Abstract

Recent developments of active hyperspectral systems require optical characterization of man-made materials for instrument calibration. This work presents an original supercontinuum laser-based instrument designed by Onera, The French Aerospace Lab, for fast hyperspectral polarimetric and angular reflectances measurements. The spectral range is from 480 nm to 1000 nm with a 1 nm spectral resolution. Different polarization configurations are made possible in whole spectrum. This paper reviews the design and the calibration of the instrument. Hyper-spectral polarimetric and angular reflectances are measured for reference and man-made materials such as paint coatings. Physical properties of reflectances as positivity, energy conservation and Helmholtz reciprocity are retrieved from measurements.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Shaw and H. K. Burke, “Spectral imaging for remote sensing,” Lincoln Laboratory Journal 14, 3–28 (2003).
  2. D. Manolakis and D. Marden, “Hyperspectral image processing for automatic target detection applications,” Lincoln Laboratory Journal 14, 79–116 (2003).
  3. E. Ientilucci and M. Gartley, “Impact of BRDF on physics-based modeling as applied to target detection in hyperspectral imagery,” Proc. SPIE 7334, 73340T1 (2009).
  4. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 A via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
    [CrossRef]
  5. J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  6. Y. Peng and R. Lu, “Analysis of spatially resolved hyperspectral scattering images for assessing apple fruit firmness and soluble solids content,” Postharvest Biol. Tec. 48, 52–62 (2008).
    [CrossRef]
  7. C. Zakian, I. Pretty, and R. Ellwood, “Near-infrared hyperspectral imaging of teeth for dental caries detection,” J. Biomed. Opt. 14, 14, 64047 (2009).
    [CrossRef]
  8. F. Larusson, S. Fantini, and E. Miller, “Hyperspectral image reconstruction for diffuse optical tomography,” Biomed. Opt. Express 2, 946–965 (2011).
    [CrossRef] [PubMed]
  9. B. Johnson, R. Joseph, M. Nischan, A. Newbury, J. Kerekes, H. Barclay, B. Willard, and J. Zayhowski, “A compact, active hyperspectral imaging system for the detection of concealed targets,” Proc. SPIE 3710, 144–157 (1999).
    [CrossRef]
  10. L. Farr, “Active Spectral Imaging for Target Detection,” EMRS DTC Technical Conference 4, 1–8 (2007).
  11. T. Hakala, J. Suomalainen, S. Kaasalainen, and Y. Chen, “Full waveform hyperspectral LiDAR for terrestrial laser scanning,” Opt. Express 20, 7119–7127 (2012).
    [CrossRef] [PubMed]
  12. M. L. Nischan, R. M. Joseph, J. C. Libby, and J. P. Kerekes, “Active spectral Imaging,” Lincoln Laboratory Journal 14, 131–144 (2003).
  13. Y. Chen, E. Raikkonen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppa, and R. Chen, “Two-channel Hyperspectral LiDAR with a Supercontinuum laser source,” Sensors 10, 7057–7066 (2010).
    [CrossRef] [PubMed]
  14. B. Mc Guckin, D. Haner, and R. Menzies, “Multiangle imaging spectroradiometer: optical characterization of the calibration panels,” J. Quant. Spectros. Radiat. Transfer. 15, 281–290 (2007).
  15. M. Eismann and R. Hardie, “Hyperspectral resolution enhancement using high-resolution multispectral imagery with arbitrary response functions,” in Proceedings of IEEE Transactions on Geoscience and Remote Sensing 43, 455–465 (2005).
    [CrossRef]
  16. J. Bieniarz, D. Cerra, J. Avbelj, and P. Reinartz, “Resolution enhancement of hyperspectral imagery through spatial-spectral data fusion,” in Proceedings of ISPRS Hannover Workshop 2011: High-Resolution Earth Imaging for Geospatial Information33–37 (2011).
  17. K. Ellis, “Polarimetric bidirectional reflectance distribution function of glossy coatings,” J. Opt. Soc. Am. A 13, 1758–1762 (1996).
    [CrossRef]
  18. S. Nevas, F. Manoocheri, and E. Ikonen, “Gonioreflectometer for measuring spectral diffuse reflectance,” Appl. Opt. 43, 6391–6399 (2004).
    [CrossRef] [PubMed]
  19. J. Liu, M. Noel, and J. Zwinkels, “Design and characterization of a versatile reference instrument for rapid, reproducible specular gloss measurements,” Appl. Opt. 44, 4631–4638 (2005).
    [CrossRef] [PubMed]
  20. H. Li, S. C. Foo, K. E. Torrance, and S. H. Westin, “Automated three-axis gonioreflectometer for computer graphics applications,” Opt. Eng. 45, 043605 (2005).
    [CrossRef]
  21. R. Ceolato, N. Riviere, L. Hespel, and B. Biscans, “Probing optical properties of nanomaterials,” SPIE Newsroom (January12, 2012). doi: .
    [CrossRef]
  22. N. Renard and S. Bourennane, “Improvement of target detection methods by multiway filtering,” in Proceedings of IEEE Transactions on Geoscience and Remote Sensing 46, 2407–2417 (2008).
    [CrossRef]
  23. F. Nicodemus, “Directional reflectance and emissivity of an opaque surface,” Appl. Opt. 4, 767–773 (1965).
    [CrossRef]
  24. J. V. Martonchik, C. J. Bruegge, and A. Strahler, “A review of reflectance nomenclature used in remote sensing,” Remote Sens. Rev. 19, 9–20 (2000).
    [CrossRef]
  25. A. Ferrero, J. Campos, A. M. Rabal, A. Pons, M. L. Hernanz, and A. Corrons, “Principal components analysis on the spectral bidirectional reflectance distribution function of ceramic colour standards,” Opt. Express 19, 19199–19211 (2011).
    [CrossRef] [PubMed]
  26. G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing - definitions and case studies,” Remote Sens. Environ. 103, 27–42 (2006).
    [CrossRef]
  27. N. Riviere, R. Ceolato, and L. Hespel, “Multispectral polarized BRDF: design of a highly resolved reflectometer and development of a data inversion technique,” Opt. Appl. 42, 7–22 (2012).
  28. “Standard practice for angle resolved optical scatter measurements on specular or diffuse surfaces,” Am. Soc. Test Mater Standard E1392–96 (1997).
  29. C. L. Betty, “The measured polarized bidirectional reflectance distribution function of a Spectralon calibration target,” in Proceedings of IEEE Transactions on Geoscience and Remote Sensing 4, 2183–2185 (1996).
  30. G. T. Georgiev and J. J. Butler, “BRDF study of gray-scale Spectralon,” Proc. SPIE 7081, 71–79 (2008).
  31. Labsphere, “A guide to diffuse reflectance coatings and materials,” http://www.prolite.co.uk/File/coatingsmaterialsdocumentation.php .
  32. H. Li and K. E. Torrance, “A practical comprehensive light reflection model,” Technical Report PCG-05-03, Cornell Univeristy (2005).
  33. F. J. J. Clarke and D. J. Parry, “Helmholtz reciprocity: Its validity and application to reflectometry,” Ltg. Res. Technol. 17, 1–11 (1985).
    [CrossRef]
  34. H. J. Eom, “Energy conservation and reciprocity of random rough surface scattering,” Appl. Opt. 24, 1730–1732 (1985).
    [CrossRef] [PubMed]
  35. J. Greffet and M. Nieto-Vesperinas, “Field theory for generalized bidirectional reflectivity: derivation of Helmholtz’s reciprocity principle and Kirchhoff’s law,” J. Opt. Soc. Am. A 15, 2735–2744 (1998).
    [CrossRef]
  36. H. Okayama and I. Ogura, “Experimental verification of nonreciprocal response in light scattering from rough surfaces,” Appl. Opt. 23, 3349–3352 (1984).
    [CrossRef] [PubMed]
  37. W. H. Venable, “Comments on reciprocity failure,” Appl. Opt. 24, 3943 (1985).
    [CrossRef] [PubMed]
  38. W. C. Snyder, “Reciprocity of the BRDF in measurements and models of structured surfaces,” in Proceedings of IEEE Transactions on Geoscience and Remote Sensing 36, 685–691 (1998).
    [CrossRef]

