Abstract

We demonstrate the design, fabrication and characterization of mid-infrared photonic crystal waveguides on a silicon-on-insulator platform, showing guided modes in the wavelength regime between 2.9 and 3.9 µm. The characterization is performed with a proprietary intra-cavity Optical Parametric Oscillator in a free space optical setup and with a fibre coupled setup using a commercial Quantum Cascade Laser. We discuss the use of an integrated Mach-Zehnder interferometer for dispersion measurements and report a measured group velocity of up to a value of ng = 12, and determine the propagation loss to be 20 dB/cm.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010).
    [CrossRef]
  2. M. M. Milošević, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett.101(12), 121105 (2012).
    [CrossRef]
  3. X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics4(8), 557–560 (2010).
    [CrossRef]
  4. J. Li, L. O’Faolain, I. H. Rey, and T. F. Krauss, “Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations,” Opt. Express19(5), 4458–4463 (2011).
    [CrossRef] [PubMed]
  5. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third harmonic generation in photonic crystal waveguides,” Nat. Photonics3(4), 206–210 (2009).
    [CrossRef]
  6. R. Shankar, R. Leijssen, I. Bulu, and M. Lončar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express19(6), 5579–5586 (2011).
    [CrossRef] [PubMed]
  7. R. Shankar, I. Bulu, R. Leijssen, and M. Lončar, “Study of thermally-induced optical bistability and the role of surface treatments in Si-based mid-infrared photonic crystal cavities,” Opt. Express19(24), 24828–24837 (2011).
    [CrossRef] [PubMed]
  8. C. Reimer, M. Nedeljkovic, D. J. M. Stothard, G. Z. Mashanovich, and T. F. Krauss, “Mid-infrared photonic crystal waveguides in SOI,” in Proceedings of IEEE International Conference of Group IV Photonics (GFP), ed. (Conference Publications, San Diego, Calif., 2012), pp 12–14.
  9. M. I. T. Photonic Bands, http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands
  10. L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express18(26), 27627–27638 (2010).
    [CrossRef] [PubMed]
  11. J. P. Hugonin, P. Lalanne, T. P. White, and T. F. Krauss, “Coupling into slow-mode photonic crystal waveguides,” Opt. Lett.32(18), 2638–2640 (2007).
    [CrossRef] [PubMed]
  12. C. P. Reardon, I. H. Rey, K. Welna, L. O'Faolain, and T. F. Krauss, “Fabrication and characterisation of photonic crystal slow light waveguides and cavities,” J. Vis. Exp. (69): e50216 (2012), doi:, http://www.jove.com/video/50216/fabrication-characterisation-photonic-crystal-slow-light-waveguides?status=a52222k .
    [CrossRef]
  13. G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express19(8), 7112–7119 (2011).
    [CrossRef] [PubMed]
  14. D. J. M. Stothard, M. Ebrahimzadeh, and M. H. Dunn, “Low-pump-threshold continuous-wave singly resonant optical parametric oscillator,” Opt. Lett.23(24), 1895–1897 (1998).
    [CrossRef] [PubMed]
  15. D. J. M. Stothard, C. F. Rae, and M. H. Dunn, “An intracavity optical parametric oscillator with very high repetition rate and broad tunability based upon room temperature periodically-poled MgO:LiNbO3 with fanned grating design,” IEEE J. Quantum Electron.45(3), 256–263 (2009).
    [CrossRef]
  16. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorderinduced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
    [CrossRef]
  17. E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express14(9), 3853–3863 (2006).
    [CrossRef] [PubMed]
  18. L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett.42(25), 1454–1455 (2006).
    [CrossRef]
  19. M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Opt. Express15(26), 17458–17481 (2007).
    [CrossRef] [PubMed]
  20. S. L. Portalupi, M. Galli, M. Belotti, L. C. Andreani, T. F. Krauss, and L. O’Faolain, “Deliberate versus intrinsic disorder in photonic crystal nanocavities investigated by resonant light scattering,” Phys. Rev. B84(4), 045423 (2011).
    [CrossRef]
  21. B. Wang, S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Backscattering in monomode periodic waveguides,” Phys. Rev. B78(24), 245108 (2008).
    [CrossRef]

2012 (2)

M. M. Milošević, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett.101(12), 121105 (2012).
[CrossRef]

C. P. Reardon, I. H. Rey, K. Welna, L. O'Faolain, and T. F. Krauss, “Fabrication and characterisation of photonic crystal slow light waveguides and cavities,” J. Vis. Exp. (69): e50216 (2012), doi:, http://www.jove.com/video/50216/fabrication-characterisation-photonic-crystal-slow-light-waveguides?status=a52222k .
[CrossRef]

2011 (5)

2010 (3)

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express18(26), 27627–27638 (2010).
[CrossRef] [PubMed]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010).
[CrossRef]

