2006).
[CrossRef]

K. S. Lau, C. H. Tan, B. K. Ng, K. F. Li, R. C. Tozer, J. P. R. David, and G. J. Rees, “Excess noise measurement in avalanche photodiodes using a transimpedance amplifier front-end,” Meas. Sci. Technol.17(7), 1941–1946 (2006).
[CrossRef]

C. H. Tan, G. J. Rees, P. A. Houston, J. S. Ng, W. K. Ng, and J. P. R. David, “Temperature dependence of electron impact ionization in In0.53Ga0.47As,” Appl. Phys. Lett.84(13), 2322–2324 (2004).
[CrossRef]

G. J. Rees and J. P. R. David, “Why small avalanche photodiodes are beautiful,” Proc. SPIE4999, 349–362 (2003).
[CrossRef]

C. Groves, R. Ghin, J. P. R. David, and G. J. Rees, “Temperature dependence of impact ionization in GaAs,” IEEE Trans. Electron. Dev.50(10), 2027–2031 (2003).
[CrossRef]

S. A. Plimmer, J. P. R. David, and D. S. Ong, “The merits and limitations of local impact ionization theory,” IEEE Trans. Electron. Dev.47(5), 1080–1088 (2000).
[CrossRef]

D. S. Ong, K. F. Li, G. J. Rees, J. P. R. David, and P. N. Robson, “A simple model to determine multiplication and noise in avalanche photodiodes,” J. Appl. Phys.83(6), 3426–3428 (1998).
[CrossRef]

Deen, M. J.

Y. G. Xiao and M. J. Deen, “Temperature dependent studies of InP/InGaAs avalanche photodiodes based on time domain modeling,” IEEE Trans. Electron. Dev.48(4), 661–670 (2001).
[CrossRef]

C. L. F. Ma, M. J. Deen, L. E. Tarof, and J. C. H. Yu, “Temperature dependence of breakdown voltages in separate absorption, grading, charge, and multiplication InP/InGaAs avalanche photodiodes,” IEEE Trans. Electron. Dev.42(5), 810–818 (1995).
[CrossRef]

Ehrenreich, H.

C. H. Grein and H. Ehrenreich, “Impact ionization enhancements in AlxGa1 - xSb avalanche photodiodes,” Appl. Phys. Lett.77(19), 3048–3050 (2000).
[CrossRef]

Fang, Z. M.

Z. M. Fang, K. Y. Ma, D. H. Jaw, R. M. Cohen, and G. B. Stringfellow, “Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy,” J. Appl. Phys.67(11), 7034–7039 (1990).
[CrossRef]

Ghin, R.

C. Groves, R. Ghin, J. P. R. David, and G. J. Rees, “Temperature dependence of impact ionization in GaAs,” IEEE Trans. Electron. Dev.50(10), 2027–2031 (2003).
[CrossRef]

Grein, C. H.

C. H. Grein and H. Ehrenreich, “Impact ionization enhancements in AlxGa1 - xSb avalanche photodiodes,” Appl. Phys. Lett.77(19), 3048–3050 (2000).
[CrossRef]

Groves, C.

C. Groves, R. Ghin, J. P. R. David, and G. J. Rees, “Temperature dependence of impact ionization in GaAs,” IEEE Trans. Electron. Dev.50(10), 2027–2031 (2003).
[CrossRef]

Hayat, M. M.

B. E. A. Saleh, M. M. Hayat, and M. C. Teich, “Effect of dead space on the excess noise factor and time response of avalanche photodiodes,” IEEE Trans. Electron. Dev.37(9), 1976–1984 (1990).
[CrossRef]

Hess, K.

J. Bude and K. Hess, “Thresholds of impact ionization in semiconductors,” J. Appl. Phys.72(8), 3554–3561 (1992).
[CrossRef]

Holmes, A. L.