2012 (2)

N. Riviere, R. Ceolato, and L. Hespel, “Multispectral polarized BRDF: design of a highly resolved reflectometer and development of a data inversion technique,” Opt. Appl. 42, 7–22 (2012).

T. Hakala, J. Suomalainen, S. Kaasalainen, and Y. Chen, “Full waveform hyperspectral LiDAR for terrestrial laser scanning,” Opt. Express 20, 7119–7127 (2012).
[CrossRef] [PubMed]

2011 (3)

2010 (1)

Y. Chen, E. Raikkonen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppa, and R. Chen, “Two-channel Hyperspectral LiDAR with a Supercontinuum laser source,” Sensors 10, 7057–7066 (2010).
[CrossRef] [PubMed]

2009 (2)

E. Ientilucci and M. Gartley, “Impact of BRDF on physics-based modeling as applied to target detection in hyperspectral imagery,” Proc. SPIE 7334, 73340T1 (2009).

C. Zakian, I. Pretty, and R. Ellwood, “Near-infrared hyperspectral imaging of teeth for dental caries detection,” J. Biomed. Opt. 14, 14, 64047 (2009).
[CrossRef]

2008 (3)

Y. Peng and R. Lu, “Analysis of spatially resolved hyperspectral scattering images for assessing apple fruit firmness and soluble solids content,” Postharvest Biol. Tec. 48, 52–62 (2008).
[CrossRef]

N. Renard and S. Bourennane, “Improvement of target detection methods by multiway filtering,” in Proceedings of IEEE Transactions on Geoscience and Remote Sensing 46, 2407–2417 (2008).
[CrossRef]

G. T. Georgiev and J. J. Butler, “BRDF study of gray-scale Spectralon,” Proc. SPIE 7081, 71–79 (2008).

2007 (2)

L. Farr, “Active Spectral Imaging for Target Detection,” EMRS DTC Technical Conference 4, 1–8 (2007).

B. Mc Guckin, D. Haner, and R. Menzies, “Multiangle imaging spectroradiometer: optical characterization of the calibration panels,” J. Quant. Spectros. Radiat. Transfer. 15, 281–290 (2007).

