Abstract

The temperature dependence of the thermo-optic effect in cryogenically cooled Yb:YAG ceramics was evaluated by measuring the thermo-optic coefficient (the derivative of refractive index with respect to temperature, i.e., dn/dT), thermal expansion coefficient (α), and thermal conductivity (κ) between 70 and 300 K. These parameters significantly improved at low temperature. Observed values indicated that a laser gain medium cooled to 70 K can sustain a thermal load up to 20 times higher than that at 300 K, for comparable thermo-optic effects. To our best knowledge, this is the first quantitative evaluation of the improvement in thermo-optic characteristics of cryogenically cooled Yb:YAG ceramics.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Korsunsky, J. Liu, D. Laundy, M. Golshan, and K. Kim, “Residual elastic strain due to laser shock peening,” J. Strain Analysis41(2), 113–120 (2006).
    [CrossRef]
  2. K. W. D. Ledingham, P. McKenna, and R. P. Singhal, “Applications for nuclear phenomena generated by ultra-intense lasers,” Science300(5622), 1107–1111 (2003).
    [CrossRef] [PubMed]
  3. J. D. Kmetec, C. L. Gordon, J. J. Macklin, B. E. Lemoff, G. S. Brown, and S. E. Harris, “MeV X-ray generation with a femtosecond laser,” Phys. Rev. Lett.68(10), 1527–1530 (1992).
    [CrossRef] [PubMed]
  4. R. Yasuhara, M. Yoshikawa, M. Morimoto, I. Yamada, K. Kawahata, H. Funaba, Y. Shima, J. Kohagura, M. Sakamoto, Y. Nakashima, T. Imai, and T. Minami, “Design of the polarization multi-pass Thomson scattering system,” Rev. Sci. Instrum.83(10), 10E326 (2012).
    [CrossRef] [PubMed]
  5. E. I. Moses, “Ignition on the national ignition facility: a path towards inertial fusion energy,” Nuc. Fus.49(10), 104022 (2009).
    [CrossRef]
  6. T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, “Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters,” Nature398(6727), 489–492 (1999).
    [CrossRef]
  7. A. Bayramian, J. Armstrong, G. Beer, R. Campbell, B. Chai, R. Cross, A. Erlandson, Y. Fei, B. Freitas, R. Kent, J. Menapace, W. Molander, K. Schaffers, C. Siders, S. Sutton, J. Tassano, S. Telford, C. Ebbers, J. Caird, and C. Barty, “High-average-power femto-petawatt laser pumped by the mercury laser facility,” J. Opt. Soc. Am. B25(7), B57–B61 (2008).
    [CrossRef]
  8. R. Yasuhara, T. Kawashima, T. Sekine, T. Kurita, T. Ikegawa, O. Matsumoto, M. Miyamoto, H. Kan, H. Yoshida, J. Kawanaka, M. Nakatsuka, N. Miyanaga, Y. Izawa, and T. Kanabe, “213 W average power of 2.4 GW pulsed thermally controlled Nd:glass zigzag slab laser with a stimulated Brillouin scattering mirror,” Opt. Lett.33(15), 1711–1713 (2008).
    [CrossRef] [PubMed]
  9. M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, J. Hein, and M. C. Kaluza, “Temporal pulse control of a multi-10 TW diode-pumped Yb:glass laser,” Appl. Phys. B101(1–2), 93–102 (2010).
    [CrossRef]
  10. J.-C. Chanteloup and D. Albach, “Current status on high average power and energy diode pumped solid state lasers,” IEEE Photon. J.3(2), 245–248 (2011).
    [CrossRef]
  11. D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett.29(18), 2154–2156 (2004).
    [CrossRef] [PubMed]
  12. H. Furuse, J. Kawanaka, K. Takeshita, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, and S. Ishii, “Total-reflection active-mirror laser with cryogenic Yb:YAG ceramics,” Opt. Lett.34(21), 3439–3441 (2009).
    [CrossRef] [PubMed]
  13. N. Vretenar, T. C. Newell, T. Carson, P. Peterson, T. Lucas, W. P. Latham, H. Bostanci, J. J. Lindauer, B. A. Saarloos, and D. P. Rini, “Cryogenic ceramic 277 watt Yb:YAG thin-disk laser,” Opt. Eng.51(1), 014201 (2012).
    [CrossRef]
  14. J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically cooled Yb:YAG laser,” Laser Phys.20(5), 1079–1084 (2010).
    [CrossRef]
  15. S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. Siebold, M. Loeser, C. Hernandez-Gomez, and J. L. Collier, “High-efficiency 10 J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier,” Opt. Lett.37(12), 2175–2177 (2012).
    [CrossRef] [PubMed]
  16. J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, J. Hein, M. Wolf, J. Körner, and B. J. L. Garrec, “Multi kJ level laser concepts for HiPER facility,” J. Phys.: Conf. Ser.244(1), 012010 (2010).
    [CrossRef]
  17. M. Sawicka, M. Divoky, J. Novak, A. Lucianetti, B. Rus, and T. Mocek, “Modeling of amplified spontaneous emission, heat deposition, and energy extraction in cryogenically cooled multislab Yb3+:YAG laser amplifier for the HiLASE Project,” J. Opt. Soc. Am. B29(6), 1270–1276 (2012).
    [CrossRef]
  18. J. D. Foster and L. M. Osterink, “Index of refraction and expansion thermal coefficients of Nd:YAG,” Appl. Opt.7(12), 2428–2429 (1968).
    [CrossRef] [PubMed]
  19. R. Wynne, J. L. Daneu, and T. Y. Fan, “Thermal coefficients of the expansion and refractive index in YAG,” Appl. Opt.38(15), 3282–3284 (1999).
    [CrossRef] [PubMed]
  20. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys.98, 103514 (2005).
    [CrossRef]
  21. D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 587–599 (2005).
    [CrossRef]
  22. V. Cardinali, E. Marmois, B. Le Garrec, and G. Bourdet, “Determination of the thermo-optic coefficient dn/dT of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature,” Opt. Mater.34(6), 990–994 (2012).
    [CrossRef]
  23. T. Numazawa, O. Arai, Q. Hu, and T. Noda, “Thermal conductivity measurements for evaluation of crystal perfection at low temperatures,” Meas. Sci. Technol.12(12), 2089–2094 (2001).
    [CrossRef]
  24. H. Yagi, T. Yanagitani, T. Numazawa, and K. Ueda, “The physical properties of transparent Y3Al5O12: Elastic modulus at high temperature and thermal conductivity at low temperature,” Ceram. Int.33(5), 711–714 (2007).
    [CrossRef]
  25. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
    [CrossRef]
  26. A. Iwamoto, R. Maekawa, and T. Mito, “Development of evaluation technique on thermal impedance between dissimilar solids,” Advances in Cryogenic Engineering: Transactions of the Cryogenic Engineering Conference 49(204), 643–649 (2004).
  27. J. Callaway, “Model for lattice thermal conductivity at low temperatures,” Phys. Rev.113(4), 1046–1051 (1959).
    [CrossRef]
  28. H. Furuse, J. Kawanaka, N. Miyanaga, H. Chosrowjan, M. Fujita, K. Takeshita, and Y. Izawa, “Output characteristics of high power cryogenic Yb:YAG TRAM laser oscillator,” Opt. Express20(19), 21739–21748 (2012).
    [CrossRef] [PubMed]

