Abstract

Light trapping is of very high importance for silicon photovoltaics (PV) and especially for thin-film silicon solar cells. In this paper we investigate and compare theoretically the light trapping properties of periodic and stochastic structures having similar geometrical features. The theoretical investigations are based on the actual surface geometry of a scattering structure, characterized by an atomic force microscope. This structure is used for light trapping in thin-film microcrystalline silicon solar cells. Very good agreement is found in a first comparison between simulation and experimental results. The geometrical parameters of the stochastic structure are varied and it is found that the light trapping mainly depends on the aspect ratio (length/height). Furthermore, the maximum possible light trapping with this kind of stochastic structure geometry is investigated. In a second step, the stochastic structure is analysed and typical geometrical features are extracted, which are then arranged in a periodic structure. Investigating the light trapping properties of the periodic structure, we find that it performs very similar to the stochastic structure, in agreement with reports in literature. From the obtained results we conclude that a potential advantage of periodic structures for PV applications will very likely not be found in the absorption enhancement in the solar cell material. However, uniformity and higher definition in production of these structures can lead to potential improvements concerning electrical characteristics and parasitic absorption, e.g. in a back reflector.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys.101(7), 074903 (2007).
    [CrossRef]
  2. D. Dominé, F. J. Haug, C. Battaglia, and C. Ballif, “Modeling of light scattering from micro- and nanotextured surfaces,” J. Appl. Phys.107(4), 044504 (2010).
    [CrossRef]
  3. C. Battaglia, K. Söderström, J. Escarré, F. J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, and C. Ballif, “Efficient light management scheme for thin-film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Appl. Phys. Lett.96(21), 213504 (2010).
    [CrossRef]
  4. Press release, Oerlikon, see e.g. SolarServer.com, Archive 2012, KW 03, “PV production: Oerlikon Solar’s 2nd generation “ThinFab”,” presented in Abu Dhabi delivers 23% investment cost reduction and 17% higher capacity; record thin film silicon cell reaches 12.5% efficiency”.
  5. P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett.43(6), 579–582 (1983).
    [CrossRef]
  6. C. Heine and R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt.34(14), 2476–2482 (1995).
    [CrossRef] [PubMed]
  7. S. H. Zaidi, J. M. Gee, and D. S. Ruby, “Visual system-response functions and estimating reflectance,” Proc. 28th IEEE Photovoltaic Specialists Conference, 395–398 (2000).
  8. M. Peters, M. Rüdiger, H. Hauser, M. Hermle, and B. Bläsi, “Diffractive gratings for crystalline silicon solar cells - optimum parameters and loss mechanisms,” Prog. Photovolt. Res. Appl.20(7), 862–873 (2012).
    [CrossRef]
  9. A. Mellor, I. Tobias, A. Marti, M. J. Mendes, and A. Luque, “Upper limits to absorption enhancement in thick solar cells using diffraction gratings,” Prog. Photovolt. Res. Appl.19(6), 676–687 (2011).
    [CrossRef]
  10. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18(S3), A366–A380 (2010).
    [CrossRef]
  11. J. Gjessing, A. S. Sudbo, and E. S. Marstein, “A novel back-side light trapping structure for thin silicon solar cells,” J. Euro. Opt. Soc.6, 11020 1–4 (2011).
  12. C. van Trigt, “Visual system-response functions and estimating reflectance,” J. Opt. Soc. Am. A14(4), 741–755 (1997).
    [CrossRef] [PubMed]
  13. E. Yablonovitch, “Statistical Ray Optics,” J. Opt. Soc. Am. A72(7), 899–907 (1982).
    [CrossRef]
  14. T. Kirchartz in, “Physics of nanostructured solar cells,” V. Badescu (Edt.), Nova Science Publishers, 1–40 (2009)
  15. H. Li, R. Franken, R. L. Stolk, J. K. Rath, and R. E. I. Schropp, “Mechanism of shunting of nanocrystalline silicon solar cells deposited on rough Ag/ZnO substrates,” So. State. Phen.131–133, 27–32 (2007).
  16. M. Peters, B. Bläsi, S. W. Glunz, A. G. Aberle, J. Luther, and C. Battaglia, “Optical Simulation of Silicon Thin-Film Solar Cells,” En. Proc.15, 212–219 (2012).
    [CrossRef]
  17. V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film a-Si:H Solar Cells,” Nano Lett.11(10), 4239–4245 (2011).
    [CrossRef] [PubMed]
  18. B. Bläsi, H. Hauser, and A. J. Wolf, “Photon management structures for solar cells,” proceedings of SPIE 8438, Photonics for Solar Energy SystemsIV, 84380F (2012), doi:.
    [CrossRef]
  19. M. Peters, K. Forberich, C. Battaglia, A. G. Aberle, and B. Bläsi, “Comparison of periodic and random structures for scattering in thin-film microcrystalline silicon solar cells,” proceedings of SPIE 8438, Photonics for Solar Energy SystemsIV, 84380F (2012), doi:.
    [CrossRef]
  20. K. Jäger, R. A. C. M. M. van Swaaij, and M. Zeman, “A Full Scalar Scattering Model for Nano-Textured Interfaces”, in “Optical Nanostructures and Advanced Materials for Photovoltaics,” proceedings of the Optical Society of America, PWC5 (2011).
  21. B. Vet, B. Grancic, O. Isabella, S. Solntsev, and M. Zeman, “Optical and Electrical Simulations of Advanced Silicon Based Solar Cell Devices,” Proceedings of the 24th European Photovoltaic Solar Energy Conference 2682–2685 (2009).
  22. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A12(5), 1077–1086 (1995).
    [CrossRef]
  23. P. Lalanne and M. P. Jurek, “Computation of the near-field pattern with the coupled wave method for transverse magnetic polarization,” J. Mod. Opt.45(7), 1357–1374 (1998).
    [CrossRef]
  24. International Electrotechnical Standard, (IEC 60904–1), www.iec.ch .
  25. H. E. A. Elgamel, “High efficiency polycrystalline silicon solar cells using low temperature PECVD process,” IEEE Trans. Electron. Dev.45, 2131–2137 (1998).
  26. A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Krol, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl.12(23), 113–142 (2004).
    [CrossRef]
  27. A. V. Shah, ed., “Thin-film Silicon Solar Cell Cells,” EPFL Press 1st edition, 216 - 231 (2010).
  28. C. Battaglia, J. Escarre, K. Soederstroem, M. Boccard, and C. Ballif, “Experimental Evaluation of the Light Trapping Potential of Optical Nanostructures for Thin-Film Silicon Solar Cells,” En. Proc.15, 206–211 (2012).
    [CrossRef]
  29. S. Fahr, T. Kirchartz, C. Rockstuhl, and F. Lederer, “Approaching the Lambertian limit in randomly textured thin-film solar cells,” Opt. Express19(S4Suppl 4), A865–A874 (2011).
    [CrossRef] [PubMed]
  30. D. Domine, “The role of front electrodes and intermediate reflectors in the optoelectronic properties of high efficiency micromorph solar cells,” PhD Thesis, University of Neuchatel (2009).
  31. C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light Trapping in Solar Cells: Can Periodic Beat Random?” ACS Nano6(3), 2790–2797 (2012).
    [CrossRef] [PubMed]