2006 (2)

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing - definitions and case studies,” Remote Sens. Environ. 103, 27–42 (2006).
[CrossRef]

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

2005 (3)

H. Li, S. C. Foo, K. E. Torrance, and S. H. Westin, “Automated three-axis gonioreflectometer for computer graphics applications,” Opt. Eng. 45, 043605 (2005).
[CrossRef]

M. Eismann and R. Hardie, “Hyperspectral resolution enhancement using high-resolution multispectral imagery with arbitrary response functions,” in Proceedings of IEEE Transactions on Geoscience and Remote Sensing 43, 455–465 (2005).
[CrossRef]

J. Liu, M. Noel, and J. Zwinkels, “Design and characterization of a versatile reference instrument for rapid, reproducible specular gloss measurements,” Appl. Opt. 44, 4631–4638 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (3)

M. L. Nischan, R. M. Joseph, J. C. Libby, and J. P. Kerekes, “Active spectral Imaging,” Lincoln Laboratory Journal 14, 131–144 (2003).

G. Shaw and H. K. Burke, “Spectral imaging for remote sensing,” Lincoln Laboratory Journal 14, 3–28 (2003).

D. Manolakis and D. Marden, “Hyperspectral image processing for automatic target detection applications,” Lincoln Laboratory Journal 14, 79–116 (2003).

2000 (1)

J. V. Martonchik, C. J. Bruegge, and A. Strahler, “A review of reflectance nomenclature used in remote sensing,” Remote Sens. Rev. 19, 9–20 (2000).
[CrossRef]

1999 (1)

B. Johnson, R. Joseph, M. Nischan, A. Newbury, J. Kerekes, H. Barclay, B. Willard, and J. Zayhowski, “A compact, active hyperspectral imaging system for the detection of concealed targets,” Proc. SPIE 3710, 144–157 (1999).
[CrossRef]

1998 (2)

W. C. Snyder, “Reciprocity of the BRDF in measurements and models of structured surfaces,” in Proceedings of IEEE Transactions on Geoscience and Remote Sensing 36, 685–691 (1998).
[CrossRef]

J. Greffet and M. Nieto-Vesperinas, “Field theory for generalized bidirectional reflectivity: derivation of Helmholtz’s reciprocity principle and Kirchhoff’s law,” J. Opt. Soc. Am. A 15, 2735–2744 (1998).
[CrossRef]

1996 (2)

C. L. Betty, “The measured polarized bidirectional reflectance distribution function of a Spectralon calibration target,” in Proceedings of IEEE Transactions on Geoscience and Remote Sensing 4, 2183–2185 (1996).

K. Ellis, “Polarimetric bidirectional reflectance distribution function of glossy coatings,” J. Opt. Soc. Am. A 13, 1758–1762 (1996).
[CrossRef]

1985 (3)

1984 (1)

1970 (1)

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 A via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[CrossRef]

1965 (1)

Alfano, R. R.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 A via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[CrossRef]

Avbelj, J.

J. Bieniarz, D. Cerra, J. Avbelj, and P. Reinartz, “Resolution enhancement of hyperspectral imagery through spatial-spectral data fusion,” in Proceedings of ISPRS Hannover Workshop 2011: High-Resolution Earth Imaging for Geospatial Information33–37 (2011).

Barclay, H.

B. Johnson, R. Joseph, M. Nischan, A. Newbury, J. Kerekes, H. Barclay, B. Willard, and J. Zayhowski, “A compact, active hyperspectral imaging system for the detection of concealed targets,” Proc. SPIE 3710, 144–157 (1999).
[CrossRef]

Betty, C. L.

C. L. Betty, “The measured polarized bidirectional reflectance distribution function of a Spectralon calibration target,” in Proceedings of IEEE Transactions on Geoscience and Remote Sensing 4, 2183–2185 (1996).

Bieniarz, J.

J. Bieniarz, D. Cerra, J. Avbelj, and P. Reinartz, “Resolution enhancement of hyperspectral imagery through spatial-spectral data fusion,” in Proceedings of ISPRS Hannover Workshop 2011: High-Resolution Earth Imaging for Geospatial Information33–37 (2011).

Biscans, B.

R. Ceolato, N. Riviere, L. Hespel, and B. Biscans, “Probing optical properties of nanomaterials,” SPIE Newsroom (January12, 2012). doi: .
[CrossRef]

Bourennane, S.