2012 (6)

R. Yasuhara, M. Yoshikawa, M. Morimoto, I. Yamada, K. Kawahata, H. Funaba, Y. Shima, J. Kohagura, M. Sakamoto, Y. Nakashima, T. Imai, and T. Minami, “Design of the polarization multi-pass Thomson scattering system,” Rev. Sci. Instrum.83(10), 10E326 (2012).
[CrossRef] [PubMed]

N. Vretenar, T. C. Newell, T. Carson, P. Peterson, T. Lucas, W. P. Latham, H. Bostanci, J. J. Lindauer, B. A. Saarloos, and D. P. Rini, “Cryogenic ceramic 277 watt Yb:YAG thin-disk laser,” Opt. Eng.51(1), 014201 (2012).
[CrossRef]

V. Cardinali, E. Marmois, B. Le Garrec, and G. Bourdet, “Determination of the thermo-optic coefficient dn/dT of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature,” Opt. Mater.34(6), 990–994 (2012).
[CrossRef]

M. Sawicka, M. Divoky, J. Novak, A. Lucianetti, B. Rus, and T. Mocek, “Modeling of amplified spontaneous emission, heat deposition, and energy extraction in cryogenically cooled multislab Yb3+:YAG laser amplifier for the HiLASE Project,” J. Opt. Soc. Am. B29(6), 1270–1276 (2012).
[CrossRef]

S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. Siebold, M. Loeser, C. Hernandez-Gomez, and J. L. Collier, “High-efficiency 10 J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier,” Opt. Lett.37(12), 2175–2177 (2012).
[CrossRef] [PubMed]

H. Furuse, J. Kawanaka, N. Miyanaga, H. Chosrowjan, M. Fujita, K. Takeshita, and Y. Izawa, “Output characteristics of high power cryogenic Yb:YAG TRAM laser oscillator,” Opt. Express20(19), 21739–21748 (2012).
[CrossRef] [PubMed]

2011 (1)

J.-C. Chanteloup and D. Albach, “Current status on high average power and energy diode pumped solid state lasers,” IEEE Photon. J.3(2), 245–248 (2011).
[CrossRef]

2010 (3)

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, J. Hein, and M. C. Kaluza, “Temporal pulse control of a multi-10 TW diode-pumped Yb:glass laser,” Appl. Phys. B101(1–2), 93–102 (2010).
[CrossRef]

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically cooled Yb:YAG laser,” Laser Phys.20(5), 1079–1084 (2010).
[CrossRef]

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, J. Hein, M. Wolf, J. Körner, and B. J. L. Garrec, “Multi kJ level laser concepts for HiPER facility,” J. Phys.: Conf. Ser.244(1), 012010 (2010).
[CrossRef]

2009 (2)

2008 (2)

2007 (2)

H. Yagi, T. Yanagitani, T. Numazawa, and K. Ueda, “The physical properties of transparent Y3Al5O12: Elastic modulus at high temperature and thermal conductivity at low temperature,” Ceram. Int.33(5), 711–714 (2007).
[CrossRef]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

2006 (1)

A. M. Korsunsky, J. Liu, D. Laundy, M. Golshan, and K. Kim, “Residual elastic strain due to laser shock peening,” J. Strain Analysis41(2), 113–120 (2006).
[CrossRef]

2005 (2)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys.98, 103514 (2005).
[CrossRef]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 587–599 (2005).
[CrossRef]

2004 (1)

2003 (1)

K. W. D. Ledingham, P. McKenna, and R. P. Singhal, “Applications for nuclear phenomena generated by ultra-intense lasers,” Science300(5622), 1107–1111 (2003).
[CrossRef] [PubMed]

2001 (1)

T. Numazawa, O. Arai, Q. Hu, and T. Noda, “Thermal conductivity measurements for evaluation of crystal perfection at low temperatures,” Meas. Sci. Technol.12(12), 2089–2094 (2001).
[CrossRef]

1999 (2)

