Abstract

We present a numerical and experimental investigation of a low-loss porous-core honeycomb fiber for terahertz wave guiding. The introduction of a porous core with hole size of the same dimension as the holes in the surrounding honeycomb cladding results in a fiber that can be drawn with much higher precision and reproducibility than a corresponding air-core fiber. The high-precision hole structure provides very clear bandgap guidance and the location of the two measured bandgaps agree well with simulations based on finite-element modeling. Fiber loss measurements reveal the frequency-dependent coupling loss and propagation loss, and we find that the fiber propagation loss is much lower than the bulk material loss within the first band gap between 0.75 and 1.05 THz.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express12(21), 5263–5268 (2004).
    [CrossRef]
  2. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys.104(9), 093110 (2008).
    [CrossRef]
  3. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett.32(20), 2945–2947 (2007).
    [CrossRef]
  4. K. L. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
    [CrossRef]
  5. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express17(10), 8592–8601 (2009).
    [CrossRef]
  6. K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Broadband terahertz fiber directional coupler,” Opt. Lett.35(17), 2879–2881 (2010).
    [CrossRef]
  7. L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett.31(3), 308–310 (2006).
    [CrossRef]
  8. H.-W. Chen, Y.-T. Li, C.-L. Pan, J.-L. Kuo, J.-Y. Lu, L.-J. Chen, and C.-K. Sun, “Investigation on spectral loss characteristics of subwavelength terahertz fibers,” Opt. Lett.32(9), 1017–1019 (2007).
    [CrossRef]
  9. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett.80(15), 2634–2636 (2002).
    [CrossRef]
  10. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express16(9), 6340–6351 (2008).
    [CrossRef]
  11. S. Atakaramians, A. V. Shahraam, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: A novel approach to low loss THz waveguides,” Opt. Express16(12), 8845–8854 (2008).
    [CrossRef]
  12. S. Atakaramians, S. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun.282(1), 36–38 (2009).
    [CrossRef]
  13. S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express17(16), 14053–14062 (2009).
    [CrossRef]
  14. S. Atakaramians, A. V. Shahraam, M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent fields for characterization of porous terahertz fibers,” Appl. Phys. Lett.98(12), 121104 (2011).
    [CrossRef]
  15. C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H.-C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett.34(21), 3457–3459 (2009).
    [CrossRef]
  16. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express18(1), 309–322 (2010).
    [CrossRef]
  17. J.-T. Lu, Y.-C. Hsueh, Y.-R. Huang, Y.-J. Hwang, and C.-K. Sun, “Bending loss of terahertz pipe waveguides,” Opt. Express18(25), 26332–26338 (2010).
    [CrossRef]
  18. E. Nguema, D. Férachou, G. Humbert, J.-L. Auguste, and J.-M. Blondy, “Broadband terahertz transmission within the air channel of thin-wall pipe,” Opt. Lett.36(10), 1782–1784 (2011).
    [CrossRef]
  19. J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett.92, 064105 1–3 (2008).
  20. C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett.33(9), 902–904 (2008).
    [CrossRef]
  21. A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogiaty, “Transmission measurements of hollow-core THz Bragg fibers,” J. Opt. Soc. Am. B28(4), 896–907 (2011).
    [CrossRef]
  22. B. Ung, A. Dupuis, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “High-refractive-index composite materials for terahertz waveguides: trade-off between index contrast and absorption loss,” J. Opt. Soc. Am. B28(4), 917–921 (2011).
    [CrossRef]
  23. Z. Wu, W.-R. Ng, M. E. Gehm, and H. Xin, “Terahertz electromagnetic crystal waveguide fabricated by polymer jetting rapid prototyping,” Opt. Express19(5), 3962–3972 (2011).
    [CrossRef]
  24. K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Porous-core honeycomb bandgap THz fiber,” Opt. Lett.36(5), 666–668 (2011).
    [CrossRef]
  25. B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, “Polymer microstructured optical fibers for terahertz wave guiding,” Opt. Express19(26), B848–B861 (2011).
    [CrossRef]
  26. M. Rozé, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express19(10), 9127–9138 (2011).
    [CrossRef]
  27. J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Am. B28(5), 1013–1018 (2011).
    [CrossRef]
  28. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett.92(7), 071101 (2008).
    [CrossRef]
  29. A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express17(10), 8012–8028 (2009).
    [CrossRef]
  30. M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express14(21), 9944–9954 (2006).
    [CrossRef]
  31. J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollw-core microstructured fibers,” Opt. Express19(19), 18470–18478 (2011).
    [CrossRef]
  32. M. C. J. Large, L. Poladian, G. Barton, and M. A. van Eijkelenborg, Microstructured polymer optical fibres, (Springer, 2008).
  33. J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun.156(4-6), 240–244 (1998).
    [CrossRef]
  34. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science282(5393), 1476–1478 (1998).
    [CrossRef]
  35. W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express19(20), 19731–19739 (2011).
    [CrossRef]
  36. G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett.32(5), 460–462 (2007).
    [CrossRef]
  37. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser & Photon. Rev.5(1), 124–166 (2011).
    [CrossRef]