X. G. Zheng, P. Yuan, X. Sun, G. S. Kinsey, A. L. Holmes, B. G. Streetman, and J. C. Campbell, “Temperature dependence of the ionization coefficients of AlxGa1-xAs,” IEEE J. Quantum Electron.36(10), 1168–1173 (2000).
[CrossRef]

Hopkinson, M.

A. R. J. Marshall, C. H. Tan, J. P. R. David, J. S. Ng, and M. Hopkinson, “Fabrication of InAs photodiodes with reduced surface leakage current,” Proc. SPIE6740, 67400H (2007).
[CrossRef]

Houston, P. A.

C. H. Tan, G. J. Rees, P. A. Houston, J. S. Ng, W. K. Ng, and J. P. R. David, “Temperature dependence of electron impact ionization in In0.53Ga0.47As,” Appl. Phys. Lett.84(13), 2322–2324 (2004).
[CrossRef]

Jaw, D. H.

Z. M. Fang, K. Y. Ma, D. H. Jaw, R. M. Cohen, and G. B. Stringfellow, “Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy,” J. Appl. Phys.67(11), 7034–7039 (1990).
[CrossRef]

Jones, S. K.

L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Q. Yahong, and J. P. R. David, “Temperature dependence of avalanche breakdown in InP and InAlAs,” IEEE J. Quantum Electron.46(8), 1153–1157 (2010).
[CrossRef]

Kanbe, H.

H. Kanbe, “Temperature dependence of multiplication noise in Silicon avalanche photodiodes,” Electron. Lett.14(17), 539–541 (1978).
[CrossRef]

Ker, P. J.

P. J. Ker, A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Low noise high responsivity InAs electron avalanche photodiodes for infrared sensing,” Phys. Status Solidi9(2c), 310–313 (2012).
[CrossRef]

A. R. J. Marshall, P. J. Ker, A. Krysa, J. P. R. David, and C. H. Tan, “High speed InAs electron avalanche photodiodes overcome the conventional gain-bandwidth product limit,” Opt. Express19(23), 23341–23349 (2011).
[CrossRef] [PubMed]

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011).
[CrossRef]

A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011).
[CrossRef]

Kinch, M.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater.35(6), 1166–1173 (2006).
[CrossRef]

Kinsey, G. S.

X. G. Zheng, P. Yuan, X. Sun, G. S. Kinsey, A. L. Holmes, B. G. Streetman, and J. C. Campbell, “Temperature dependence of the ionization coefficients of AlxGa1-xAs,” IEEE J. Quantum Electron.36(10), 1168–1173 (2000).
[CrossRef]

Knight, D. G.

J. Yu, L. E. Tarof, R. Bruce, D. G. Knight, K. Visvanatha, and T. Baird, “Noise performance of separate absorption, grading, charge and multiplication InP/InGaAs avalanche photodiodes,” IEEE Photon. Technol. Lett.6(5), 632–634 (1994).
[CrossRef]

Krysa, A.

Krysa, A. B.

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011).
[CrossRef]

Lau, K. S.

K. S. Lau, C. H. Tan, B. K. Ng, K. F. Li, R. C. Tozer, J. P. R. David, and G. J. Rees, “Excess noise measurement in avalanche photodiodes using a transimpedance amplifier front-end,” Meas. Sci. Technol.17(7), 1941–1946 (2006).
[CrossRef]

Li, K. F.

K. S. Lau, C. H. Tan, B. K. Ng, K. F. Li, R. C. Tozer, J. P. R. David, and G. J. Rees, “Excess noise measurement in avalanche photodiodes using a transimpedance amplifier front-end,” Meas. Sci. Technol.17(7), 1941–1946 (2006).
[CrossRef]

D. S. Ong, K. F. Li, G. J. Rees, J. P. R. David, and P. N. Robson, “A simple model to determine multiplication and noise in avalanche photodiodes,” J. Appl. Phys.83(6), 3426–3428 (1998).
[CrossRef]

Lu, Z.

S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, “Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping,” Appl. Phys. Lett.101, 151124 (2012).

Ma, C. L. F.