R. Wynne, J. L. Daneu, and T. Y. Fan, “Thermal coefficients of the expansion and refractive index in YAG,” Appl. Opt.38(15), 3282–3284 (1999).
[CrossRef] [PubMed]

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, “Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters,” Nature398(6727), 489–492 (1999).
[CrossRef]

1992 (1)

J. D. Kmetec, C. L. Gordon, J. J. Macklin, B. E. Lemoff, G. S. Brown, and S. E. Harris, “MeV X-ray generation with a femtosecond laser,” Phys. Rev. Lett.68(10), 1527–1530 (1992).
[CrossRef] [PubMed]

1968 (1)

1959 (1)

J. Callaway, “Model for lattice thermal conductivity at low temperatures,” Phys. Rev.113(4), 1046–1051 (1959).
[CrossRef]

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys.98, 103514 (2005).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett.29(18), 2154–2156 (2004).
[CrossRef] [PubMed]

Albach, D.

J.-C. Chanteloup and D. Albach, “Current status on high average power and energy diode pumped solid state lasers,” IEEE Photon. J.3(2), 245–248 (2011).
[CrossRef]

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, J. Hein, M. Wolf, J. Körner, and B. J. L. Garrec, “Multi kJ level laser concepts for HiPER facility,” J. Phys.: Conf. Ser.244(1), 012010 (2010).
[CrossRef]

Arai, O.

T. Numazawa, O. Arai, Q. Hu, and T. Noda, “Thermal conductivity measurements for evaluation of crystal perfection at low temperatures,” Meas. Sci. Technol.12(12), 2089–2094 (2001).
[CrossRef]

Armstrong, J.

Banerjee, S.

S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. Siebold, M. Loeser, C. Hernandez-Gomez, and J. L. Collier, “High-efficiency 10 J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier,” Opt. Lett.37(12), 2175–2177 (2012).
[CrossRef] [PubMed]

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, J. Hein, M. Wolf, J. Körner, and B. J. L. Garrec, “Multi kJ level laser concepts for HiPER facility,” J. Phys.: Conf. Ser.244(1), 012010 (2010).
[CrossRef]

Barty, C.

Bayramian, A.

Beer, G.

Bödefeld, R.

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, J. Hein, and M. C. Kaluza, “Temporal pulse control of a multi-10 TW diode-pumped Yb:glass laser,” Appl. Phys. B101(1–2), 93–102 (2010).
[CrossRef]

Bostanci, H.

N. Vretenar, T. C. Newell, T. Carson, P. Peterson, T. Lucas, W. P. Latham, H. Bostanci, J. J. Lindauer, B. A. Saarloos, and D. P. Rini, “Cryogenic ceramic 277 watt Yb:YAG thin-disk laser,” Opt. Eng.51(1), 014201 (2012).
[CrossRef]

Bourdet, G.

V. Cardinali, E. Marmois, B. Le Garrec, and G. Bourdet, “Determination of the thermo-optic coefficient dn/dT of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature,” Opt. Mater.34(6), 990–994 (2012).
[CrossRef]

Brown, D. C.

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 587–599 (2005).
[CrossRef]

Brown, G. S.

J. D. Kmetec, C. L. Gordon, J. J. Macklin, B. E. Lemoff, G. S. Brown, and S. E. Harris, “MeV X-ray generation with a femtosecond laser,” Phys. Rev. Lett.68(10), 1527–1530 (1992).
[CrossRef] [PubMed]

Caird, J.

Callaway, J.

J. Callaway, “Model for lattice thermal conductivity at low temperatures,” Phys. Rev.113(4), 1046–1051 (1959).
[CrossRef]

Campbell, R.

Cardinali, V.

V. Cardinali, E. Marmois, B. Le Garrec, and G. Bourdet, “Determination of the thermo-optic coefficient dn/dT of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature,” Opt. Mater.34(6), 990–994 (2012).
[CrossRef]

Carson, T.

N. Vretenar, T. C. Newell, T. Carson, P. Peterson, T. Lucas, W. P. Latham, H. Bostanci, J. J. Lindauer, B. A. Saarloos, and D. P. Rini, “Cryogenic ceramic 277 watt Yb:YAG thin-disk laser,” Opt. Eng.51(1), 014201 (2012).
[CrossRef]

Chai, B.

Chann, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Chanteloup, J.-C.

J.-C. Chanteloup and D. Albach, “Current status on high average power and energy diode pumped solid state lasers,” IEEE Photon. J.3(2), 245–248 (2011).
[CrossRef]

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, J. Hein, M. Wolf, J. Körner, and B. J. L. Garrec, “Multi kJ level laser concepts for HiPER facility,” J. Phys.: Conf. Ser.244(1), 012010 (2010).
[CrossRef]

Chosrowjan, H.

Collier, J. L.

S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. Siebold, M. Loeser, C. Hernandez-Gomez, and J. L. Collier, “High-efficiency 10 J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier,” Opt. Lett.37(12), 2175–2177 (2012).
[CrossRef] [PubMed]

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, J. Hein, M. Wolf, J. Körner, and B. J. L. Garrec, “Multi kJ level laser concepts for HiPER facility,” J. Phys.: Conf. Ser.244(1), 012010 (2010).
[CrossRef]

Cowan, T. E.

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, “Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters,” Nature398(6727), 489–492 (1999).
[CrossRef]

Cross, R.

Daneu, J. L.

Ditmire, T.

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, “Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters,” Nature398(6727), 489–492 (1999).
[CrossRef]

Divoky, M.

Ebbers, C.

Erlandson, A.

Ertel, K.

