Abstract

Optical fibers are an excellent transmission medium for light and underpin the infrastructure of the Internet, but generally after fabrication their optical properties cannot be easily modified. Here, we explore the concept of nanomechanical optical fibers where, in addition to the fiber transmission capability, the internal core structure of the fiber can also be controlled through sub-micron mechanical movements. The nanomechanical functionality of such fibers is demonstrated in the form of dual core optical fibers, in which the cores are independently suspended within the fiber. The movement-based optical change is large compared with traditional electro-optical effects and we show that optical switching of light from one core to the other is achieved through moving one core by just 8 nm.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. G. Craighead, “Nanoelectromechanical systems,” Science 290(5496), 1532–1535 (2000).
    [CrossRef] [PubMed]
  2. P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display,” Proc. IEEE 86(8), 1687–1704 (1998).
    [CrossRef]
  3. Z. Lian, X. Feng, P. Horak, L. Xiao, Y. Jeong, N. White, K. Frampton, J. A. Tucknott, H. N. Rutt, D. N. Payne, W. Stewart, and W. H. Loh, “Optical fiber with dual cores suspended in air,” in The 37th edition of the European Conference on Optical Communication, Geneva (2011), paper Mo.2.LeCervin.1.
  4. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  5. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
    [CrossRef] [PubMed]
  6. R. Ramaswami and K. N. Sivarajan, “Routing and wavelength assignment in all-optical networks,” IEEE/ACM Trans. Netw. 3(5), 489–500 (1995).
  7. M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
    [CrossRef] [PubMed]
  8. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic Press, 1991).
  9. D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, “A novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photon. Technol. Lett. 13(9), 993–995 (2001).
    [CrossRef]
  10. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  11. A. Butsch, C. Conti, F. Biancalana, and P. St. J. Russell, “Optomechanical Self-Channeling of Light in a Suspended Planar Dual-Nanoweb Waveguide,” Phys. Rev. Lett. 108(9), 093903 (2012).
    [CrossRef] [PubMed]
  12. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
    [CrossRef] [PubMed]
  13. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [CrossRef] [PubMed]
  14. M. J. Weber, Handbook of Optical Materials, (CRC Press, 2003).
  15. K. Van Acoleyen, J. Roels, P. Mechet, T. Claes, D. Van Thourhout, and R. Baets, “Ultracompact phase modulator based on a cascade of NEMS-operated slot waveguides fabricated in silicon-on-insulator,” IEEE Photon. J. 4(3), 779–788 (2012).
    [CrossRef]
  16. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
    [CrossRef]
  17. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30(22), 3042–3044 (2005).
    [CrossRef] [PubMed]
  18. I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90(23), 233116 (2007).
    [CrossRef]
  19. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
    [CrossRef] [PubMed]
  20. M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1(7), 416–422 (2007).
    [CrossRef]
  21. P. Horak, W. Stewart, and W. H. Loh, “Continuously tunable optical buffer with a dual silicon waveguide design,” Opt. Express 19(13), 12456–12461 (2011).
    [CrossRef] [PubMed]

2012 (3)

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[CrossRef] [PubMed]

A. Butsch, C. Conti, F. Biancalana, and P. St. J. Russell, “Optomechanical Self-Channeling of Light in a Suspended Planar Dual-Nanoweb Waveguide,” Phys. Rev. Lett. 108(9), 093903 (2012).
[CrossRef] [PubMed]

K. Van Acoleyen, J. Roels, P. Mechet, T. Claes, D. Van Thourhout, and R. Baets, “Ultracompact phase modulator based on a cascade of NEMS-operated slot waveguides fabricated in silicon-on-insulator,” IEEE Photon. J. 4(3), 779–788 (2012).
[CrossRef]

2011 (1)

2007 (3)

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1(7), 416–422 (2007).
[CrossRef]

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90(23), 233116 (2007).
[CrossRef]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

2005 (3)

2004 (2)

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
[CrossRef] [PubMed]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

2003 (2)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

2001 (1)

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, “A novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photon. Technol. Lett. 13(9), 993–995 (2001).
[CrossRef]

2000 (1)

H. G. Craighead, “Nanoelectromechanical systems,” Science 290(5496), 1532–1535 (2000).
[CrossRef] [PubMed]

1998 (1)

P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display,” Proc. IEEE 86(8), 1687–1704 (1998).
[CrossRef]

1995 (1)

R. Ramaswami and K. N. Sivarajan, “Routing and wavelength assignment in all-optical networks,” IEEE/ACM Trans. Netw. 3(5), 489–500 (1995).