N. Renard and S. Bourennane, “Improvement of target detection methods by multiway filtering,” in Proceedings of IEEE Transactions on Geoscience and Remote Sensing 46, 2407–2417 (2008).
[CrossRef]

Bruegge, C. J.

J. V. Martonchik, C. J. Bruegge, and A. Strahler, “A review of reflectance nomenclature used in remote sensing,” Remote Sens. Rev. 19, 9–20 (2000).
[CrossRef]

Burke, H. K.

G. Shaw and H. K. Burke, “Spectral imaging for remote sensing,” Lincoln Laboratory Journal 14, 3–28 (2003).

Butler, J. J.

G. T. Georgiev and J. J. Butler, “BRDF study of gray-scale Spectralon,” Proc. SPIE 7081, 71–79 (2008).

Campos, J.

Ceolato, R.

N. Riviere, R. Ceolato, and L. Hespel, “Multispectral polarized BRDF: design of a highly resolved reflectometer and development of a data inversion technique,” Opt. Appl. 42, 7–22 (2012).

R. Ceolato, N. Riviere, L. Hespel, and B. Biscans, “Probing optical properties of nanomaterials,” SPIE Newsroom (January12, 2012). doi: .
[CrossRef]

Cerra, D.

J. Bieniarz, D. Cerra, J. Avbelj, and P. Reinartz, “Resolution enhancement of hyperspectral imagery through spatial-spectral data fusion,” in Proceedings of ISPRS Hannover Workshop 2011: High-Resolution Earth Imaging for Geospatial Information33–37 (2011).

Chen, R.

Y. Chen, E. Raikkonen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppa, and R. Chen, “Two-channel Hyperspectral LiDAR with a Supercontinuum laser source,” Sensors 10, 7057–7066 (2010).
[CrossRef] [PubMed]

Chen, Y.

T. Hakala, J. Suomalainen, S. Kaasalainen, and Y. Chen, “Full waveform hyperspectral LiDAR for terrestrial laser scanning,” Opt. Express 20, 7119–7127 (2012).
[CrossRef] [PubMed]

Y. Chen, E. Raikkonen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppa, and R. Chen, “Two-channel Hyperspectral LiDAR with a Supercontinuum laser source,” Sensors 10, 7057–7066 (2010).
[CrossRef] [PubMed]

Clarke, F. J. J.

F. J. J. Clarke and D. J. Parry, “Helmholtz reciprocity: Its validity and application to reflectometry,” Ltg. Res. Technol. 17, 1–11 (1985).
[CrossRef]

Coen, S.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Corrons, A.

Dangel, S.

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing - definitions and case studies,” Remote Sens. Environ. 103, 27–42 (2006).
[CrossRef]

Dudley, J.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Eismann, M.

M. Eismann and R. Hardie, “Hyperspectral resolution enhancement using high-resolution multispectral imagery with arbitrary response functions,” in Proceedings of IEEE Transactions on Geoscience and Remote Sensing 43, 455–465 (2005).
[CrossRef]

Ellis, K.

Ellwood, R.

C. Zakian, I. Pretty, and R. Ellwood, “Near-infrared hyperspectral imaging of teeth for dental caries detection,” J. Biomed. Opt. 14, 14, 64047 (2009).
[CrossRef]

Eom, H. J.

Fantini, S.

Farr, L.

L. Farr, “Active Spectral Imaging for Target Detection,” EMRS DTC Technical Conference 4, 1–8 (2007).

Ferrero, A.

Foo, S. C.

H. Li, S. C. Foo, K. E. Torrance, and S. H. Westin, “Automated three-axis gonioreflectometer for computer graphics applications,” Opt. Eng. 45, 043605 (2005).
[CrossRef]

Gartley, M.

E. Ientilucci and M. Gartley, “Impact of BRDF on physics-based modeling as applied to target detection in hyperspectral imagery,” Proc. SPIE 7334, 73340T1 (2009).

Genty, G.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Georgiev, G. T.

G. T. Georgiev and J. J. Butler, “BRDF study of gray-scale Spectralon,” Proc. SPIE 7081, 71–79 (2008).

Greffet, J.

Hakala, T.

T. Hakala, J. Suomalainen, S. Kaasalainen, and Y. Chen, “Full waveform hyperspectral LiDAR for terrestrial laser scanning,” Opt. Express 20, 7119–7127 (2012).
[CrossRef] [PubMed]

Y. Chen, E. Raikkonen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppa, and R. Chen, “Two-channel Hyperspectral LiDAR with a Supercontinuum laser source,” Sensors 10, 7057–7066 (2010).
[CrossRef] [PubMed]

Haner, D.

B. Mc Guckin, D. Haner, and R. Menzies, “Multiangle imaging spectroradiometer: optical characterization of the calibration panels,” J. Quant. Spectros. Radiat. Transfer. 15, 281–290 (2007).

Hardie, R.