C. L. F. Ma, M. J. Deen, L. E. Tarof, and J. C. H. Yu, “Temperature dependence of breakdown voltages in separate absorption, grading, charge, and multiplication InP/InGaAs avalanche photodiodes,” IEEE Trans. Electron. Dev.42(5), 810–818 (1995).
[CrossRef]

Ma, F.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater.35(6), 1166–1173 (2006).
[CrossRef]

Ma, K. Y.

Z. M. Fang, K. Y. Ma, D. H. Jaw, R. M. Cohen, and G. B. Stringfellow, “Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy,” J. Appl. Phys.67(11), 7034–7039 (1990).
[CrossRef]

Maddox, S. J.

S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, “Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping,” Appl. Phys. Lett.101, 151124 (2012).

Marshall, A. R. J.

P. J. Ker, A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Low noise high responsivity InAs electron avalanche photodiodes for infrared sensing,” Phys. Status Solidi9(2c), 310–313 (2012).
[CrossRef]

A. R. J. Marshall, P. J. Ker, A. Krysa, J. P. R. David, and C. H. Tan, “High speed InAs electron avalanche photodiodes overcome the conventional gain-bandwidth product limit,” Opt. Express19(23), 23341–23349 (2011).
[CrossRef] [PubMed]

A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011).
[CrossRef]

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011).
[CrossRef]

A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Impact ionization in InAs electron avalanche photodiodes,” IEEE Trans. Electron. Dev.57(10), 2631–2638 (2010).
[CrossRef]

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Extremely low excess noise in InAs electron avalanche photodiodes,” IEEE Photon. Technol. Lett.21(13), 866–868 (2009).
[CrossRef]

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett.93, 111107 (2008).

A. R. J. Marshall, C. H. Tan, J. P. R. David, J. S. Ng, and M. Hopkinson, “Fabrication of InAs photodiodes with reduced surface leakage current,” Proc. SPIE6740, 67400H (2007).
[CrossRef]

Massey, D. J.

D. J. Massey, J. P. R. David, and G. J. Rees, “Temperature dependence of impact ionization in submicrometer silicon devices,” IEEE Trans. Electron. Dev.53(9), 2328–2334 (2006).
[CrossRef]

McIntyre, R. J.

R. J. McIntyre, “Multiplication noise in uniform avalanche diodes,” IEEE Trans. Electron. Dev.13(1), 164–168 (1966).
[CrossRef]

Meyer, J. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys.89(11), 5815–5875 (2001).
[CrossRef]

Mikhailova, M. P.

M. P. Mikhailova, M. M. Smirnova, and S. V. Slobodchikov, “Carrier multiplication in InAs and InGaAs p-n junctions and their ionization coefficients,” Sov. Phys. Semicond.10, 509–513 (1976).

Mitra, P.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater.35(6), 1166–1173 (2006).
[CrossRef]

Nair, H. P.

S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, “Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping,” Appl. Phys. Lett.101, 151124 (2012).

Ng, B. K.

K. S. Lau, C. H. Tan, B. K. Ng, K. F. Li, R. C. Tozer, J. P. R. David, and G. J. Rees, “Excess noise measurement in avalanche photodiodes using a transimpedance amplifier front-end,” Meas. Sci. Technol.17(7), 1941–1946 (2006).
[CrossRef]

Ng, J. S.

L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Q. Yahong, and J. P. R. David, “Temperature dependence of avalanche breakdown in InP and InAlAs,” IEEE J. Quantum Electron.46(8), 1153–1157 (2010).
[CrossRef]

A. R. J. Marshall, C. H. Tan, J. P. R. David, J. S. Ng, and M. Hopkinson, “Fabrication of InAs photodiodes with reduced surface leakage current,” Proc. SPIE6740, 67400H (2007).
[CrossRef]

C. H. Tan, G. J. Rees, P. A. Houston, J. S. Ng, W. K. Ng, and J. P. R. David, “Temperature dependence of electron impact ionization in In0.53Ga0.47As,” Appl. Phys. Lett.84(13), 2322–2324 (2004).
[CrossRef]

Ng, W. K.