2012

M. Peters, M. Rüdiger, H. Hauser, M. Hermle, and B. Bläsi, “Diffractive gratings for crystalline silicon solar cells - optimum parameters and loss mechanisms,” Prog. Photovolt. Res. Appl.20(7), 862–873 (2012).
[CrossRef]

B. Bläsi, H. Hauser, and A. J. Wolf, “Photon management structures for solar cells,” proceedings of SPIE 8438, Photonics for Solar Energy SystemsIV, 84380F (2012), doi:.
[CrossRef]

M. Peters, K. Forberich, C. Battaglia, A. G. Aberle, and B. Bläsi, “Comparison of periodic and random structures for scattering in thin-film microcrystalline silicon solar cells,” proceedings of SPIE 8438, Photonics for Solar Energy SystemsIV, 84380F (2012), doi:.
[CrossRef]

C. Battaglia, J. Escarre, K. Soederstroem, M. Boccard, and C. Ballif, “Experimental Evaluation of the Light Trapping Potential of Optical Nanostructures for Thin-Film Silicon Solar Cells,” En. Proc.15, 206–211 (2012).
[CrossRef]

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light Trapping in Solar Cells: Can Periodic Beat Random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

M. Peters, B. Bläsi, S. W. Glunz, A. G. Aberle, J. Luther, and C. Battaglia, “Optical Simulation of Silicon Thin-Film Solar Cells,” En. Proc.15, 212–219 (2012).
[CrossRef]

2011

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film a-Si:H Solar Cells,” Nano Lett.11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

S. Fahr, T. Kirchartz, C. Rockstuhl, and F. Lederer, “Approaching the Lambertian limit in randomly textured thin-film solar cells,” Opt. Express19(S4Suppl 4), A865–A874 (2011).
[CrossRef] [PubMed]

A. Mellor, I. Tobias, A. Marti, M. J. Mendes, and A. Luque, “Upper limits to absorption enhancement in thick solar cells using diffraction gratings,” Prog. Photovolt. Res. Appl.19(6), 676–687 (2011).
[CrossRef]

J. Gjessing, A. S. Sudbo, and E. S. Marstein, “A novel back-side light trapping structure for thin silicon solar cells,” J. Euro. Opt. Soc.6, 11020 1–4 (2011).