M. Eismann and R. Hardie, “Hyperspectral resolution enhancement using high-resolution multispectral imagery with arbitrary response functions,” in Proceedings of IEEE Transactions on Geoscience and Remote Sensing 43, 455–465 (2005).
[CrossRef]

Hernanz, M. L.

Hespel, L.

N. Riviere, R. Ceolato, and L. Hespel, “Multispectral polarized BRDF: design of a highly resolved reflectometer and development of a data inversion technique,” Opt. Appl. 42, 7–22 (2012).

R. Ceolato, N. Riviere, L. Hespel, and B. Biscans, “Probing optical properties of nanomaterials,” SPIE Newsroom (January12, 2012). doi: .
[CrossRef]

Hyyppa, J.

Y. Chen, E. Raikkonen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppa, and R. Chen, “Two-channel Hyperspectral LiDAR with a Supercontinuum laser source,” Sensors 10, 7057–7066 (2010).
[CrossRef] [PubMed]

Ientilucci, E.

E. Ientilucci and M. Gartley, “Impact of BRDF on physics-based modeling as applied to target detection in hyperspectral imagery,” Proc. SPIE 7334, 73340T1 (2009).

Ikonen, E.

Johnson, B.

B. Johnson, R. Joseph, M. Nischan, A. Newbury, J. Kerekes, H. Barclay, B. Willard, and J. Zayhowski, “A compact, active hyperspectral imaging system for the detection of concealed targets,” Proc. SPIE 3710, 144–157 (1999).
[CrossRef]

Joseph, R.

B. Johnson, R. Joseph, M. Nischan, A. Newbury, J. Kerekes, H. Barclay, B. Willard, and J. Zayhowski, “A compact, active hyperspectral imaging system for the detection of concealed targets,” Proc. SPIE 3710, 144–157 (1999).
[CrossRef]

Joseph, R. M.

M. L. Nischan, R. M. Joseph, J. C. Libby, and J. P. Kerekes, “Active spectral Imaging,” Lincoln Laboratory Journal 14, 131–144 (2003).

Kaasalainen, S.

T. Hakala, J. Suomalainen, S. Kaasalainen, and Y. Chen, “Full waveform hyperspectral LiDAR for terrestrial laser scanning,” Opt. Express 20, 7119–7127 (2012).
[CrossRef] [PubMed]

Y. Chen, E. Raikkonen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppa, and R. Chen, “Two-channel Hyperspectral LiDAR with a Supercontinuum laser source,” Sensors 10, 7057–7066 (2010).
[CrossRef] [PubMed]

Kerekes, J.

B. Johnson, R. Joseph, M. Nischan, A. Newbury, J. Kerekes, H. Barclay, B. Willard, and J. Zayhowski, “A compact, active hyperspectral imaging system for the detection of concealed targets,” Proc. SPIE 3710, 144–157 (1999).
[CrossRef]

Kerekes, J. P.

M. L. Nischan, R. M. Joseph, J. C. Libby, and J. P. Kerekes, “Active spectral Imaging,” Lincoln Laboratory Journal 14, 131–144 (2003).

Larusson, F.

Li, H.

H. Li, S. C. Foo, K. E. Torrance, and S. H. Westin, “Automated three-axis gonioreflectometer for computer graphics applications,” Opt. Eng. 45, 043605 (2005).
[CrossRef]

H. Li and K. E. Torrance, “A practical comprehensive light reflection model,” Technical Report PCG-05-03, Cornell Univeristy (2005).

Libby, J. C.

M. L. Nischan, R. M. Joseph, J. C. Libby, and J. P. Kerekes, “Active spectral Imaging,” Lincoln Laboratory Journal 14, 131–144 (2003).

Liu, J.

Lu, R.

Y. Peng and R. Lu, “Analysis of spatially resolved hyperspectral scattering images for assessing apple fruit firmness and soluble solids content,” Postharvest Biol. Tec. 48, 52–62 (2008).
[CrossRef]

Manolakis, D.

D. Manolakis and D. Marden, “Hyperspectral image processing for automatic target detection applications,” Lincoln Laboratory Journal 14, 79–116 (2003).

Manoocheri, F.

Marden, D.

D. Manolakis and D. Marden, “Hyperspectral image processing for automatic target detection applications,” Lincoln Laboratory Journal 14, 79–116 (2003).

Martonchik, J. V.

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing - definitions and case studies,” Remote Sens. Environ. 103, 27–42 (2006).
[CrossRef]

J. V. Martonchik, C. J. Bruegge, and A. Strahler, “A review of reflectance nomenclature used in remote sensing,” Remote Sens. Rev. 19, 9–20 (2000).
[CrossRef]

Mc Guckin, B.

B. Mc Guckin, D. Haner, and R. Menzies, “Multiangle imaging spectroradiometer: optical characterization of the calibration panels,” J. Quant. Spectros. Radiat. Transfer. 15, 281–290 (2007).

Menzies, R.