C. H. Tan, G. J. Rees, P. A. Houston, J. S. Ng, W. K. Ng, and J. P. R. David, “Temperature dependence of electron impact ionization in In0.53Ga0.47As,” Appl. Phys. Lett.84(13), 2322–2324 (2004).
[CrossRef]

Norton, P.

P. Norton, “HgCdTe infrared detectors,” Opto-Electron. Rev.10, 159–174 (2002).

Ong, D. S.

S. A. Plimmer, J. P. R. David, and D. S. Ong, “The merits and limitations of local impact ionization theory,” IEEE Trans. Electron. Dev.47(5), 1080–1088 (2000).
[CrossRef]

D. S. Ong, K. F. Li, G. J. Rees, J. P. R. David, and P. N. Robson, “A simple model to determine multiplication and noise in avalanche photodiodes,” J. Appl. Phys.83(6), 3426–3428 (1998).
[CrossRef]

Ong, D. S. G.

L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Q. Yahong, and J. P. R. David, “Temperature dependence of avalanche breakdown in InP and InAlAs,” IEEE J. Quantum Electron.46(8), 1153–1157 (2010).
[CrossRef]

Plimmer, S. A.

S. A. Plimmer, J. P. R. David, and D. S. Ong, “The merits and limitations of local impact ionization theory,” IEEE Trans. Electron. Dev.47(5), 1080–1088 (2000).
[CrossRef]

Ram-Mohan, L. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys.89(11), 5815–5875 (2001).
[CrossRef]

Rees, G. J.

K. S. Lau, C. H. Tan, B. K. Ng, K. F. Li, R. C. Tozer, J. P. R. David, and G. J. Rees, “Excess noise measurement in avalanche photodiodes using a transimpedance amplifier front-end,” Meas. Sci. Technol.17(7), 1941–1946 (2006).
[CrossRef]

D. J. Massey, J. P. R. David, and G. J. Rees, “Temperature dependence of impact ionization in submicrometer silicon devices,” IEEE Trans. Electron. Dev.53(9), 2328–2334 (2006).
[CrossRef]

C. H. Tan, G. J. Rees, P. A. Houston, J. S. Ng, W. K. Ng, and J. P. R. David, “Temperature dependence of electron impact ionization in In0.53Ga0.47As,” Appl. Phys. Lett.84(13), 2322–2324 (2004).
[CrossRef]

G. J. Rees and J. P. R. David, “Why small avalanche photodiodes are beautiful,” Proc. SPIE4999, 349–362 (2003).
[CrossRef]

C. Groves, R. Ghin, J. P. R. David, and G. J. Rees, “Temperature dependence of impact ionization in GaAs,” IEEE Trans. Electron. Dev.50(10), 2027–2031 (2003).
[CrossRef]

D. S. Ong, K. F. Li, G. J. Rees, J. P. R. David, and P. N. Robson, “A simple model to determine multiplication and noise in avalanche photodiodes,” J. Appl. Phys.83(6), 3426–3428 (1998).
[CrossRef]

Robinson, J.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater.35(6), 1166–1173 (2006).
[CrossRef]

Robson, P. N.

D. S. Ong, K. F. Li, G. J. Rees, J. P. R. David, and P. N. Robson, “A simple model to determine multiplication and noise in avalanche photodiodes,” J. Appl. Phys.83(6), 3426–3428 (1998).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh, M. M. Hayat, and M. C. Teich, “Effect of dead space on the excess noise factor and time response of avalanche photodiodes,” IEEE Trans. Electron. Dev.37(9), 1976–1984 (1990).
[CrossRef]

Scritchfield, R.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater.35(6), 1166–1173 (2006).
[CrossRef]

Slobodchikov, S. V.

M. P. Mikhailova, M. M. Smirnova, and S. V. Slobodchikov, “Carrier multiplication in InAs and InGaAs p-n junctions and their ionization coefficients,” Sov. Phys. Semicond.10, 509–513 (1976).