2010

D. Dominé, F. J. Haug, C. Battaglia, and C. Ballif, “Modeling of light scattering from micro- and nanotextured surfaces,” J. Appl. Phys.107(4), 044504 (2010).
[CrossRef]

C. Battaglia, K. Söderström, J. Escarré, F. J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, and C. Ballif, “Efficient light management scheme for thin-film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Appl. Phys. Lett.96(21), 213504 (2010).
[CrossRef]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18(S3), A366–A380 (2010).
[CrossRef]

2007

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys.101(7), 074903 (2007).
[CrossRef]

H. Li, R. Franken, R. L. Stolk, J. K. Rath, and R. E. I. Schropp, “Mechanism of shunting of nanocrystalline silicon solar cells deposited on rough Ag/ZnO substrates,” So. State. Phen.131–133, 27–32 (2007).

2004

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Krol, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl.12(23), 113–142 (2004).
[CrossRef]

1998

P. Lalanne and M. P. Jurek, “Computation of the near-field pattern with the coupled wave method for transverse magnetic polarization,” J. Mod. Opt.45(7), 1357–1374 (1998).
[CrossRef]

H. E. A. Elgamel, “High efficiency polycrystalline silicon solar cells using low temperature PECVD process,” IEEE Trans. Electron. Dev.45, 2131–2137 (1998).

1997

1995

1983

P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett.43(6), 579–582 (1983).
[CrossRef]

1982

E. Yablonovitch, “Statistical Ray Optics,” J. Opt. Soc. Am. A72(7), 899–907 (1982).
[CrossRef]

Aberle, A. G.

M. Peters, B. Bläsi, S. W. Glunz, A. G. Aberle, J. Luther, and C. Battaglia, “Optical Simulation of Silicon Thin-Film Solar Cells,” En. Proc.15, 212–219 (2012).
[CrossRef]

M. Peters, K. Forberich, C. Battaglia, A. G. Aberle, and B. Bläsi, “Comparison of periodic and random structures for scattering in thin-film microcrystalline silicon solar cells,” proceedings of SPIE 8438, Photonics for Solar Energy SystemsIV, 84380F (2012), doi:.
[CrossRef]

Alexander, D. T. L.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light Trapping in Solar Cells: Can Periodic Beat Random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Atwater, H. A.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film a-Si:H Solar Cells,” Nano Lett.11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

Bailat, J.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Krol, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl.12(23), 113–142 (2004).
[CrossRef]

Ballif, C.

C. Battaglia, J. Escarre, K. Soederstroem, M. Boccard, and C. Ballif, “Experimental Evaluation of the Light Trapping Potential of Optical Nanostructures for Thin-Film Silicon Solar Cells,” En. Proc.15, 206–211 (2012).
[CrossRef]

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light Trapping in Solar Cells: Can Periodic Beat Random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

C. Battaglia, K. Söderström, J. Escarré, F. J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, and C. Ballif, “Efficient light management scheme for thin-film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Appl. Phys. Lett.96(21), 213504 (2010).
[CrossRef]

D. Dominé, F. J. Haug, C. Battaglia, and C. Ballif, “Modeling of light scattering from micro- and nanotextured surfaces,” J. Appl. Phys.107(4), 044504 (2010).
[CrossRef]

Battaglia, C.

C. Battaglia, J. Escarre, K. Soederstroem, M. Boccard, and C. Ballif, “Experimental Evaluation of the Light Trapping Potential of Optical Nanostructures for Thin-Film Silicon Solar Cells,” En. Proc.15, 206–211 (2012).
[CrossRef]

M. Peters, B. Bläsi, S. W. Glunz, A. G. Aberle, J. Luther, and C. Battaglia, “Optical Simulation of Silicon Thin-Film Solar Cells,” En. Proc.15, 212–219 (2012).
[CrossRef]

M. Peters, K. Forberich, C. Battaglia, A. G. Aberle, and B. Bläsi, “Comparison of periodic and random structures for scattering in thin-film microcrystalline silicon solar cells,” proceedings of SPIE 8438, Photonics for Solar Energy SystemsIV, 84380F (2012), doi:.
[CrossRef]

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light Trapping in Solar Cells: Can Periodic Beat Random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

C. Battaglia, K. Söderström, J. Escarré, F. J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, and C. Ballif, “Efficient light management scheme for thin-film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Appl. Phys. Lett.96(21), 213504 (2010).
[CrossRef]

D. Dominé, F. J. Haug, C. Battaglia, and C. Ballif, “Modeling of light scattering from micro- and nanotextured surfaces,” J. Appl. Phys.107(4), 044504 (2010).
[CrossRef]

Berginski, M.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys.101(7), 074903 (2007).
[CrossRef]

Bläsi, B.