B. Mc Guckin, D. Haner, and R. Menzies, “Multiangle imaging spectroradiometer: optical characterization of the calibration panels,” J. Quant. Spectros. Radiat. Transfer. 15, 281–290 (2007).

Miller, E.

Nevas, S.

Newbury, A.

B. Johnson, R. Joseph, M. Nischan, A. Newbury, J. Kerekes, H. Barclay, B. Willard, and J. Zayhowski, “A compact, active hyperspectral imaging system for the detection of concealed targets,” Proc. SPIE 3710, 144–157 (1999).
[CrossRef]

Nicodemus, F.

Nieto-Vesperinas, M.

Nischan, M.

B. Johnson, R. Joseph, M. Nischan, A. Newbury, J. Kerekes, H. Barclay, B. Willard, and J. Zayhowski, “A compact, active hyperspectral imaging system for the detection of concealed targets,” Proc. SPIE 3710, 144–157 (1999).
[CrossRef]

Nischan, M. L.

M. L. Nischan, R. M. Joseph, J. C. Libby, and J. P. Kerekes, “Active spectral Imaging,” Lincoln Laboratory Journal 14, 131–144 (2003).

Noel, M.

Ogura, I.

Okayama, H.

Painter, T. H.

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing - definitions and case studies,” Remote Sens. Environ. 103, 27–42 (2006).
[CrossRef]

Parry, D. J.

F. J. J. Clarke and D. J. Parry, “Helmholtz reciprocity: Its validity and application to reflectometry,” Ltg. Res. Technol. 17, 1–11 (1985).
[CrossRef]

Peng, Y.

Y. Peng and R. Lu, “Analysis of spatially resolved hyperspectral scattering images for assessing apple fruit firmness and soluble solids content,” Postharvest Biol. Tec. 48, 52–62 (2008).
[CrossRef]

Pons, A.

Pretty, I.

C. Zakian, I. Pretty, and R. Ellwood, “Near-infrared hyperspectral imaging of teeth for dental caries detection,” J. Biomed. Opt. 14, 14, 64047 (2009).
[CrossRef]

Rabal, A. M.

Raikkonen, E.

Y. Chen, E. Raikkonen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppa, and R. Chen, “Two-channel Hyperspectral LiDAR with a Supercontinuum laser source,” Sensors 10, 7057–7066 (2010).
[CrossRef] [PubMed]

Reinartz, P.

J. Bieniarz, D. Cerra, J. Avbelj, and P. Reinartz, “Resolution enhancement of hyperspectral imagery through spatial-spectral data fusion,” in Proceedings of ISPRS Hannover Workshop 2011: High-Resolution Earth Imaging for Geospatial Information33–37 (2011).

Renard, N.

N. Renard and S. Bourennane, “Improvement of target detection methods by multiway filtering,” in Proceedings of IEEE Transactions on Geoscience and Remote Sensing 46, 2407–2417 (2008).
[CrossRef]

Riviere, N.

N. Riviere, R. Ceolato, and L. Hespel, “Multispectral polarized BRDF: design of a highly resolved reflectometer and development of a data inversion technique,” Opt. Appl. 42, 7–22 (2012).

R. Ceolato, N. Riviere, L. Hespel, and B. Biscans, “Probing optical properties of nanomaterials,” SPIE Newsroom (January12, 2012). doi: .
[CrossRef]

Schaepman, M. E.

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing - definitions and case studies,” Remote Sens. Environ. 103, 27–42 (2006).
[CrossRef]

Schaepman-Strub, G.

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing - definitions and case studies,” Remote Sens. Environ. 103, 27–42 (2006).
[CrossRef]

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 A via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[CrossRef]

Shaw, G.

G. Shaw and H. K. Burke, “Spectral imaging for remote sensing,” Lincoln Laboratory Journal 14, 3–28 (2003).

Snyder, W. C.

W. C. Snyder, “Reciprocity of the BRDF in measurements and models of structured surfaces,” in Proceedings of IEEE Transactions on Geoscience and Remote Sensing 36, 685–691 (1998).
[CrossRef]

Strahler, A.

J. V. Martonchik, C. J. Bruegge, and A. Strahler, “A review of reflectance nomenclature used in remote sensing,” Remote Sens. Rev. 19, 9–20 (2000).
[CrossRef]

Suomalainen, J.

T. Hakala, J. Suomalainen, S. Kaasalainen, and Y. Chen, “Full waveform hyperspectral LiDAR for terrestrial laser scanning,” Opt. Express 20, 7119–7127 (2012).
[CrossRef] [PubMed]

Y. Chen, E. Raikkonen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppa, and R. Chen, “Two-channel Hyperspectral LiDAR with a Supercontinuum laser source,” Sensors 10, 7057–7066 (2010).
[CrossRef] [PubMed]

Torrance, K. E.