2011

S. Atakaramians, A. V. Shahraam, M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent fields for characterization of porous terahertz fibers,” Appl. Phys. Lett.98(12), 121104 (2011).
[CrossRef]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser & Photon. Rev.5(1), 124–166 (2011).
[CrossRef]

Z. Wu, W.-R. Ng, M. E. Gehm, and H. Xin, “Terahertz electromagnetic crystal waveguide fabricated by polymer jetting rapid prototyping,” Opt. Express19(5), 3962–3972 (2011).
[CrossRef]

K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Porous-core honeycomb bandgap THz fiber,” Opt. Lett.36(5), 666–668 (2011).
[CrossRef]

A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogiaty, “Transmission measurements of hollow-core THz Bragg fibers,” J. Opt. Soc. Am. B28(4), 896–907 (2011).
[CrossRef]

B. Ung, A. Dupuis, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “High-refractive-index composite materials for terahertz waveguides: trade-off between index contrast and absorption loss,” J. Opt. Soc. Am. B28(4), 917–921 (2011).
[CrossRef]

J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Am. B28(5), 1013–1018 (2011).
[CrossRef]

M. Rozé, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express19(10), 9127–9138 (2011).
[CrossRef]

E. Nguema, D. Férachou, G. Humbert, J.-L. Auguste, and J.-M. Blondy, “Broadband terahertz transmission within the air channel of thin-wall pipe,” Opt. Lett.36(10), 1782–1784 (2011).
[CrossRef]

J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollw-core microstructured fibers,” Opt. Express19(19), 18470–18478 (2011).
[CrossRef]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express19(20), 19731–19739 (2011).
[CrossRef]

B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, “Polymer microstructured optical fibers for terahertz wave guiding,” Opt. Express19(26), B848–B861 (2011).
[CrossRef]

2010

2009

2008

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett.92(7), 071101 (2008).
[CrossRef]

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett.92, 064105 1–3 (2008).

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys.104(9), 093110 (2008).
[CrossRef]

C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett.33(9), 902–904 (2008).
[CrossRef]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express16(9), 6340–6351 (2008).
[CrossRef]

S. Atakaramians, A. V. Shahraam, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: A novel approach to low loss THz waveguides,” Opt. Express16(12), 8845–8854 (2008).
[CrossRef]

2007

2006

2004

2002

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett.80(15), 2634–2636 (2002).
[CrossRef]

1998

J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun.156(4-6), 240–244 (1998).
[CrossRef]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science282(5393), 1476–1478 (1998).
[CrossRef]

Abbott, D.

S. Atakaramians, A. V. Shahraam, M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent fields for characterization of porous terahertz fibers,” Appl. Phys. Lett.98(12), 121104 (2011).
[CrossRef]

S. Atakaramians, S. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun.282(1), 36–38 (2009).
[CrossRef]

S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express17(16), 14053–14062 (2009).
[CrossRef]

S. Atakaramians, A. V. Shahraam, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: A novel approach to low loss THz waveguides,” Opt. Express16(12), 8845–8854 (2008).
[CrossRef]

Adam, A. J. L.

Afshar, S.