Smirnova, M. M.

M. P. Mikhailova, M. M. Smirnova, and S. V. Slobodchikov, “Carrier multiplication in InAs and InGaAs p-n junctions and their ionization coefficients,” Sov. Phys. Semicond.10, 509–513 (1976).

Steer, M. J.

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Extremely low excess noise in InAs electron avalanche photodiodes,” IEEE Photon. Technol. Lett.21(13), 866–868 (2009).
[CrossRef]

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett.93, 111107 (2008).

Streetman, B. G.

X. G. Zheng, P. Yuan, X. Sun, G. S. Kinsey, A. L. Holmes, B. G. Streetman, and J. C. Campbell, “Temperature dependence of the ionization coefficients of AlxGa1-xAs,” IEEE J. Quantum Electron.36(10), 1168–1173 (2000).
[CrossRef]

Stringfellow, G. B.

Z. M. Fang, K. Y. Ma, D. H. Jaw, R. M. Cohen, and G. B. Stringfellow, “Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy,” J. Appl. Phys.67(11), 7034–7039 (1990).
[CrossRef]

Sun, W.

S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, “Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping,” Appl. Phys. Lett.101, 151124 (2012).

Sun, X.

X. G. Zheng, P. Yuan, X. Sun, G. S. Kinsey, A. L. Holmes, B. G. Streetman, and J. C. Campbell, “Temperature dependence of the ionization coefficients of AlxGa1-xAs,” IEEE J. Quantum Electron.36(10), 1168–1173 (2000).
[CrossRef]

Tan, C. H.

P. J. Ker, A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Low noise high responsivity InAs electron avalanche photodiodes for infrared sensing,” Phys. Status Solidi9(2c), 310–313 (2012).
[CrossRef]

A. R. J. Marshall, P. J. Ker, A. Krysa, J. P. R. David, and C. H. Tan, “High speed InAs electron avalanche photodiodes overcome the conventional gain-bandwidth product limit,” Opt. Express19(23), 23341–23349 (2011).
[CrossRef] [PubMed]

A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011).
[CrossRef]

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011).
[CrossRef]

A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Impact ionization in InAs electron avalanche photodiodes,” IEEE Trans. Electron. Dev.57(10), 2631–2638 (2010).
[CrossRef]

L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Q. Yahong, and J. P. R. David, “Temperature dependence of avalanche breakdown in InP and InAlAs,” IEEE J. Quantum Electron.46(8), 1153–1157 (2010).
[CrossRef]

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Extremely low excess noise in InAs electron avalanche photodiodes,” IEEE Photon. Technol. Lett.21(13), 866–868 (2009).
[CrossRef]

J. P. R. David and C. H. Tan, “Material considerations for avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron.14(4), 998–1009 (2008).
[CrossRef]

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett.93, 111107 (2008).

A. R. J. Marshall, C. H. Tan, J. P. R. David, J. S. Ng, and M. Hopkinson, “Fabrication of InAs photodiodes with reduced surface leakage current,” Proc. SPIE6740, 67400H (2007).
[CrossRef]

K. S. Lau, C. H. Tan, B. K. Ng, K. F. Li, R. C. Tozer, J. P. R. David, and G. J. Rees, “Excess noise measurement in avalanche photodiodes using a transimpedance amplifier front-end,” Meas. Sci. Technol.17(7), 1941–1946 (2006).
[CrossRef]

C. H. Tan, G. J. Rees, P. A. Houston, J. S. Ng, W. K. Ng, and J. P. R. David, “Temperature dependence of electron impact ionization in In0.53Ga0.47As,” Appl. Phys. Lett.84(13), 2322–2324 (2004).
[CrossRef]

Tan, L. J. J.

L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Q. Yahong, and J. P. R. David, “Temperature dependence of avalanche breakdown in InP and InAlAs,” IEEE J. Quantum Electron.46(8), 1153–1157 (2010).
[CrossRef]

Tarof, L. E.