H. Li, S. C. Foo, K. E. Torrance, and S. H. Westin, “Automated three-axis gonioreflectometer for computer graphics applications,” Opt. Eng. 45, 043605 (2005).
[CrossRef]

H. Li and K. E. Torrance, “A practical comprehensive light reflection model,” Technical Report PCG-05-03, Cornell Univeristy (2005).

Venable, W. H.

Westin, S. H.

H. Li, S. C. Foo, K. E. Torrance, and S. H. Westin, “Automated three-axis gonioreflectometer for computer graphics applications,” Opt. Eng. 45, 043605 (2005).
[CrossRef]

Willard, B.

B. Johnson, R. Joseph, M. Nischan, A. Newbury, J. Kerekes, H. Barclay, B. Willard, and J. Zayhowski, “A compact, active hyperspectral imaging system for the detection of concealed targets,” Proc. SPIE 3710, 144–157 (1999).
[CrossRef]

Zakian, C.

C. Zakian, I. Pretty, and R. Ellwood, “Near-infrared hyperspectral imaging of teeth for dental caries detection,” J. Biomed. Opt. 14, 14, 64047 (2009).
[CrossRef]

Zayhowski, J.

B. Johnson, R. Joseph, M. Nischan, A. Newbury, J. Kerekes, H. Barclay, B. Willard, and J. Zayhowski, “A compact, active hyperspectral imaging system for the detection of concealed targets,” Proc. SPIE 3710, 144–157 (1999).
[CrossRef]

Zwinkels, J.

Appl. Opt. (6)

Biomed. Opt. Express (1)

EMRS DTC Technical Conference (1)

L. Farr, “Active Spectral Imaging for Target Detection,” EMRS DTC Technical Conference 4, 1–8 (2007).

J. Biomed. Opt. (1)

C. Zakian, I. Pretty, and R. Ellwood, “Near-infrared hyperspectral imaging of teeth for dental caries detection,” J. Biomed. Opt. 14, 14, 64047 (2009).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Quant. Spectros. Radiat. Transfer. (1)

B. Mc Guckin, D. Haner, and R. Menzies, “Multiangle imaging spectroradiometer: optical characterization of the calibration panels,” J. Quant. Spectros. Radiat. Transfer. 15, 281–290 (2007).

Lincoln Laboratory Journal (3)

M. L. Nischan, R. M. Joseph, J. C. Libby, and J. P. Kerekes, “Active spectral Imaging,” Lincoln Laboratory Journal 14, 131–144 (2003).

G. Shaw and H. K. Burke, “Spectral imaging for remote sensing,” Lincoln Laboratory Journal 14, 3–28 (2003).

D. Manolakis and D. Marden, “Hyperspectral image processing for automatic target detection applications,” Lincoln Laboratory Journal 14, 79–116 (2003).

Ltg. Res. Technol. (1)

F. J. J. Clarke and D. J. Parry, “Helmholtz reciprocity: Its validity and application to reflectometry,” Ltg. Res. Technol. 17, 1–11 (1985).
[CrossRef]

Opt. Appl. (1)

N. Riviere, R. Ceolato, and L. Hespel, “Multispectral polarized BRDF: design of a highly resolved reflectometer and development of a data inversion technique,” Opt. Appl. 42, 7–22 (2012).

Opt. Eng. (1)

H. Li, S. C. Foo, K. E. Torrance, and S. H. Westin, “Automated three-axis gonioreflectometer for computer graphics applications,” Opt. Eng. 45, 043605 (2005).
[CrossRef]

Opt. Express (2)

Phys. Rev. Lett. (1)

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 A via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[CrossRef]

Postharvest Biol. Tec. (1)

Y. Peng and R. Lu, “Analysis of spatially resolved hyperspectral scattering images for assessing apple fruit firmness and soluble solids content,” Postharvest Biol. Tec. 48, 52–62 (2008).
[CrossRef]

Proc. SPIE (3)

B. Johnson, R. Joseph, M. Nischan, A. Newbury, J. Kerekes, H. Barclay, B. Willard, and J. Zayhowski, “A compact, active hyperspectral imaging system for the detection of concealed targets,” Proc. SPIE 3710, 144–157 (1999).
[CrossRef]

E. Ientilucci and M. Gartley, “Impact of BRDF on physics-based modeling as applied to target detection in hyperspectral imagery,” Proc. SPIE 7334, 73340T1 (2009).

G. T. Georgiev and J. J. Butler, “BRDF study of gray-scale Spectralon,” Proc. SPIE 7081, 71–79 (2008).

Proceedings of IEEE Transactions on Geoscience and Remote Sensing (4)

W. C. Snyder, “Reciprocity of the BRDF in measurements and models of structured surfaces,” in Proceedings of IEEE Transactions on Geoscience and Remote Sensing 36, 685–691 (1998).
[CrossRef]

C. L. Betty, “The measured polarized bidirectional reflectance distribution function of a Spectralon calibration target,” in Proceedings of IEEE Transactions on Geoscience and Remote Sensing 4, 2183–2185 (1996).