Abeysinghe, D. C.

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, “A novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photon. Technol. Lett. 13(9), 993–995 (2001).
[CrossRef]

Abouraddy, A. F.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

Almeida, V. R.

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Baets, R.

K. Van Acoleyen, J. Roels, P. Mechet, T. Claes, D. Van Thourhout, and R. Baets, “Ultracompact phase modulator based on a cascade of NEMS-operated slot waveguides fabricated in silicon-on-insulator,” IEEE Photon. J. 4(3), 779–788 (2012).
[CrossRef]

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90(23), 233116 (2007).
[CrossRef]

Barrios, C. A.

Bayindir, M.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

Biancalana, F.

A. Butsch, C. Conti, F. Biancalana, and P. St. J. Russell, “Optomechanical Self-Channeling of Light in a Suspended Planar Dual-Nanoweb Waveguide,” Phys. Rev. Lett. 108(9), 093903 (2012).
[CrossRef] [PubMed]

Birks, T.

Borghs, G.

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90(23), 233116 (2007).
[CrossRef]

Boyd, J. T.

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, “A novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photon. Technol. Lett. 13(9), 993–995 (2001).
[CrossRef]

Butsch, A.

A. Butsch, C. Conti, F. Biancalana, and P. St. J. Russell, “Optomechanical Self-Channeling of Light in a Suspended Planar Dual-Nanoweb Waveguide,” Phys. Rev. Lett. 108(9), 093903 (2012).
[CrossRef] [PubMed]

Capasso, F.

Carmon, T.

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[CrossRef] [PubMed]

Claes, T.

K. Van Acoleyen, J. Roels, P. Mechet, T. Claes, D. Van Thourhout, and R. Baets, “Ultracompact phase modulator based on a cascade of NEMS-operated slot waveguides fabricated in silicon-on-insulator,” IEEE Photon. J. 4(3), 779–788 (2012).
[CrossRef]

Conti, C.

A. Butsch, C. Conti, F. Biancalana, and P. St. J. Russell, “Optomechanical Self-Channeling of Light in a Suspended Planar Dual-Nanoweb Waveguide,” Phys. Rev. Lett. 108(9), 093903 (2012).
[CrossRef] [PubMed]

Couny, F.

Craighead, H. G.

H. G. Craighead, “Nanoelectromechanical systems,” Science 290(5496), 1532–1535 (2000).
[CrossRef] [PubMed]

Dasgupta, S.

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, “A novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photon. Technol. Lett. 13(9), 993–995 (2001).
[CrossRef]

De Vlaminck, I.

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90(23), 233116 (2007).
[CrossRef]

Douglass, M. R.

P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display,” Proc. IEEE 86(8), 1687–1704 (1998).
[CrossRef]

Eichenfield, M.

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1(7), 416–422 (2007).
[CrossRef]

Farr, L.

Fink, Y.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Hart, S. D.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Horak, P.

Hornbeck, L. J.

P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display,” Proc. IEEE 86(8), 1687–1704 (1998).
[CrossRef]

Ibanescu, M.

Jackson, H. E.

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, “A novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photon. Technol. Lett. 13(9), 993–995 (2001).
[CrossRef]

Joannopoulos, J. D.

M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30(22), 3042–3044 (2005).
[CrossRef] [PubMed]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

Johnson, S. G.

Kippenberg, T. J.

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[CrossRef] [PubMed]

Knight, J.

Knight, J. C.

Lagae, L.

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90(23), 233116 (2007).
[CrossRef]

Lipson, M.