C. L. F. Ma, M. J. Deen, L. E. Tarof, and J. C. H. Yu, “Temperature dependence of breakdown voltages in separate absorption, grading, charge, and multiplication InP/InGaAs avalanche photodiodes,” IEEE Trans. Electron. Dev.42(5), 810–818 (1995).
[CrossRef]

J. Yu, L. E. Tarof, R. Bruce, D. G. Knight, K. Visvanatha, and T. Baird, “Noise performance of separate absorption, grading, charge and multiplication InP/InGaAs avalanche photodiodes,” IEEE Photon. Technol. Lett.6(5), 632–634 (1994).
[CrossRef]

Teich, M. C.

B. E. A. Saleh, M. M. Hayat, and M. C. Teich, “Effect of dead space on the excess noise factor and time response of avalanche photodiodes,” IEEE Trans. Electron. Dev.37(9), 1976–1984 (1990).
[CrossRef]

Tozer, R. C.

K. S. Lau, C. H. Tan, B. K. Ng, K. F. Li, R. C. Tozer, J. P. R. David, and G. J. Rees, “Excess noise measurement in avalanche photodiodes using a transimpedance amplifier front-end,” Meas. Sci. Technol.17(7), 1941–1946 (2006).
[CrossRef]

Vines, P.

A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011).
[CrossRef]

Visvanatha, K.

J. Yu, L. E. Tarof, R. Bruce, D. G. Knight, K. Visvanatha, and T. Baird, “Noise performance of separate absorption, grading, charge and multiplication InP/InGaAs avalanche photodiodes,” IEEE Photon. Technol. Lett.6(5), 632–634 (1994).
[CrossRef]

Vurgaftman, I.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys.89(11), 5815–5875 (2001).
[CrossRef]

Wan, C.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater.35(6), 1166–1173 (2006).
[CrossRef]

Xiao, Y. G.

Y. G. Xiao and M. J. Deen, “Temperature dependent studies of InP/InGaAs avalanche photodiodes based on time domain modeling,” IEEE Trans. Electron. Dev.48(4), 661–670 (2001).
[CrossRef]

Yahong, Q.

L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Q. Yahong, and J. P. R. David, “Temperature dependence of avalanche breakdown in InP and InAlAs,” IEEE J. Quantum Electron.46(8), 1153–1157 (2010).
[CrossRef]

Yu, J.

J. Yu, L. E. Tarof, R. Bruce, D. G. Knight, K. Visvanatha, and T. Baird, “Noise performance of separate absorption, grading, charge and multiplication InP/InGaAs avalanche photodiodes,” IEEE Photon. Technol. Lett.6(5), 632–634 (1994).
[CrossRef]

Yu, J. C. H.

C. L. F. Ma, M. J. Deen, L. E. Tarof, and J. C. H. Yu, “Temperature dependence of breakdown voltages in separate absorption, grading, charge, and multiplication InP/InGaAs avalanche photodiodes,” IEEE Trans. Electron. Dev.42(5), 810–818 (1995).
[CrossRef]

Yuan, P.

X. G. Zheng, P. Yuan, X. Sun, G. S. Kinsey, A. L. Holmes, B. G. Streetman, and J. C. Campbell, “Temperature dependence of the ionization coefficients of AlxGa1-xAs,” IEEE J. Quantum Electron.36(10), 1168–1173 (2000).
[CrossRef]

Zheng, X. G.

X. G. Zheng, P. Yuan, X. Sun, G. S. Kinsey, A. L. Holmes, B. G. Streetman, and J. C. Campbell, “Temperature dependence of the ionization coefficients of AlxGa1-xAs,” IEEE J. Quantum Electron.36(10), 1168–1173 (2000).
[CrossRef]

Appl. Phys. Lett.

S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, “Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping,” Appl. Phys. Lett.101, 151124 (2012).