M. Eismann and R. Hardie, “Hyperspectral resolution enhancement using high-resolution multispectral imagery with arbitrary response functions,” in Proceedings of IEEE Transactions on Geoscience and Remote Sensing 43, 455–465 (2005).
[CrossRef]

N. Renard and S. Bourennane, “Improvement of target detection methods by multiway filtering,” in Proceedings of IEEE Transactions on Geoscience and Remote Sensing 46, 2407–2417 (2008).
[CrossRef]

Proceedings of ISPRS Hannover Workshop 2011: High-Resolution Earth Imaging for Geospatial Information (1)

J. Bieniarz, D. Cerra, J. Avbelj, and P. Reinartz, “Resolution enhancement of hyperspectral imagery through spatial-spectral data fusion,” in Proceedings of ISPRS Hannover Workshop 2011: High-Resolution Earth Imaging for Geospatial Information33–37 (2011).

Remote Sens. Environ. (1)

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing - definitions and case studies,” Remote Sens. Environ. 103, 27–42 (2006).
[CrossRef]

Remote Sens. Rev. (1)

J. V. Martonchik, C. J. Bruegge, and A. Strahler, “A review of reflectance nomenclature used in remote sensing,” Remote Sens. Rev. 19, 9–20 (2000).
[CrossRef]

Rev. Mod. Phys. (1)

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Sensors (1)

Y. Chen, E. Raikkonen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppa, and R. Chen, “Two-channel Hyperspectral LiDAR with a Supercontinuum laser source,” Sensors 10, 7057–7066 (2010).
[CrossRef] [PubMed]

Other (4)

R. Ceolato, N. Riviere, L. Hespel, and B. Biscans, “Probing optical properties of nanomaterials,” SPIE Newsroom (January12, 2012). doi: .
[CrossRef]

Labsphere, “A guide to diffuse reflectance coatings and materials,” http://www.prolite.co.uk/File/coatingsmaterialsdocumentation.php .

H. Li and K. E. Torrance, “A practical comprehensive light reflection model,” Technical Report PCG-05-03, Cornell Univeristy (2005).

“Standard practice for angle resolved optical scatter measurements on specular or diffuse surfaces,” Am. Soc. Test Mater Standard E1392–96 (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Definition of the hyperspectral tensors in a spherical coordinate system.

Fig. 2
Fig. 2

Schematic of the VIS/NIR hyperspectral version of Melopee instrument. The incident lighting system is a supercontinuum laser coupled to wide-band polarizers. The sensing system is composed of a CCD sensor based spectrophotometer mounted on a goniometer platform.

Fig. 3
Fig. 3

B R D F , 0 p u measurements for Lambertian materials : Spectralon SRS-99 and SRS-20. The illumination is P-polarized and the detection unpolarized..

Fig. 4
Fig. 4

B R D F , 0 p u measurements for color Lambertian materials : Spectralon SCS-CY, SCS-GN, SCS-VI and SCS-YW. The illumination is P-polarized and the detection unpolarized.

Fig. 5
Fig. 5

B R D F , 0 p u measurements for a commercial urban glossy paint coating for an incident P-polarized (left) and S-polarized illumination (right). Detection is unpolarized.

Fig. 6
Fig. 6

Energy conservation for Spectralon SRS and SCS. Comparison between computed DHR from B R D F , 0 m n measurements (Melopee) and DHR provided by LabSphere.

Fig. 7
Fig. 7

Helmholtz reciprocity. BRDF reciprocity validation for ten VIS/NIR wavelengths on a glossy paint coating from ℋBRDF,0 measurements. Incident P-polarized (on the left) and S-polarized (on the right) light are considered.

Tables (4)

Tables Icon

Table 1 Notations used in the hyperspectral polarimetric tensorial framework where m and n refer to the incident and reflected polarization states.

Tables Icon

Table 2 Specifications of the VIS/NIR hyperspectral version of Melopee instrument.

Tables Icon

Table 3 RMS Errors for Spectralon SRS.

Tables Icon

Table 4 RMS Errors for Spectralon SCS.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

m ( i 1 , i 2 ; r 1 , r 2 ; l ) = 𝒫 i m ( i 1 , i 2 ; r 1 , r 2 ; l ) cos θ ( r 1 ) A
r n ( i 1 , i 2 ; r 1 , r 2 ; l ) = 𝒫 r n ( i 1 , i 2 ; r 1 , r 2 ; l ) cos θ ( r 1 ) A Ω
B R D F m n ( i 1 , i 2 ; r 1 , r 2 ; l ) = r n ( i 1 , i 2 ; r 1 , r 2 ; l ) m ( i 1 , i 2 ; r 1 , r 2 ; l )
H B R D F , 0 m n = r n ( i 1 , r 1 ; l ) i m ( i 1 , r 1 ; l )
D H R , 0 m n ( l ) = 𝒫 r n ( l ) 𝒫 i m ( l )

Metrics