S. Atakaramians, S. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun.282(1), 36–38 (2009).
[CrossRef]

Afshar V, S.

Allard, J.-F.

Anthony, J.

Argyros, A.

Atakaramians, S.

S. Atakaramians, A. V. Shahraam, M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent fields for characterization of porous terahertz fibers,” Appl. Phys. Lett.98(12), 121104 (2011).
[CrossRef]

S. Atakaramians, S. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun.282(1), 36–38 (2009).
[CrossRef]

S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express17(16), 14053–14062 (2009).
[CrossRef]

S. Atakaramians, A. V. Shahraam, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: A novel approach to low loss THz waveguides,” Opt. Express16(12), 8845–8854 (2008).
[CrossRef]

Auguste, J.-L.

Bang, O.

Barkou, S. E.

J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun.156(4-6), 240–244 (1998).
[CrossRef]

Birks, T. A.

J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun.156(4-6), 240–244 (1998).
[CrossRef]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science282(5393), 1476–1478 (1998).
[CrossRef]

Bjarklev, A.

J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun.156(4-6), 240–244 (1998).
[CrossRef]

Blondy, J.-M.

Bowden, B.

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys.104(9), 093110 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett.32(20), 2945–2947 (2007).
[CrossRef]

Broeng, J.

J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun.156(4-6), 240–244 (1998).
[CrossRef]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science282(5393), 1476–1478 (1998).
[CrossRef]

Chang, H.-C.

Chen, H. W.

Chen, H.-W.

Chen, L. J.

Chen, L.-J.

Cho, M.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett.80(15), 2634–2636 (2002).
[CrossRef]

Cooke, D. G.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser & Photon. Rev.5(1), 124–166 (2011).
[CrossRef]

Dubois, C.

Dupuis, A.

Ebendorff-Heidepriem, H.

Emiliyanov, G.

Estacio, E.

Férachou, D.

Fischer, B. M.

Gehm, M. E.

George, R.

Han, H.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett.80(15), 2634–2636 (2002).
[CrossRef]

Harrington, J. A.

Hassani, A.

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett.92(7), 071101 (2008).
[CrossRef]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express16(9), 6340–6351 (2008).
[CrossRef]

Hoiby, P. E.

Hsueh, Y.-C.

Huang, Y.-J.

Huang, Y.-R.

Humbert, G.

Hwang, Y.-J.

Jensen, J. B.

Jepsen, P. U.

Kalli, K.

Kao, T. F.

Khan, L.

Kim, J.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett.80(15), 2634–2636 (2002).
[CrossRef]

Kjaer, E. M.

Knight, J. C.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science282(5393), 1476–1478 (1998).
[CrossRef]

J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun.156(4-6), 240–244 (1998).
[CrossRef]

Koch, M.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser & Photon. Rev.5(1), 124–166 (2011).
[CrossRef]

Kuo, J.-L.

Kurz, H.

Lai, C.-H.

Large, M. C. J.

Leonhardt, R.

Leon-Saval, S. G.

Li, Y.-T.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett.92, 064105 1–3 (2008).

H.-W. Chen, Y.-T. Li, C.-L. Pan, J.-L. Kuo, J.-Y. Lu, L.-J. Chen, and C.-K. Sun, “Investigation on spectral loss characteristics of subwavelength terahertz fibers,” Opt. Lett.32(9), 1017–1019 (2007).
[CrossRef]

Lindvold, L.

Liu, T.-A.

Lu, J. Y.

Lu, J.-T.

Lu, J.-Y.

Marchewka, A.

Mazhorova, A.

Mitrofanov, O.

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys.104(9), 093110 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett.32(20), 2945–2947 (2007).
[CrossRef]

Mittleman, D. M.

K. L. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
[CrossRef]

Monro, T. M.

S. Atakaramians, A. V. Shahraam, M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent fields for characterization of porous terahertz fibers,” Appl. Phys. Lett.98(12), 121104 (2011).
[CrossRef]

S. Atakaramians, S. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun.282(1), 36–38 (2009).
[CrossRef]

S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express17(16), 14053–14062 (2009).
[CrossRef]

S. Atakaramians, A. V. Shahraam, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: A novel approach to low loss THz waveguides,” Opt. Express16(12), 8845–8854 (2008).
[CrossRef]

Morris, D.