C. H. Grein and H. Ehrenreich, “Impact ionization enhancements in AlxGa1 - xSb avalanche photodiodes,” Appl. Phys. Lett.77(19), 3048–3050 (2000).
[CrossRef]

C. H. Tan, G. J. Rees, P. A. Houston, J. S. Ng, W. K. Ng, and J. P. R. David, “Temperature dependence of electron impact ionization in In0.53Ga0.47As,” Appl. Phys. Lett.84(13), 2322–2324 (2004).
[CrossRef]

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett.93, 111107 (2008).

Electron. Lett.

H. Kanbe, “Temperature dependence of multiplication noise in Silicon avalanche photodiodes,” Electron. Lett.14(17), 539–541 (1978).
[CrossRef]

IEEE J. Quantum Electron.

L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Q. Yahong, and J. P. R. David, “Temperature dependence of avalanche breakdown in InP and InAlAs,” IEEE J. Quantum Electron.46(8), 1153–1157 (2010).
[CrossRef]

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011).
[CrossRef]

A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011).
[CrossRef]

X. G. Zheng, P. Yuan, X. Sun, G. S. Kinsey, A. L. Holmes, B. G. Streetman, and J. C. Campbell, “Temperature dependence of the ionization coefficients of AlxGa1-xAs,” IEEE J. Quantum Electron.36(10), 1168–1173 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. P. R. David and C. H. Tan, “Material considerations for avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron.14(4), 998–1009 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Extremely low excess noise in InAs electron avalanche photodiodes,” IEEE Photon. Technol. Lett.21(13), 866–868 (2009).
[CrossRef]

J. Yu, L. E. Tarof, R. Bruce, D. G. Knight, K. Visvanatha, and T. Baird, “Noise performance of separate absorption, grading, charge and multiplication InP/InGaAs avalanche photodiodes,” IEEE Photon. Technol. Lett.6(5), 632–634 (1994).
[CrossRef]

IEEE Trans. Electron. Dev.

Y. G. Xiao and M. J. Deen, “Temperature dependent studies of InP/InGaAs avalanche photodiodes based on time domain modeling,” IEEE Trans. Electron. Dev.48(4), 661–670 (2001).
[CrossRef]

C. L. F. Ma, M. J. Deen, L. E. Tarof, and J. C. H. Yu, “Temperature dependence of breakdown voltages in separate absorption, grading, charge, and multiplication InP/InGaAs avalanche photodiodes,” IEEE Trans. Electron. Dev.42(5), 810–818 (1995).
[CrossRef]

D. J. Massey, J. P. R. David, and G. J. Rees, “Temperature dependence of impact ionization in submicrometer silicon devices,” IEEE Trans. Electron. Dev.53(9), 2328–2334 (2006).
[CrossRef]

C. Groves, R. Ghin, J. P. R. David, and G. J. Rees, “Temperature dependence of impact ionization in GaAs,” IEEE Trans. Electron. Dev.50(10), 2027–2031 (2003).
[CrossRef]

R. J. McIntyre, “Multiplication noise in uniform avalanche diodes,” IEEE Trans. Electron. Dev.13(1), 164–168 (1966).
[CrossRef]

S. A. Plimmer, J. P. R. David, and D. S. Ong, “The merits and limitations of local impact ionization theory,” IEEE Trans. Electron. Dev.47(5), 1080–1088 (2000).
[CrossRef]

B. E. A. Saleh, M. M. Hayat, and M. C. Teich, “Effect of dead space on the excess noise factor and time response of avalanche photodiodes,” IEEE Trans. Electron. Dev.37(9), 1976–1984 (1990).
[CrossRef]

A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Impact ionization in InAs electron avalanche photodiodes,” IEEE Trans. Electron. Dev.57(10), 2631–2638 (2010).
[CrossRef]

J. Appl. Phys.

D. S. Ong, K. F. Li, G. J. Rees, J. P. R. David, and P. N. Robson, “A simple model to determine multiplication and noise in avalanche photodiodes,” J. Appl. Phys.83(6), 3426–3428 (1998).
[CrossRef]