S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. Siebold, M. Loeser, C. Hernandez-Gomez, and J. L. Collier, “High-efficiency 10 J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier,” Opt. Lett.37(12), 2175–2177 (2012).
[CrossRef] [PubMed]

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, J. Hein, M. Wolf, J. Körner, and B. J. L. Garrec, “Multi kJ level laser concepts for HiPER facility,” J. Phys.: Conf. Ser.244(1), 012010 (2010).
[CrossRef]

Fan, T. Y.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys.98, 103514 (2005).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett.29(18), 2154–2156 (2004).
[CrossRef] [PubMed]

R. Wynne, J. L. Daneu, and T. Y. Fan, “Thermal coefficients of the expansion and refractive index in YAG,” Appl. Opt.38(15), 3282–3284 (1999).
[CrossRef] [PubMed]

Fei, Y.

Foster, J. D.

Freitas, B.

Fujita, M.

Funaba, H.

R. Yasuhara, M. Yoshikawa, M. Morimoto, I. Yamada, K. Kawahata, H. Funaba, Y. Shima, J. Kohagura, M. Sakamoto, Y. Nakashima, T. Imai, and T. Minami, “Design of the polarization multi-pass Thomson scattering system,” Rev. Sci. Instrum.83(10), 10E326 (2012).
[CrossRef] [PubMed]

Furuse, H.

Garrec, B. J. L.

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, J. Hein, M. Wolf, J. Körner, and B. J. L. Garrec, “Multi kJ level laser concepts for HiPER facility,” J. Phys.: Conf. Ser.244(1), 012010 (2010).
[CrossRef]

Golshan, M.

A. M. Korsunsky, J. Liu, D. Laundy, M. Golshan, and K. Kim, “Residual elastic strain due to laser shock peening,” J. Strain Analysis41(2), 113–120 (2006).
[CrossRef]

Gordon, C. L.

J. D. Kmetec, C. L. Gordon, J. J. Macklin, B. E. Lemoff, G. S. Brown, and S. E. Harris, “MeV X-ray generation with a femtosecond laser,” Phys. Rev. Lett.68(10), 1527–1530 (1992).
[CrossRef] [PubMed]

Harris, S. E.

J. D. Kmetec, C. L. Gordon, J. J. Macklin, B. E. Lemoff, G. S. Brown, and S. E. Harris, “MeV X-ray generation with a femtosecond laser,” Phys. Rev. Lett.68(10), 1527–1530 (1992).
[CrossRef] [PubMed]

Hays, G.

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, “Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters,” Nature398(6727), 489–492 (1999).
[CrossRef]

Hein, J.

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, J. Hein, M. Wolf, J. Körner, and B. J. L. Garrec, “Multi kJ level laser concepts for HiPER facility,” J. Phys.: Conf. Ser.244(1), 012010 (2010).
[CrossRef]

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, J. Hein, and M. C. Kaluza, “Temporal pulse control of a multi-10 TW diode-pumped Yb:glass laser,” Appl. Phys. B101(1–2), 93–102 (2010).
[CrossRef]

Hernandez-Gomez, C.

S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. Siebold, M. Loeser, C. Hernandez-Gomez, and J. L. Collier, “High-efficiency 10 J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier,” Opt. Lett.37(12), 2175–2177 (2012).
[CrossRef] [PubMed]

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, J. Hein, M. Wolf, J. Körner, and B. J. L. Garrec, “Multi kJ level laser concepts for HiPER facility,” J. Phys.: Conf. Ser.244(1), 012010 (2010).
[CrossRef]

Hornung, M.

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, J. Hein, and M. C. Kaluza, “Temporal pulse control of a multi-10 TW diode-pumped Yb:glass laser,” Appl. Phys. B101(1–2), 93–102 (2010).
[CrossRef]

Hu, Q.

T. Numazawa, O. Arai, Q. Hu, and T. Noda, “Thermal conductivity measurements for evaluation of crystal perfection at low temperatures,” Meas. Sci. Technol.12(12), 2089–2094 (2001).
[CrossRef]

Ikegawa, T.

Imai, T.

R. Yasuhara, M. Yoshikawa, M. Morimoto, I. Yamada, K. Kawahata, H. Funaba, Y. Shima, J. Kohagura, M. Sakamoto, Y. Nakashima, T. Imai, and T. Minami, “Design of the polarization multi-pass Thomson scattering system,” Rev. Sci. Instrum.83(10), 10E326 (2012).
[CrossRef] [PubMed]

Imasaki, K.

Ishii, S.

Izawa, Y.

Kaluza, M. C.

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, J. Hein, and M. C. Kaluza, “Temporal pulse control of a multi-10 TW diode-pumped Yb:glass laser,” Appl. Phys. B101(1–2), 93–102 (2010).
[CrossRef]

Kan, H.

Kanabe, T.

Kawahata, K.

R. Yasuhara, M. Yoshikawa, M. Morimoto, I. Yamada, K. Kawahata, H. Funaba, Y. Shima, J. Kohagura, M. Sakamoto, Y. Nakashima, T. Imai, and T. Minami, “Design of the polarization multi-pass Thomson scattering system,” Rev. Sci. Instrum.83(10), 10E326 (2012).
[CrossRef] [PubMed]

Kawanaka, J.

Kawashima, T.

Kent, R.

Keppler, S.

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, J. Hein, and M. C. Kaluza, “Temporal pulse control of a multi-10 TW diode-pumped Yb:glass laser,” Appl. Phys. B101(1–2), 93–102 (2010).
[CrossRef]

Kessler, A.

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, J. Hein, and M. C. Kaluza, “Temporal pulse control of a multi-10 TW diode-pumped Yb:glass laser,” Appl. Phys. B101(1–2), 93–102 (2010).
[CrossRef]

Kim, K.

A. M. Korsunsky, J. Liu, D. Laundy, M. Golshan, and K. Kim, “Residual elastic strain due to laser shock peening,” J. Strain Analysis41(2), 113–120 (2006).
[CrossRef]

Kmetec, J. D.