Mueller, E.

Nagel, M.

Ng, W.-R.

Nguema, E.

Nielsen, K.

Pan, C.-L.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett.92, 064105 1–3 (2008).

H.-W. Chen, Y.-T. Li, C.-L. Pan, J.-L. Kuo, J.-Y. Lu, L.-J. Chen, and C.-K. Sun, “Investigation on spectral loss characteristics of subwavelength terahertz fibers,” Opt. Lett.32(9), 1017–1019 (2007).
[CrossRef]

Park, H.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett.80(15), 2634–2636 (2002).
[CrossRef]

Pedersen, L. H.

Pedersen, P.

Peng, J.-L.

Planken, P. C. M.

Pobre, R.

Ponseca, C. S.

Rasmussen, H. K.

Rozé, M.

Russell, P. St. J.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science282(5393), 1476–1478 (1998).
[CrossRef]

J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun.156(4-6), 240–244 (1998).
[CrossRef]

Sarukura, N.

Shahraam, A. V.

S. Atakaramians, A. V. Shahraam, M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent fields for characterization of porous terahertz fibers,” Appl. Phys. Lett.98(12), 121104 (2011).
[CrossRef]

S. Atakaramians, A. V. Shahraam, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: A novel approach to low loss THz waveguides,” Opt. Express16(12), 8845–8854 (2008).
[CrossRef]

Skorobogatiy, M.

Skorobogiaty, M.

Stefani, A.

Stoeffler, K.

Sun, C. K.

Sun, C.-K.

Ung, B.

van Eijkelenborg, M. A.

Walther, M.

Wang, K. L.

K. L. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
[CrossRef]

Webb, D. J.

Wu, Z.

Xin, H.

You, B.

Yu, C.-P.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett.92, 064105 1–3 (2008).

Yuan, W.

Appl. Phys. Lett.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett.80(15), 2634–2636 (2002).
[CrossRef]

S. Atakaramians, A. V. Shahraam, M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent fields for characterization of porous terahertz fibers,” Appl. Phys. Lett.98(12), 121104 (2011).
[CrossRef]

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett.92, 064105 1–3 (2008).

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett.92(7), 071101 (2008).
[CrossRef]

J. Appl. Phys.

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys.104(9), 093110 (2008).
[CrossRef]

J. Opt. Soc. Am. B

Laser & Photon. Rev.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser & Photon. Rev.5(1), 124–166 (2011).
[CrossRef]

Nature

K. L. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
[CrossRef]

Opt. Commun.

S. Atakaramians, S. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun.282(1), 36–38 (2009).
[CrossRef]

J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun.156(4-6), 240–244 (1998).
[CrossRef]

Opt. Express

J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express12(21), 5263–5268 (2004).
[CrossRef]

M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express14(21), 9944–9954 (2006).
[CrossRef]

M. Rozé, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express19(10), 9127–9138 (2011).
[CrossRef]

J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollw-core microstructured fibers,” Opt. Express19(19), 18470–18478 (2011).
[CrossRef]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express19(20), 19731–19739 (2011).
[CrossRef]

B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, “Polymer microstructured optical fibers for terahertz wave guiding,” Opt. Express19(26), B848–B861 (2011).
[CrossRef]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express16(9), 6340–6351 (2008).
[CrossRef]

S. Atakaramians, A. V. Shahraam, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: A novel approach to low loss THz waveguides,” Opt. Express16(12), 8845–8854 (2008).
[CrossRef]

A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express17(10), 8012–8028 (2009).
[CrossRef]

K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express17(10), 8592–8601 (2009).
[CrossRef]

S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express17(16), 14053–14062 (2009).
[CrossRef]

C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express18(1), 309–322 (2010).
[CrossRef]

J.-T. Lu, Y.-C. Hsueh, Y.-R. Huang, Y.-J. Hwang, and C.-K. Sun, “Bending loss of terahertz pipe waveguides,” Opt. Express18(25), 26332–26338 (2010).
[CrossRef]

Z. Wu, W.-R. Ng, M. E. Gehm, and H. Xin, “Terahertz electromagnetic crystal waveguide fabricated by polymer jetting rapid prototyping,” Opt. Express19(5), 3962–3972 (2011).
[CrossRef]

Opt. Lett.