M. Peters, B. Bläsi, S. W. Glunz, A. G. Aberle, J. Luther, and C. Battaglia, “Optical Simulation of Silicon Thin-Film Solar Cells,” En. Proc.15, 212–219 (2012).
[CrossRef]

M. Peters, K. Forberich, C. Battaglia, A. G. Aberle, and B. Bläsi, “Comparison of periodic and random structures for scattering in thin-film microcrystalline silicon solar cells,” proceedings of SPIE 8438, Photonics for Solar Energy SystemsIV, 84380F (2012), doi:.
[CrossRef]

B. Bläsi, H. Hauser, and A. J. Wolf, “Photon management structures for solar cells,” proceedings of SPIE 8438, Photonics for Solar Energy SystemsIV, 84380F (2012), doi:.
[CrossRef]

M. Peters, M. Rüdiger, H. Hauser, M. Hermle, and B. Bläsi, “Diffractive gratings for crystalline silicon solar cells - optimum parameters and loss mechanisms,” Prog. Photovolt. Res. Appl.20(7), 862–873 (2012).
[CrossRef]

Bloch, A. N.

P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett.43(6), 579–582 (1983).
[CrossRef]

Boccard, M.

C. Battaglia, J. Escarre, K. Soederstroem, M. Boccard, and C. Ballif, “Experimental Evaluation of the Light Trapping Potential of Optical Nanostructures for Thin-Film Silicon Solar Cells,” En. Proc.15, 206–211 (2012).
[CrossRef]

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light Trapping in Solar Cells: Can Periodic Beat Random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

C. Battaglia, K. Söderström, J. Escarré, F. J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, and C. Ballif, “Efficient light management scheme for thin-film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Appl. Phys. Lett.96(21), 213504 (2010).
[CrossRef]

Bugnon, G.

C. Battaglia, K. Söderström, J. Escarré, F. J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, and C. Ballif, “Efficient light management scheme for thin-film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Appl. Phys. Lett.96(21), 213504 (2010).
[CrossRef]

Cantoni, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light Trapping in Solar Cells: Can Periodic Beat Random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Charrière, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light Trapping in Solar Cells: Can Periodic Beat Random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Cui, Y.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light Trapping in Solar Cells: Can Periodic Beat Random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Cuony, P.

C. Battaglia, K. Söderström, J. Escarré, F. J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, and C. Ballif, “Efficient light management scheme for thin-film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Appl. Phys. Lett.96(21), 213504 (2010).
[CrossRef]

Denizot, C.

C. Battaglia, K. Söderström, J. Escarré, F. J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, and C. Ballif, “Efficient light management scheme for thin-film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Appl. Phys. Lett.96(21), 213504 (2010).
[CrossRef]

Despeisse, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light Trapping in Solar Cells: Can Periodic Beat Random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

C. Battaglia, K. Söderström, J. Escarré, F. J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, and C. Ballif, “Efficient light management scheme for thin-film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Appl. Phys. Lett.96(21), 213504 (2010).
[CrossRef]

Dominé, D.

D. Dominé, F. J. Haug, C. Battaglia, and C. Ballif, “Modeling of light scattering from micro- and nanotextured surfaces,” J. Appl. Phys.107(4), 044504 (2010).
[CrossRef]

C. Battaglia, K. Söderström, J. Escarré, F. J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, and C. Ballif, “Efficient light management scheme for thin-film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Appl. Phys. Lett.96(21), 213504 (2010).
[CrossRef]

Droz, C.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Krol, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl.12(23), 113–142 (2004).
[CrossRef]

Elgamel, H. E. A.

H. E. A. Elgamel, “High efficiency polycrystalline silicon solar cells using low temperature PECVD process,” IEEE Trans. Electron. Dev.45, 2131–2137 (1998).

Escarre, J.

C. Battaglia, J. Escarre, K. Soederstroem, M. Boccard, and C. Ballif, “Experimental Evaluation of the Light Trapping Potential of Optical Nanostructures for Thin-Film Silicon Solar Cells,” En. Proc.15, 206–211 (2012).
[CrossRef]

Escarré, J.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light Trapping in Solar Cells: Can Periodic Beat Random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

C. Battaglia, K. Söderström, J. Escarré, F. J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, and C. Ballif, “Efficient light management scheme for thin-film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Appl. Phys. Lett.96(21), 213504 (2010).
[CrossRef]

Fahr, S.

Fan, S.

Feltrin, A.

C. Battaglia, K. Söderström, J. Escarré, F. J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, and C. Ballif, “Efficient light management scheme for thin-film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Appl. Phys. Lett.96(21), 213504 (2010).
[CrossRef]

Ferry, V. E.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film a-Si:H Solar Cells,” Nano Lett.11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

Forberich, K.

M. Peters, K. Forberich, C. Battaglia, A. G. Aberle, and B. Bläsi, “Comparison of periodic and random structures for scattering in thin-film microcrystalline silicon solar cells,” proceedings of SPIE 8438, Photonics for Solar Energy SystemsIV, 84380F (2012), doi:.
[CrossRef]

Franken, R.