J. D. Kmetec, C. L. Gordon, J. J. Macklin, B. E. Lemoff, G. S. Brown, and S. E. Harris, “MeV X-ray generation with a femtosecond laser,” Phys. Rev. Lett.68(10), 1527–1530 (1992).
[CrossRef] [PubMed]

Kohagura, J.

R. Yasuhara, M. Yoshikawa, M. Morimoto, I. Yamada, K. Kawahata, H. Funaba, Y. Shima, J. Kohagura, M. Sakamoto, Y. Nakashima, T. Imai, and T. Minami, “Design of the polarization multi-pass Thomson scattering system,” Rev. Sci. Instrum.83(10), 10E326 (2012).
[CrossRef] [PubMed]

Körner, J.

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, J. Hein, M. Wolf, J. Körner, and B. J. L. Garrec, “Multi kJ level laser concepts for HiPER facility,” J. Phys.: Conf. Ser.244(1), 012010 (2010).
[CrossRef]

Korsunsky, A. M.

A. M. Korsunsky, J. Liu, D. Laundy, M. Golshan, and K. Kim, “Residual elastic strain due to laser shock peening,” J. Strain Analysis41(2), 113–120 (2006).
[CrossRef]

Kurita, T.

Latham, W. P.

N. Vretenar, T. C. Newell, T. Carson, P. Peterson, T. Lucas, W. P. Latham, H. Bostanci, J. J. Lindauer, B. A. Saarloos, and D. P. Rini, “Cryogenic ceramic 277 watt Yb:YAG thin-disk laser,” Opt. Eng.51(1), 014201 (2012).
[CrossRef]

Laundy, D.

A. M. Korsunsky, J. Liu, D. Laundy, M. Golshan, and K. Kim, “Residual elastic strain due to laser shock peening,” J. Strain Analysis41(2), 113–120 (2006).
[CrossRef]

Le Garrec, B.

V. Cardinali, E. Marmois, B. Le Garrec, and G. Bourdet, “Determination of the thermo-optic coefficient dn/dT of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature,” Opt. Mater.34(6), 990–994 (2012).
[CrossRef]

Ledingham, K. W. D.

K. W. D. Ledingham, P. McKenna, and R. P. Singhal, “Applications for nuclear phenomena generated by ultra-intense lasers,” Science300(5622), 1107–1111 (2003).
[CrossRef] [PubMed]

Lemoff, B. E.

J. D. Kmetec, C. L. Gordon, J. J. Macklin, B. E. Lemoff, G. S. Brown, and S. E. Harris, “MeV X-ray generation with a femtosecond laser,” Phys. Rev. Lett.68(10), 1527–1530 (1992).
[CrossRef] [PubMed]

Lindauer, J. J.

N. Vretenar, T. C. Newell, T. Carson, P. Peterson, T. Lucas, W. P. Latham, H. Bostanci, J. J. Lindauer, B. A. Saarloos, and D. P. Rini, “Cryogenic ceramic 277 watt Yb:YAG thin-disk laser,” Opt. Eng.51(1), 014201 (2012).
[CrossRef]

Liu, J.

A. M. Korsunsky, J. Liu, D. Laundy, M. Golshan, and K. Kim, “Residual elastic strain due to laser shock peening,” J. Strain Analysis41(2), 113–120 (2006).
[CrossRef]

Loeser, M.

Lucas, T.

N. Vretenar, T. C. Newell, T. Carson, P. Peterson, T. Lucas, W. P. Latham, H. Bostanci, J. J. Lindauer, B. A. Saarloos, and D. P. Rini, “Cryogenic ceramic 277 watt Yb:YAG thin-disk laser,” Opt. Eng.51(1), 014201 (2012).
[CrossRef]

Lucianetti, A.

M. Sawicka, M. Divoky, J. Novak, A. Lucianetti, B. Rus, and T. Mocek, “Modeling of amplified spontaneous emission, heat deposition, and energy extraction in cryogenically cooled multislab Yb3+:YAG laser amplifier for the HiLASE Project,” J. Opt. Soc. Am. B29(6), 1270–1276 (2012).
[CrossRef]

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, J. Hein, M. Wolf, J. Körner, and B. J. L. Garrec, “Multi kJ level laser concepts for HiPER facility,” J. Phys.: Conf. Ser.244(1), 012010 (2010).
[CrossRef]

Macklin, J. J.

J. D. Kmetec, C. L. Gordon, J. J. Macklin, B. E. Lemoff, G. S. Brown, and S. E. Harris, “MeV X-ray generation with a femtosecond laser,” Phys. Rev. Lett.68(10), 1527–1530 (1992).
[CrossRef] [PubMed]

Marmois, E.

V. Cardinali, E. Marmois, B. Le Garrec, and G. Bourdet, “Determination of the thermo-optic coefficient dn/dT of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature,” Opt. Mater.34(6), 990–994 (2012).
[CrossRef]

Mason, P. D.

S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. Siebold, M. Loeser, C. Hernandez-Gomez, and J. L. Collier, “High-efficiency 10 J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier,” Opt. Lett.37(12), 2175–2177 (2012).
[CrossRef] [PubMed]

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, J. Hein, M. Wolf, J. Körner, and B. J. L. Garrec, “Multi kJ level laser concepts for HiPER facility,” J. Phys.: Conf. Ser.244(1), 012010 (2010).
[CrossRef]

Matsumoto, O.

McKenna, P.

K. W. D. Ledingham, P. McKenna, and R. P. Singhal, “Applications for nuclear phenomena generated by ultra-intense lasers,” Science300(5622), 1107–1111 (2003).
[CrossRef] [PubMed]

Menapace, J.