K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Porous-core honeycomb bandgap THz fiber,” Opt. Lett.36(5), 666–668 (2011).
[CrossRef]

K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Broadband terahertz fiber directional coupler,” Opt. Lett.35(17), 2879–2881 (2010).
[CrossRef]

C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H.-C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett.34(21), 3457–3459 (2009).
[CrossRef]

E. Nguema, D. Férachou, G. Humbert, J.-L. Auguste, and J.-M. Blondy, “Broadband terahertz transmission within the air channel of thin-wall pipe,” Opt. Lett.36(10), 1782–1784 (2011).
[CrossRef]

G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett.32(5), 460–462 (2007).
[CrossRef]

H.-W. Chen, Y.-T. Li, C.-L. Pan, J.-L. Kuo, J.-Y. Lu, L.-J. Chen, and C.-K. Sun, “Investigation on spectral loss characteristics of subwavelength terahertz fibers,” Opt. Lett.32(9), 1017–1019 (2007).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett.32(20), 2945–2947 (2007).
[CrossRef]

C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett.33(9), 902–904 (2008).
[CrossRef]

L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett.31(3), 308–310 (2006).
[CrossRef]

Science

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science282(5393), 1476–1478 (1998).
[CrossRef]

Other

M. C. J. Large, L. Poladian, G. Barton, and M. A. van Eijkelenborg, Microstructured polymer optical fibres, (Springer, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Idealized structure used in the simulation. (b) Microscope image of the actual fiber. Dark regions represent air and green central region in (a) represents the low index porous core region. d = 165 µm, Λ = 360 µm, Dc = 0.8 mm.

Fig. 2
Fig. 2

Refractive index (red curve) and material loss (black curve) of the TOPAS® polymer used for fiber fabrication, measured on a disk with a thickness of 0.9992 cm and a diameter of 6.0 cm. Blue dashed curve is a phenomenological quadratic fit to the loss used in Fig. 8.

Fig. 3
Fig. 3

Calculated bandgaps (grey zones) and effective index of the fundamental mode (black curves). Insets show the Sz energy flux distribution of the fundamental mode at four different frequencies (0.7, 0.9, 1.4 and 1.6 THz). The scale of each inset is 885 × 960 µm.

Fig. 4
Fig. 4

Calculated fraction of power localized in the core of the honeycomb fiber with TOPAS (blue curve) and air (red curve) surrounding the fiber surface. The two insets to the right show the Sz energy flux distribution of the fundamental modes at nearby frequencies. One is at a resonant frequency due to reflection from the fiber/air interface (0.80 THz) and the other shows a well-confined mode (0.82 THz). The dimensions of the insets are 3.65 × 3.65 mm.

Fig. 5
Fig. 5

Measured THz pulse for (a) reference signal (black curve) and (b) transmitted pulse through a 5 cm long honeycomb fiber with water (red curve) and air (blue curve) around the surface. Short-time Fourier transforms of the transmitted waveforms in (b) are shown in (c) and (d), respectively, with simulated group velocity arrival times of the spectral components overlaid.

Fig. 6
Fig. 6

Calculated fraction of power localized in the core of the honeycomb fiber with the TOPAS PML (blue curve). Measured relative transmission of the honeycomb fiber with air (red curve) and with water (black curve) around the fiber surface.

Fig. 7
Fig. 7

Calculated fraction of power in the fiber material (green half-solid circle) and material loss in fiber (red half-solid circle), respectively.

Fig. 8
Fig. 8

(a) Relative transmission of the fiber with different lengths together with linear fits at four frequencies (0.8, 0.88, 0.95, 1.03 THz). (b) Frequency dependent propagation loss of the fiber (blue data markers) and material loss of TOPAS (quadratic fit - dashed line). (c) Coupling loss (red symbols) and solid line to guide the eye (running average of 5 data points).

Metrics