H. Li, R. Franken, R. L. Stolk, J. K. Rath, and R. E. I. Schropp, “Mechanism of shunting of nanocrystalline silicon solar cells deposited on rough Ag/ZnO substrates,” So. State. Phen.131–133, 27–32 (2007).

Gaylord, T. K.

Gjessing, J.

J. Gjessing, A. S. Sudbo, and E. S. Marstein, “A novel back-side light trapping structure for thin silicon solar cells,” J. Euro. Opt. Soc.6, 11020 1–4 (2011).

Glunz, S. W.

M. Peters, B. Bläsi, S. W. Glunz, A. G. Aberle, J. Luther, and C. Battaglia, “Optical Simulation of Silicon Thin-Film Solar Cells,” En. Proc.15, 212–219 (2012).
[CrossRef]

Grann, E. B.

Haug, F. J.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light Trapping in Solar Cells: Can Periodic Beat Random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

C. Battaglia, K. Söderström, J. Escarré, F. J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, and C. Ballif, “Efficient light management scheme for thin-film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Appl. Phys. Lett.96(21), 213504 (2010).
[CrossRef]

D. Dominé, F. J. Haug, C. Battaglia, and C. Ballif, “Modeling of light scattering from micro- and nanotextured surfaces,” J. Appl. Phys.107(4), 044504 (2010).
[CrossRef]

Hauser, H.

B. Bläsi, H. Hauser, and A. J. Wolf, “Photon management structures for solar cells,” proceedings of SPIE 8438, Photonics for Solar Energy SystemsIV, 84380F (2012), doi:.
[CrossRef]

M. Peters, M. Rüdiger, H. Hauser, M. Hermle, and B. Bläsi, “Diffractive gratings for crystalline silicon solar cells - optimum parameters and loss mechanisms,” Prog. Photovolt. Res. Appl.20(7), 862–873 (2012).
[CrossRef]

Heine, C.

Hermle, M.

M. Peters, M. Rüdiger, H. Hauser, M. Hermle, and B. Bläsi, “Diffractive gratings for crystalline silicon solar cells - optimum parameters and loss mechanisms,” Prog. Photovolt. Res. Appl.20(7), 862–873 (2012).
[CrossRef]

Hsu, C. M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light Trapping in Solar Cells: Can Periodic Beat Random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Hüpkes, J.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys.101(7), 074903 (2007).
[CrossRef]

Jurek, M. P.

P. Lalanne and M. P. Jurek, “Computation of the near-field pattern with the coupled wave method for transverse magnetic polarization,” J. Mod. Opt.45(7), 1357–1374 (1998).
[CrossRef]

Kirchartz, T.

Krol, U.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Krol, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl.12(23), 113–142 (2004).
[CrossRef]

Lalanne, P.

P. Lalanne and M. P. Jurek, “Computation of the near-field pattern with the coupled wave method for transverse magnetic polarization,” J. Mod. Opt.45(7), 1357–1374 (1998).
[CrossRef]

Lare, M. C.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film a-Si:H Solar Cells,” Nano Lett.11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

Lederer, F.

Li, H.

H. Li, R. Franken, R. L. Stolk, J. K. Rath, and R. E. I. Schropp, “Mechanism of shunting of nanocrystalline silicon solar cells deposited on rough Ag/ZnO substrates,” So. State. Phen.131–133, 27–32 (2007).

Luque, A.

A. Mellor, I. Tobias, A. Marti, M. J. Mendes, and A. Luque, “Upper limits to absorption enhancement in thick solar cells using diffraction gratings,” Prog. Photovolt. Res. Appl.19(6), 676–687 (2011).
[CrossRef]

Luther, J.

M. Peters, B. Bläsi, S. W. Glunz, A. G. Aberle, J. Luther, and C. Battaglia, “Optical Simulation of Silicon Thin-Film Solar Cells,” En. Proc.15, 212–219 (2012).
[CrossRef]

Marstein, E. S.

J. Gjessing, A. S. Sudbo, and E. S. Marstein, “A novel back-side light trapping structure for thin silicon solar cells,” J. Euro. Opt. Soc.6, 11020 1–4 (2011).

Marti, A.

A. Mellor, I. Tobias, A. Marti, M. J. Mendes, and A. Luque, “Upper limits to absorption enhancement in thick solar cells using diffraction gratings,” Prog. Photovolt. Res. Appl.19(6), 676–687 (2011).
[CrossRef]

Meier, J.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Krol, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl.12(23), 113–142 (2004).
[CrossRef]

Mellor, A.

A. Mellor, I. Tobias, A. Marti, M. J. Mendes, and A. Luque, “Upper limits to absorption enhancement in thick solar cells using diffraction gratings,” Prog. Photovolt. Res. Appl.19(6), 676–687 (2011).
[CrossRef]

Mendes, M. J.