Minami, T.

R. Yasuhara, M. Yoshikawa, M. Morimoto, I. Yamada, K. Kawahata, H. Funaba, Y. Shima, J. Kohagura, M. Sakamoto, Y. Nakashima, T. Imai, and T. Minami, “Design of the polarization multi-pass Thomson scattering system,” Rev. Sci. Instrum.83(10), 10E326 (2012).
[CrossRef] [PubMed]

Miyamoto, M.

Miyanaga, N.

Mocek, T.

Molander, W.

Morimoto, M.

R. Yasuhara, M. Yoshikawa, M. Morimoto, I. Yamada, K. Kawahata, H. Funaba, Y. Shima, J. Kohagura, M. Sakamoto, Y. Nakashima, T. Imai, and T. Minami, “Design of the polarization multi-pass Thomson scattering system,” Rev. Sci. Instrum.83(10), 10E326 (2012).
[CrossRef] [PubMed]

Moses, E. I.

E. I. Moses, “Ignition on the national ignition facility: a path towards inertial fusion energy,” Nuc. Fus.49(10), 104022 (2009).
[CrossRef]

Nakashima, Y.

R. Yasuhara, M. Yoshikawa, M. Morimoto, I. Yamada, K. Kawahata, H. Funaba, Y. Shima, J. Kohagura, M. Sakamoto, Y. Nakashima, T. Imai, and T. Minami, “Design of the polarization multi-pass Thomson scattering system,” Rev. Sci. Instrum.83(10), 10E326 (2012).
[CrossRef] [PubMed]

Nakatsuka, M.

Newell, T. C.

N. Vretenar, T. C. Newell, T. Carson, P. Peterson, T. Lucas, W. P. Latham, H. Bostanci, J. J. Lindauer, B. A. Saarloos, and D. P. Rini, “Cryogenic ceramic 277 watt Yb:YAG thin-disk laser,” Opt. Eng.51(1), 014201 (2012).
[CrossRef]

Noda, T.

T. Numazawa, O. Arai, Q. Hu, and T. Noda, “Thermal conductivity measurements for evaluation of crystal perfection at low temperatures,” Meas. Sci. Technol.12(12), 2089–2094 (2001).
[CrossRef]

Novak, J.

Numazawa, T.

H. Yagi, T. Yanagitani, T. Numazawa, and K. Ueda, “The physical properties of transparent Y3Al5O12: Elastic modulus at high temperature and thermal conductivity at low temperature,” Ceram. Int.33(5), 711–714 (2007).
[CrossRef]

T. Numazawa, O. Arai, Q. Hu, and T. Noda, “Thermal conductivity measurements for evaluation of crystal perfection at low temperatures,” Meas. Sci. Technol.12(12), 2089–2094 (2001).
[CrossRef]

Ochoa, J. R.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys.98, 103514 (2005).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett.29(18), 2154–2156 (2004).
[CrossRef] [PubMed]

Osterink, L. M.

Pearce, S. J.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically cooled Yb:YAG laser,” Laser Phys.20(5), 1079–1084 (2010).
[CrossRef]

Peterson, P.

N. Vretenar, T. C. Newell, T. Carson, P. Peterson, T. Lucas, W. P. Latham, H. Bostanci, J. J. Lindauer, B. A. Saarloos, and D. P. Rini, “Cryogenic ceramic 277 watt Yb:YAG thin-disk laser,” Opt. Eng.51(1), 014201 (2012).
[CrossRef]

Phillips, P. J.

Podleska, S.

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, J. Hein, and M. C. Kaluza, “Temporal pulse control of a multi-10 TW diode-pumped Yb:glass laser,” Appl. Phys. B101(1–2), 93–102 (2010).
[CrossRef]

Rini, D. P.

N. Vretenar, T. C. Newell, T. Carson, P. Peterson, T. Lucas, W. P. Latham, H. Bostanci, J. J. Lindauer, B. A. Saarloos, and D. P. Rini, “Cryogenic ceramic 277 watt Yb:YAG thin-disk laser,” Opt. Eng.51(1), 014201 (2012).
[CrossRef]

Ripin, D. J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys.98, 103514 (2005).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett.29(18), 2154–2156 (2004).
[CrossRef] [PubMed]

Rus, B.

Saarloos, B. A.

N. Vretenar, T. C. Newell, T. Carson, P. Peterson, T. Lucas, W. P. Latham, H. Bostanci, J. J. Lindauer, B. A. Saarloos, and D. P. Rini, “Cryogenic ceramic 277 watt Yb:YAG thin-disk laser,” Opt. Eng.51(1), 014201 (2012).
[CrossRef]

Saiki, T.

Sakamoto, M.

R. Yasuhara, M. Yoshikawa, M. Morimoto, I. Yamada, K. Kawahata, H. Funaba, Y. Shima, J. Kohagura, M. Sakamoto, Y. Nakashima, T. Imai, and T. Minami, “Design of the polarization multi-pass Thomson scattering system,” Rev. Sci. Instrum.83(10), 10E326 (2012).
[CrossRef] [PubMed]

Sävert, A.

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, J. Hein, and M. C. Kaluza, “Temporal pulse control of a multi-10 TW diode-pumped Yb:glass laser,” Appl. Phys. B101(1–2), 93–102 (2010).
[CrossRef]

Sawicka, M.

Schaffers, K.

Schnepp, M.

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, J. Hein, and M. C. Kaluza, “Temporal pulse control of a multi-10 TW diode-pumped Yb:glass laser,” Appl. Phys. B101(1–2), 93–102 (2010).
[CrossRef]

Sekine, T.

Shima, Y.