Loh, W. H.

Loncar, M.

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mangan, B.

Mason, M.

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mechet, P.

K. Van Acoleyen, J. Roels, P. Mechet, T. Claes, D. Van Thourhout, and R. Baets, “Ultracompact phase modulator based on a cascade of NEMS-operated slot waveguides fabricated in silicon-on-insulator,” IEEE Photon. J. 4(3), 779–788 (2012).
[CrossRef]

Meier, R. E.

P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display,” Proc. IEEE 86(8), 1687–1704 (1998).
[CrossRef]

Michael, C. P.

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1(7), 416–422 (2007).
[CrossRef]

Painter, O.

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1(7), 416–422 (2007).
[CrossRef]

Perahia, R.

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1(7), 416–422 (2007).
[CrossRef]

Povinelli, M. L.

Ramaswami, R.

R. Ramaswami and K. N. Sivarajan, “Routing and wavelength assignment in all-optical networks,” IEEE/ACM Trans. Netw. 3(5), 489–500 (1995).

Roberts, P.

Roels, J.

K. Van Acoleyen, J. Roels, P. Mechet, T. Claes, D. Van Thourhout, and R. Baets, “Ultracompact phase modulator based on a cascade of NEMS-operated slot waveguides fabricated in silicon-on-insulator,” IEEE Photon. J. 4(3), 779–788 (2012).
[CrossRef]

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90(23), 233116 (2007).
[CrossRef]

Rokhsari, H.

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[CrossRef] [PubMed]

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Russell, P. St. J.

A. Butsch, C. Conti, F. Biancalana, and P. St. J. Russell, “Optomechanical Self-Channeling of Light in a Suspended Planar Dual-Nanoweb Waveguide,” Phys. Rev. Lett. 108(9), 093903 (2012).
[CrossRef] [PubMed]

Sabert, H.

Scherer, A.

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[CrossRef] [PubMed]

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Sivarajan, K. N.

R. Ramaswami and K. N. Sivarajan, “Routing and wavelength assignment in all-optical networks,” IEEE/ACM Trans. Netw. 3(5), 489–500 (1995).

Smythe, E. J.

Sorin, F.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

St J Russell, P.

Stewart, W.

Taillaert, D.

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90(23), 233116 (2007).
[CrossRef]

Tomlinson, A.

Tong, L.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Vahala, K. J.

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[CrossRef] [PubMed]

Van Acoleyen, K.

K. Van Acoleyen, J. Roels, P. Mechet, T. Claes, D. Van Thourhout, and R. Baets, “Ultracompact phase modulator based on a cascade of NEMS-operated slot waveguides fabricated in silicon-on-insulator,” IEEE Photon. J. 4(3), 779–788 (2012).
[CrossRef]

Van Kessel, P. F.

P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display,” Proc. IEEE 86(8), 1687–1704 (1998).
[CrossRef]

Van Thourhout, D.

K. Van Acoleyen, J. Roels, P. Mechet, T. Claes, D. Van Thourhout, and R. Baets, “Ultracompact phase modulator based on a cascade of NEMS-operated slot waveguides fabricated in silicon-on-insulator,” IEEE Photon. J. 4(3), 779–788 (2012).
[CrossRef]

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90(23), 233116 (2007).
[CrossRef]

Viens, J.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Wadsworth, W. J.

Williams, D.

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Xu, Q.

Yu, F.

Appl. Phys. Lett. (1)

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90(23), 233116 (2007).
[CrossRef]

IEEE Photon. J. (1)

K. Van Acoleyen, J. Roels, P. Mechet, T. Claes, D. Van Thourhout, and R. Baets, “Ultracompact phase modulator based on a cascade of NEMS-operated slot waveguides fabricated in silicon-on-insulator,” IEEE Photon. J. 4(3), 779–788 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, “A novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photon. Technol. Lett. 13(9), 993–995 (2001).
[CrossRef]

IEEE/ACM Trans. Netw. (1)

R. Ramaswami and K. N. Sivarajan, “Routing and wavelength assignment in all-optical networks,” IEEE/ACM Trans. Netw. 3(5), 489–500 (1995).