A. Mellor, I. Tobias, A. Marti, M. J. Mendes, and A. Luque, “Upper limits to absorption enhancement in thick solar cells using diffraction gratings,” Prog. Photovolt. Res. Appl.19(6), 676–687 (2011).
[CrossRef]

Moharam, M. G.

Morf, R. H.

Peters, M.

M. Peters, M. Rüdiger, H. Hauser, M. Hermle, and B. Bläsi, “Diffractive gratings for crystalline silicon solar cells - optimum parameters and loss mechanisms,” Prog. Photovolt. Res. Appl.20(7), 862–873 (2012).
[CrossRef]

M. Peters, B. Bläsi, S. W. Glunz, A. G. Aberle, J. Luther, and C. Battaglia, “Optical Simulation of Silicon Thin-Film Solar Cells,” En. Proc.15, 212–219 (2012).
[CrossRef]

M. Peters, K. Forberich, C. Battaglia, A. G. Aberle, and B. Bläsi, “Comparison of periodic and random structures for scattering in thin-film microcrystalline silicon solar cells,” proceedings of SPIE 8438, Photonics for Solar Energy SystemsIV, 84380F (2012), doi:.
[CrossRef]

Polman, A.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film a-Si:H Solar Cells,” Nano Lett.11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

Pommet, D. A.

Raman, A.

Rath, J. K.

H. Li, R. Franken, R. L. Stolk, J. K. Rath, and R. E. I. Schropp, “Mechanism of shunting of nanocrystalline silicon solar cells deposited on rough Ag/ZnO substrates,” So. State. Phen.131–133, 27–32 (2007).

Rech, B.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys.101(7), 074903 (2007).
[CrossRef]

Rockstuhl, C.

Rüdiger, M.

M. Peters, M. Rüdiger, H. Hauser, M. Hermle, and B. Bläsi, “Diffractive gratings for crystalline silicon solar cells - optimum parameters and loss mechanisms,” Prog. Photovolt. Res. Appl.20(7), 862–873 (2012).
[CrossRef]

Schade, H.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Krol, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl.12(23), 113–142 (2004).
[CrossRef]

Schöpe, G.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys.101(7), 074903 (2007).
[CrossRef]

Schropp, R. E. I.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film a-Si:H Solar Cells,” Nano Lett.11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

H. Li, R. Franken, R. L. Stolk, J. K. Rath, and R. E. I. Schropp, “Mechanism of shunting of nanocrystalline silicon solar cells deposited on rough Ag/ZnO substrates,” So. State. Phen.131–133, 27–32 (2007).

Schulte, M.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys.101(7), 074903 (2007).
[CrossRef]

Shah, A. V.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Krol, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl.12(23), 113–142 (2004).
[CrossRef]

Sheng, P.

P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett.43(6), 579–582 (1983).
[CrossRef]

Söderström, K.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light Trapping in Solar Cells: Can Periodic Beat Random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

C. Battaglia, K. Söderström, J. Escarré, F. J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, and C. Ballif, “Efficient light management scheme for thin-film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Appl. Phys. Lett.96(21), 213504 (2010).
[CrossRef]

Soederstroem, K.

C. Battaglia, J. Escarre, K. Soederstroem, M. Boccard, and C. Ballif, “Experimental Evaluation of the Light Trapping Potential of Optical Nanostructures for Thin-Film Silicon Solar Cells,” En. Proc.15, 206–211 (2012).
[CrossRef]

Stepleman, R. S.

P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett.43(6), 579–582 (1983).
[CrossRef]

Stiebig, H.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys.101(7), 074903 (2007).
[CrossRef]

Stolk, R. L.

H. Li, R. Franken, R. L. Stolk, J. K. Rath, and R. E. I. Schropp, “Mechanism of shunting of nanocrystalline silicon solar cells deposited on rough Ag/ZnO substrates,” So. State. Phen.131–133, 27–32 (2007).

Sudbo, A. S.

J. Gjessing, A. S. Sudbo, and E. S. Marstein, “A novel back-side light trapping structure for thin silicon solar cells,” J. Euro. Opt. Soc.6, 11020 1–4 (2011).

Tobias, I.

A. Mellor, I. Tobias, A. Marti, M. J. Mendes, and A. Luque, “Upper limits to absorption enhancement in thick solar cells using diffraction gratings,” Prog. Photovolt. Res. Appl.19(6), 676–687 (2011).
[CrossRef]

Vallat-Sauvain, E.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Krol, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl.12(23), 113–142 (2004).
[CrossRef]

van Trigt, C.

Vanecek, M.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Krol, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl.12(23), 113–142 (2004).
[CrossRef]

Verschuuren, M. A.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film a-Si:H Solar Cells,” Nano Lett.11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

Wolf, A. J.