R. Yasuhara, M. Yoshikawa, M. Morimoto, I. Yamada, K. Kawahata, H. Funaba, Y. Shima, J. Kohagura, M. Sakamoto, Y. Nakashima, T. Imai, and T. Minami, “Design of the polarization multi-pass Thomson scattering system,” Rev. Sci. Instrum.83(10), 10E326 (2012).
[CrossRef] [PubMed]

Siders, C.

Siebold, M.

S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. Siebold, M. Loeser, C. Hernandez-Gomez, and J. L. Collier, “High-efficiency 10 J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier,” Opt. Lett.37(12), 2175–2177 (2012).
[CrossRef] [PubMed]

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, J. Hein, and M. C. Kaluza, “Temporal pulse control of a multi-10 TW diode-pumped Yb:glass laser,” Appl. Phys. B101(1–2), 93–102 (2010).
[CrossRef]

Singhal, R. P.

K. W. D. Ledingham, P. McKenna, and R. P. Singhal, “Applications for nuclear phenomena generated by ultra-intense lasers,” Science300(5622), 1107–1111 (2003).
[CrossRef] [PubMed]

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Sutton, S.

Takeshita, K.

Takeuchi, Y.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically cooled Yb:YAG laser,” Laser Phys.20(5), 1079–1084 (2010).
[CrossRef]

Tassano, J.

Telford, S.

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Ueda, K.

H. Yagi, T. Yanagitani, T. Numazawa, and K. Ueda, “The physical properties of transparent Y3Al5O12: Elastic modulus at high temperature and thermal conductivity at low temperature,” Ceram. Int.33(5), 711–714 (2007).
[CrossRef]

Vretenar, N.

N. Vretenar, T. C. Newell, T. Carson, P. Peterson, T. Lucas, W. P. Latham, H. Bostanci, J. J. Lindauer, B. A. Saarloos, and D. P. Rini, “Cryogenic ceramic 277 watt Yb:YAG thin-disk laser,” Opt. Eng.51(1), 014201 (2012).
[CrossRef]

Wachs, R.

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, J. Hein, and M. C. Kaluza, “Temporal pulse control of a multi-10 TW diode-pumped Yb:glass laser,” Appl. Phys. B101(1–2), 93–102 (2010).
[CrossRef]

Wharton, K. B.

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, “Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters,” Nature398(6727), 489–492 (1999).
[CrossRef]

Wolf, M.

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, J. Hein, M. Wolf, J. Körner, and B. J. L. Garrec, “Multi kJ level laser concepts for HiPER facility,” J. Phys.: Conf. Ser.244(1), 012010 (2010).
[CrossRef]

Wynne, R.

Yagi, H.

H. Yagi, T. Yanagitani, T. Numazawa, and K. Ueda, “The physical properties of transparent Y3Al5O12: Elastic modulus at high temperature and thermal conductivity at low temperature,” Ceram. Int.33(5), 711–714 (2007).
[CrossRef]

Yamada, I.

R. Yasuhara, M. Yoshikawa, M. Morimoto, I. Yamada, K. Kawahata, H. Funaba, Y. Shima, J. Kohagura, M. Sakamoto, Y. Nakashima, T. Imai, and T. Minami, “Design of the polarization multi-pass Thomson scattering system,” Rev. Sci. Instrum.83(10), 10E326 (2012).
[CrossRef] [PubMed]

Yanagitani, T.

H. Yagi, T. Yanagitani, T. Numazawa, and K. Ueda, “The physical properties of transparent Y3Al5O12: Elastic modulus at high temperature and thermal conductivity at low temperature,” Ceram. Int.33(5), 711–714 (2007).
[CrossRef]

Yanovsky, V. P.

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, “Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters,” Nature398(6727), 489–492 (1999).
[CrossRef]

Yasuhara, R.

R. Yasuhara, M. Yoshikawa, M. Morimoto, I. Yamada, K. Kawahata, H. Funaba, Y. Shima, J. Kohagura, M. Sakamoto, Y. Nakashima, T. Imai, and T. Minami, “Design of the polarization multi-pass Thomson scattering system,” Rev. Sci. Instrum.83(10), 10E326 (2012).
[CrossRef] [PubMed]

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically cooled Yb:YAG laser,” Laser Phys.20(5), 1079–1084 (2010).
[CrossRef]

R. Yasuhara, T. Kawashima, T. Sekine, T. Kurita, T. Ikegawa, O. Matsumoto, M. Miyamoto, H. Kan, H. Yoshida, J. Kawanaka, M. Nakatsuka, N. Miyanaga, Y. Izawa, and T. Kanabe, “213 W average power of 2.4 GW pulsed thermally controlled Nd:glass zigzag slab laser with a stimulated Brillouin scattering mirror,” Opt. Lett.33(15), 1711–1713 (2008).
[CrossRef] [PubMed]

Yoshida, A.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically cooled Yb:YAG laser,” Laser Phys.20(5), 1079–1084 (2010).
[CrossRef]

Yoshida, H.

Yoshikawa, M.

R. Yasuhara, M. Yoshikawa, M. Morimoto, I. Yamada, K. Kawahata, H. Funaba, Y. Shima, J. Kohagura, M. Sakamoto, Y. Nakashima, T. Imai, and T. Minami, “Design of the polarization multi-pass Thomson scattering system,” Rev. Sci. Instrum.83(10), 10E326 (2012).
[CrossRef] [PubMed]

Zweiback, J.