Nat. Photonics (2)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1(7), 416–422 (2007).
[CrossRef]

Nature (2)

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[CrossRef] [PubMed]

A. Butsch, C. Conti, F. Biancalana, and P. St. J. Russell, “Optomechanical Self-Channeling of Light in a Suspended Planar Dual-Nanoweb Waveguide,” Phys. Rev. Lett. 108(9), 093903 (2012).
[CrossRef] [PubMed]

Proc. IEEE (1)

P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display,” Proc. IEEE 86(8), 1687–1704 (1998).
[CrossRef]

Science (2)

H. G. Craighead, “Nanoelectromechanical systems,” Science 290(5496), 1532–1535 (2000).
[CrossRef] [PubMed]

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Other (3)

Z. Lian, X. Feng, P. Horak, L. Xiao, Y. Jeong, N. White, K. Frampton, J. A. Tucknott, H. N. Rutt, D. N. Payne, W. Stewart, and W. H. Loh, “Optical fiber with dual cores suspended in air,” in The 37th edition of the European Conference on Optical Communication, Geneva (2011), paper Mo.2.LeCervin.1.

D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic Press, 1991).

M. J. Weber, Handbook of Optical Materials, (CRC Press, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig.
       1
Fig. 1

(a) Schematic of the dual core nanomechanical optical fiber concept. (b) Extruded glass preform of the desired structure. (c) SEM photograph of a fabricated dual suspended core optical fiber; and (d) magnifies of the core structure.

Fig.
       2
Fig. 2

SEM photographs of a dual core fiber with a direct access channel to one of the cores for pressure actuation. (a) Fiber structure after drawing. (b) Close-up of the fiber core structure. The displacement between the two cores is 2 µm. Cores are 0.8 µm × 2.7 µm in size. (c) Fiber core structure after the remaining wall of the cladding has been etched away.

Fig.
       3
Fig. 3

Optical propagation loss measurements of the dual core fiber in Fig. 2, using the fiber cut-back measurement method. The losses for both horizontal (TE) and vertical (TM) polarization modes, and at two different wavelengths (1550nm and 1047nm) were measured. Cut back data point: ■ 1047 nm, TE; ○ 1047 nm, TM; ▲ 1550 nm, TE; ◊ 1550 nm, TM. Curve fittings: solid blue: −1.77 dB/m, 1047 nm, TE; dashed blue: −2.92 dB/m, 1047 nm, TM; solid red: −2.54 dB/m, 1550 nm, TE; dashed red: −3.29 dB/m, 1550 nm, TM.

Fig.
       4
Fig. 4

(Left) Experimental set-up with dual core fiber to show optical switching by pressure actuation on one core. Dual core fiber of length 43 cm used for test. A 3 cm section of the fiber in the middle is etched for direct pressure access to one core. The in-house designed pressure chamber has one pipe connected to a nitrogen gas line and another to a pressure gauge. (Right) Calculated pressure profile inside the pressurized hole of the dual core fiber.

Fig.
       5
Fig. 5

(Top) Optical intensity observed on the infrared video camera for different applied pressures. (Bottom) Plot of intensity in one core as a function of applied pressure, showing the periodic switching behavior. ○ Hollow circle: normalized intensity of the upper core; □ hollow square: normalized intensity of the lower core; solid line (blue): curve fitting to the upper core; solid line (black): curve fitting to the lower core.

Fig.
       6
Fig. 6

(Left) The red curves in the SEM photo denote the geometry used in the modeling calculations. (Right) Calculated TE (horizontal polarization) and TM (vertical polarization) modes of a single core in the dual core fiber (normalized to the maximum of the TE00 mode).

Tables (1)

Tables Icon

Table 1 Optical Fiber Loss Comparison Between the Experimental Measurements and the Losses Calculated from the Numerical Model

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α f i b e r ( λ ) = α g l a s s ( λ ) + α s u r f a c e ( λ )
α s u r f a c e ( λ ) ~ F / λ 3

Metrics