B. Bläsi, H. Hauser, and A. J. Wolf, “Photon management structures for solar cells,” proceedings of SPIE 8438, Photonics for Solar Energy SystemsIV, 84380F (2012), doi:.
[CrossRef]

Wuttig, M.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys.101(7), 074903 (2007).
[CrossRef]

Wyrsch, N.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Krol, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl.12(23), 113–142 (2004).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Statistical Ray Optics,” J. Opt. Soc. Am. A72(7), 899–907 (1982).
[CrossRef]

Yu, Z.

ACS Nano

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light Trapping in Solar Cells: Can Periodic Beat Random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

C. Battaglia, K. Söderström, J. Escarré, F. J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, and C. Ballif, “Efficient light management scheme for thin-film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Appl. Phys. Lett.96(21), 213504 (2010).
[CrossRef]

P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett.43(6), 579–582 (1983).
[CrossRef]

En. Proc.

M. Peters, B. Bläsi, S. W. Glunz, A. G. Aberle, J. Luther, and C. Battaglia, “Optical Simulation of Silicon Thin-Film Solar Cells,” En. Proc.15, 212–219 (2012).
[CrossRef]

C. Battaglia, J. Escarre, K. Soederstroem, M. Boccard, and C. Ballif, “Experimental Evaluation of the Light Trapping Potential of Optical Nanostructures for Thin-Film Silicon Solar Cells,” En. Proc.15, 206–211 (2012).
[CrossRef]

IEEE Trans. Electron. Dev.

H. E. A. Elgamel, “High efficiency polycrystalline silicon solar cells using low temperature PECVD process,” IEEE Trans. Electron. Dev.45, 2131–2137 (1998).

J. Appl. Phys.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys.101(7), 074903 (2007).
[CrossRef]

D. Dominé, F. J. Haug, C. Battaglia, and C. Ballif, “Modeling of light scattering from micro- and nanotextured surfaces,” J. Appl. Phys.107(4), 044504 (2010).
[CrossRef]

J. Euro. Opt. Soc.

J. Gjessing, A. S. Sudbo, and E. S. Marstein, “A novel back-side light trapping structure for thin silicon solar cells,” J. Euro. Opt. Soc.6, 11020 1–4 (2011).

J. Mod. Opt.

P. Lalanne and M. P. Jurek, “Computation of the near-field pattern with the coupled wave method for transverse magnetic polarization,” J. Mod. Opt.45(7), 1357–1374 (1998).
[CrossRef]

J. Opt. Soc. Am. A

Nano Lett.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film a-Si:H Solar Cells,” Nano Lett.11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

Opt. Express

Photonics for Solar Energy Systems

B. Bläsi, H. Hauser, and A. J. Wolf, “Photon management structures for solar cells,” proceedings of SPIE 8438, Photonics for Solar Energy SystemsIV, 84380F (2012), doi:.
[CrossRef]

M. Peters, K. Forberich, C. Battaglia, A. G. Aberle, and B. Bläsi, “Comparison of periodic and random structures for scattering in thin-film microcrystalline silicon solar cells,” proceedings of SPIE 8438, Photonics for Solar Energy SystemsIV, 84380F (2012), doi:.
[CrossRef]

Prog. Photovolt. Res. Appl.

M. Peters, M. Rüdiger, H. Hauser, M. Hermle, and B. Bläsi, “Diffractive gratings for crystalline silicon solar cells - optimum parameters and loss mechanisms,” Prog. Photovolt. Res. Appl.20(7), 862–873 (2012).
[CrossRef]

A. Mellor, I. Tobias, A. Marti, M. J. Mendes, and A. Luque, “Upper limits to absorption enhancement in thick solar cells using diffraction gratings,” Prog. Photovolt. Res. Appl.19(6), 676–687 (2011).
[CrossRef]

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Krol, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl.12(23), 113–142 (2004).
[CrossRef]

So. State. Phen.

H. Li, R. Franken, R. L. Stolk, J. K. Rath, and R. E. I. Schropp, “Mechanism of shunting of nanocrystalline silicon solar cells deposited on rough Ag/ZnO substrates,” So. State. Phen.131–133, 27–32 (2007).

Other

A. V. Shah, ed., “Thin-film Silicon Solar Cell Cells,” EPFL Press 1st edition, 216 - 231 (2010).

D. Domine, “The role of front electrodes and intermediate reflectors in the optoelectronic properties of high efficiency micromorph solar cells,” PhD Thesis, University of Neuchatel (2009).

S. H. Zaidi, J. M. Gee, and D. S. Ruby, “Visual system-response functions and estimating reflectance,” Proc. 28th IEEE Photovoltaic Specialists Conference, 395–398 (2000).

Press release, Oerlikon, see e.g. SolarServer.com, Archive 2012, KW 03, “PV production: Oerlikon Solar’s 2nd generation “ThinFab”,” presented in Abu Dhabi delivers 23% investment cost reduction and 17% higher capacity; record thin film silicon cell reaches 12.5% efficiency”.