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, “Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters,” Nature398(6727), 489–492 (1999).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, J. Hein, and M. C. Kaluza, “Temporal pulse control of a multi-10 TW diode-pumped Yb:glass laser,” Appl. Phys. B101(1–2), 93–102 (2010).
[CrossRef]

Ceram. Int. (1)

H. Yagi, T. Yanagitani, T. Numazawa, and K. Ueda, “The physical properties of transparent Y3Al5O12: Elastic modulus at high temperature and thermal conductivity at low temperature,” Ceram. Int.33(5), 711–714 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 587–599 (2005).
[CrossRef]

IEEE Photon. J. (1)

J.-C. Chanteloup and D. Albach, “Current status on high average power and energy diode pumped solid state lasers,” IEEE Photon. J.3(2), 245–248 (2011).
[CrossRef]

J. Appl. Phys. (1)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys.98, 103514 (2005).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys.: Conf. Ser. (1)

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, J. Hein, M. Wolf, J. Körner, and B. J. L. Garrec, “Multi kJ level laser concepts for HiPER facility,” J. Phys.: Conf. Ser.244(1), 012010 (2010).
[CrossRef]

J. Strain Analysis (1)

A. M. Korsunsky, J. Liu, D. Laundy, M. Golshan, and K. Kim, “Residual elastic strain due to laser shock peening,” J. Strain Analysis41(2), 113–120 (2006).
[CrossRef]

Laser Phys. (1)

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically cooled Yb:YAG laser,” Laser Phys.20(5), 1079–1084 (2010).
[CrossRef]

Meas. Sci. Technol. (1)

T. Numazawa, O. Arai, Q. Hu, and T. Noda, “Thermal conductivity measurements for evaluation of crystal perfection at low temperatures,” Meas. Sci. Technol.12(12), 2089–2094 (2001).
[CrossRef]

Nature (1)

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, “Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters,” Nature398(6727), 489–492 (1999).
[CrossRef]

Nuc. Fus. (1)

E. I. Moses, “Ignition on the national ignition facility: a path towards inertial fusion energy,” Nuc. Fus.49(10), 104022 (2009).
[CrossRef]

Opt. Eng. (1)

N. Vretenar, T. C. Newell, T. Carson, P. Peterson, T. Lucas, W. P. Latham, H. Bostanci, J. J. Lindauer, B. A. Saarloos, and D. P. Rini, “Cryogenic ceramic 277 watt Yb:YAG thin-disk laser,” Opt. Eng.51(1), 014201 (2012).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Opt. Mater. (1)

V. Cardinali, E. Marmois, B. Le Garrec, and G. Bourdet, “Determination of the thermo-optic coefficient dn/dT of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature,” Opt. Mater.34(6), 990–994 (2012).
[CrossRef]

Phys. Rev. (1)

J. Callaway, “Model for lattice thermal conductivity at low temperatures,” Phys. Rev.113(4), 1046–1051 (1959).
[CrossRef]

Phys. Rev. Lett. (1)

J. D. Kmetec, C. L. Gordon, J. J. Macklin, B. E. Lemoff, G. S. Brown, and S. E. Harris, “MeV X-ray generation with a femtosecond laser,” Phys. Rev. Lett.68(10), 1527–1530 (1992).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

R. Yasuhara, M. Yoshikawa, M. Morimoto, I. Yamada, K. Kawahata, H. Funaba, Y. Shima, J. Kohagura, M. Sakamoto, Y. Nakashima, T. Imai, and T. Minami, “Design of the polarization multi-pass Thomson scattering system,” Rev. Sci. Instrum.83(10), 10E326 (2012).
[CrossRef] [PubMed]

Science (1)

K. W. D. Ledingham, P. McKenna, and R. P. Singhal, “Applications for nuclear phenomena generated by ultra-intense lasers,” Science300(5622), 1107–1111 (2003).
[CrossRef] [PubMed]

Other (1)

A. Iwamoto, R. Maekawa, and T. Mito, “Development of evaluation technique on thermal impedance between dissimilar solids,” Advances in Cryogenic Engineering: Transactions of the Cryogenic Engineering Conference 49(204), 643–649 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A photograph of the diffusion-bonded YAG ceramic sample for the measurement of dn/dT and α.

Fig. 2
Fig. 2

A schematic diagram of the experimental set-up for the measurement of dn/dT and α.

Fig. 3
Fig. 3

A schematic diagram of the experimental set-up for the measurement of κ.

Fig. 4
Fig. 4

Temperature dependence of the refractive index (red) and thermal expansion (blue). The solid lines show the fitted curves obtained by using Eqs. (4) and (5). The filled circles show our experimental data. The green triangles show α for the YAG ceramics from Ref [20]. The green circles represent dn/dT for the YAG ceramics from Ref [20]. The black triangles show α for the YAG crystal from Ref [19]. The black squares show dn/dT for the YAG crystal from Ref [18].

Fig. 5
Fig. 5

Temperature dependence of the thermal conductivity of Yb:YAG ceramics. The filled circles represent the experimental data from this work. The open triangles show the κ of the undoped YAG single crystal from Ref [23]. The open squares show the κ of the undoped YAG ceramics from Ref [23]. The filled squares show the κ of the undoped YAG ceramics from Ref [24]. The solid lines show the fitted curves obtained by using Eq. (6).

Fig. 6
Fig. 6

Temperature dependence of thermo-optic effects. The solid line shows the FOMD, and the dashed line shows the FOMB. The temperature is plotted on a logarithmic scale.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

1 Ln d(Ln) dT =α+ 1 n dn dT
α(T)= 1 3 K( T ) γ G ρ( T ) C V ( T )
C V ( T )exp( ω k B T )
α(T)=Aexp( B T )
dn dT ( T )= M 0 + M 1 T+ M 2 T 2 + M 3 T 3
κ( T )= C 1 + C 2 T 3/2 + C 3 T 9/2 + C 4 T 1/2
FOM D = κ χ QL ( dn dT +nα )
FOM B = κ χ QL α

Metrics