S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1 - xAs, and In1-xGaxAsyP1-y,” J. Appl. Phys.66(12), 6030–6040 (1989).
[CrossRef]

J. Bude and K. Hess, “Thresholds of impact ionization in semiconductors,” J. Appl. Phys.72(8), 3554–3561 (1992).
[CrossRef]

Z. M. Fang, K. Y. Ma, D. H. Jaw, R. M. Cohen, and G. B. Stringfellow, “Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy,” J. Appl. Phys.67(11), 7034–7039 (1990).
[CrossRef]

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys.89(11), 5815–5875 (2001).
[CrossRef]

J. Electron. Mater.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater.35(6), 1166–1173 (2006).
[CrossRef]

Meas. Sci. Technol.

K. S. Lau, C. H. Tan, B. K. Ng, K. F. Li, R. C. Tozer, J. P. R. David, and G. J. Rees, “Excess noise measurement in avalanche photodiodes using a transimpedance amplifier front-end,” Meas. Sci. Technol.17(7), 1941–1946 (2006).
[CrossRef]

Opt. Express

Opto-Electron. Rev.

P. Norton, “HgCdTe infrared detectors,” Opto-Electron. Rev.10, 159–174 (2002).

Phys. Rev. B

J. R. Chelikowsky and M. L. Cohen, “Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors,” Phys. Rev. B14(2), 556–582 (1976).
[CrossRef]

Phys. Status Solidi

P. J. Ker, A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Low noise high responsivity InAs electron avalanche photodiodes for infrared sensing,” Phys. Status Solidi9(2c), 310–313 (2012).
[CrossRef]

Proc. SPIE

G. J. Rees and J. P. R. David, “Why small avalanche photodiodes are beautiful,” Proc. SPIE4999, 349–362 (2003).
[CrossRef]

A. R. J. Marshall, C. H. Tan, J. P. R. David, J. S. Ng, and M. Hopkinson, “Fabrication of InAs photodiodes with reduced surface leakage current,” Proc. SPIE6740, 67400H (2007).
[CrossRef]

Sov. Phys. Semicond.

M. P. Mikhailova, M. M. Smirnova, and S. V. Slobodchikov, “Carrier multiplication in InAs and InGaAs p-n junctions and their ionization coefficients,” Sov. Phys. Semicond.10, 509–513 (1976).

Other

V. G. Luppov, Frequency response of low frequency probes (Wilmington, MA: Janis Research Company 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic cross sectional view of the InAs p-i-n diode.

Fig. 2
Fig. 2

Avalanche gain of the InAs p-i-n diode at 77, 100, 150, 200, 250 and 295 K. Inset shows the temperature dependent avalanche gain at different bias voltages.

Fig. 3
Fig. 3

Me (■), reverse leakage current (▼) and photocurrent (●) measured on a 250-µm diameter InAs p-i-n diode during the noise measurement at an intermediate T = 200 K.

Fig. 4
Fig. 4

Fe measured on the InAs p-i-n diode at 77, 100, 150, 200 and 250 K (opened symbols) under top illumination compared to previous results (closed symbols) at room temperature (square) [5] and 77 K (circle) [10]. Reference local model line of k = 0 (solid line). Inset shows the excess noise factors calculated using the local model for k = 0 to 0.2 with an increment of 0.05.

Fig. 5
Fig. 5

An example of the measured Fe at Me = 10 from 10 to 300 MHz. Inset shows the normalized frequency response of the DC-probe for the low temperature probe station [31].

Fig. 6
Fig. 6

Electric field dependent measured Me (symbols) and the RPL simulated Me (dashed-lines) from 77 to 250 K.

Tables (1)

Tables Icon

Table 1 Comparison between the Gain-Normalized Dark Current Densities and Avalanche Gains at a Bias Voltage of 12 V at 77, 200 and 295 K.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N p =2q I pr M 2 ZF

Metrics