K. Jäger, R. A. C. M. M. van Swaaij, and M. Zeman, “A Full Scalar Scattering Model for Nano-Textured Interfaces”, in “Optical Nanostructures and Advanced Materials for Photovoltaics,” proceedings of the Optical Society of America, PWC5 (2011).

B. Vet, B. Grancic, O. Isabella, S. Solntsev, and M. Zeman, “Optical and Electrical Simulations of Advanced Silicon Based Solar Cell Devices,” Proceedings of the 24th European Photovoltaic Solar Energy Conference 2682–2685 (2009).

T. Kirchartz in, “Physics of nanostructured solar cells,” V. Badescu (Edt.), Nova Science Publishers, 1–40 (2009)

International Electrotechnical Standard, (IEC 60904–1), www.iec.ch .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) AFM scan of the investigated stochastic light trapping structure and (c) one cross section of the same structure including one deep crater. Analyzing these craters, a periodic structure was constructed by repeating a crater with average dimensions (b). A cross section of this periodic structure, indicating period and depth of the structure, is also shown (d).

Fig. 2
Fig. 2

Cross section of the structure investigated with RCWA (see also Fig. 1(b) and 1(d); note that the cross section shown here is different to that of Fig. 1(d)). Also shown (rainbow colors) is the spatially distributed absorption in the 1.1 μm thick crystalline silicon film as calculated with the RCWA for a wavelength of 800 nm. The refractive indices for the materials used in the simulations were measured at EPFL-IMT. The silicon film is conformally coated by a 1.8 μm thick TCO layer on each side (front and rear). A wavelength-independent refractive index of n = 2.0 was assumed for the TCOs (corresponding to ZnO as used in the measured sample). An ideal back surface reflector was placed at the back of the solar cell. The light is incident from the glass (n = 1.5) side (‘superstrate configuration’). A similar setup has been used for the simulation of solar cells on stochastic structures. Please note that Fig. 2 is a sketch and has a different scaling compared to Fig. 1.

Fig. 3
Fig. 3

Absorptance in the silicon layer, calculated using the SST approach and the ASA software (grey dashed line). To calculate the EQE (solid black line) from the absorption, we assumed a constant (i.e., wavelength independent) IQE of 90%. Using this assumption, a good agreement between the calculated and the measured EQE (blue dots) is obtained.

Fig. 4
Fig. 4

Simulated absorbed photocurrent jph for a variation of structure length and height using scaling factors Sl and Sh, respectively for the stochastic structure shown in Fig. 1(a). In Fig. 4(a), length and height were varied on a large scale between 0.1 and 10. For large values of Sl and small values of Sh there are some numerical issues that result in a current enhancement (visible in the upper left corner). This increase in current, as well as the oscillations in the light blue and yellow region, are very likely an artefact and should be ignored. Figure 4(b) shows a magnified view of the lower left corner of Fig. 4(a), whereby length and height were scaled moderately between 0.6 and 1.2. This magnified view is added to provide an easier comparison with the results obtained for diffractive structures shown in Fig. 6.

Fig. 5
Fig. 5

Simulated dependence of the photocurrent jph on the ratio of the scaling factors Sh/Sl. In plot (a) this is shown for small variations of this ratio. Within a certain range, there exists a linear regime within which an increase in roughness results in an increase in current that can be calculated by a simple factor, which is specific for each structure. In plot (b) the dependence is shown for a large range of ratios (note that the x-axis of this plot is scaled logarithmically). A logistic function was used to fit the data (symbols). The fitting parameters for the two curves are listed in Table 2.

Fig. 6
Fig. 6

Simulated absorbed photocurrent jph for a variation of period and height with scaling factors SΛ and Sh for the periodic structure shown in Fig. 1(b). Due to constraints in the simulation method, the variation was limited to scaling factors between 0.6 and 1.2.The scale and resulting structure sizes are similar to those shown in Fig. 4. The graph highlights the difference in the characteristics of periodic and stochastic structures.

Tables (2)

Tables Icon

Table 1 Measured One-sun Performance Parameters of the Solar Cell Used in This Study

Tables Icon

Table 2 Fitting Parameters for the Curves Shown in Fig. 5. Physically Meaningful Parameters are Highlighted in Bold Font.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

G R = e i κ 0 ζ(x,y)2 n 1 and G T = e i κ 0 ζ(x,y)( n 1 n 2 )
H R =1 e ( 4π σ rms n 2 λ ) 2 and H T =1 e ( 4π σ rms ( n 2 n 1 λ ) 2
j ph, λ 1 , λ 2 =e λ 1 λ 2 dλabs(λ)ϕ(λ)
j SC =e dλIQE(λ)abs(λ)ϕ(λ)
j SC =e dλEQE(λ)ϕ(λ)
j ph ( S h S l )= j 0 +δj S h S l
j ph ( S h S l )= j ph,min + j ph,max j ph,min 1+ c 1 exp( [ c 2 ( S h S l ) ] c 3 )

Metrics