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics4(8), 557–560 (2010).
[CrossRef]

2009 (2)

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third harmonic generation in photonic crystal waveguides,” Nat. Photonics3(4), 206–210 (2009).
[CrossRef]

D. J. M. Stothard, C. F. Rae, and M. H. Dunn, “An intracavity optical parametric oscillator with very high repetition rate and broad tunability based upon room temperature periodically-poled MgO:LiNbO3 with fanned grating design,” IEEE J. Quantum Electron.45(3), 256–263 (2009).
[CrossRef]

2008 (1)

B. Wang, S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Backscattering in monomode periodic waveguides,” Phys. Rev. B78(24), 245108 (2008).
[CrossRef]

2007 (2)

2006 (2)

E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express14(9), 3853–3863 (2006).
[CrossRef] [PubMed]

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett.42(25), 1454–1455 (2006).
[CrossRef]

2005 (1)

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorderinduced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
[CrossRef]

1998 (1)

Andreani, L. C.

S. L. Portalupi, M. Galli, M. Belotti, L. C. Andreani, T. F. Krauss, and L. O’Faolain, “Deliberate versus intrinsic disorder in photonic crystal nanocavities investigated by resonant light scattering,” Phys. Rev. B84(4), 045423 (2011).
[CrossRef]

Beggs, D. M.

Belotti, M.

S. L. Portalupi, M. Galli, M. Belotti, L. C. Andreani, T. F. Krauss, and L. O’Faolain, “Deliberate versus intrinsic disorder in photonic crystal nanocavities investigated by resonant light scattering,” Phys. Rev. B84(4), 045423 (2011).
[CrossRef]

Ben Masaud, T. M.

M. M. Milošević, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett.101(12), 121105 (2012).
[CrossRef]

Bulu, I.

Chong, H.

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett.42(25), 1454–1455 (2006).
[CrossRef]

Chong, H. M. H.

M. M. Milošević, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett.101(12), 121105 (2012).
[CrossRef]

Corcoran, B.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third harmonic generation in photonic crystal waveguides,” Nat. Photonics3(4), 206–210 (2009).
[CrossRef]

De La Rue, R. M.

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett.42(25), 1454–1455 (2006).
[CrossRef]

Dulkeith, E.

Dunn, M. H.

D. J. M. Stothard, C. F. Rae, and M. H. Dunn, “An intracavity optical parametric oscillator with very high repetition rate and broad tunability based upon room temperature periodically-poled MgO:LiNbO3 with fanned grating design,” IEEE J. Quantum Electron.45(3), 256–263 (2009).
[CrossRef]

D. J. M. Stothard, M. Ebrahimzadeh, and M. H. Dunn, “Low-pump-threshold continuous-wave singly resonant optical parametric oscillator,” Opt. Lett.23(24), 1895–1897 (1998).
[CrossRef] [PubMed]

Ebrahimzadeh, M.

Eggleton, B. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third harmonic generation in photonic crystal waveguides,” Nat. Photonics3(4), 206–210 (2009).
[CrossRef]

Emerson, N. G.

M. M. Milošević, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett.101(12), 121105 (2012).
[CrossRef]

Galli, M.

S. L. Portalupi, M. Galli, M. Belotti, L. C. Andreani, T. F. Krauss, and L. O’Faolain, “Deliberate versus intrinsic disorder in photonic crystal nanocavities investigated by resonant light scattering,” Phys. Rev. B84(4), 045423 (2011).
[CrossRef]

Green, W. M. J.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics4(8), 557–560 (2010).
[CrossRef]

E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express14(9), 3853–3863 (2006).
[CrossRef] [PubMed]

Grillet, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third harmonic generation in photonic crystal waveguides,” Nat. Photonics3(4), 206–210 (2009).
[CrossRef]

Hu, Y.

Hughes, S.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorderinduced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
[CrossRef]

Hugonin, J. P.

Jaberansary, E.

M. M. Milošević, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett.101(12), 121105 (2012).
[CrossRef]

Krauss, T. F.

C. P. Reardon, I. H. Rey, K. Welna, L. O'Faolain, and T. F. Krauss, “Fabrication and characterisation of photonic crystal slow light waveguides and cavities,” J. Vis. Exp. (69): e50216 (2012), doi:, http://www.jove.com/video/50216/fabrication-characterisation-photonic-crystal-slow-light-waveguides?status=a52222k .
[CrossRef]

J. Li, L. O’Faolain, I. H. Rey, and T. F. Krauss, “Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations,” Opt. Express19(5), 4458–4463 (2011).
[CrossRef] [PubMed]

S. L. Portalupi, M. Galli, M. Belotti, L. C. Andreani, T. F. Krauss, and L. O’Faolain, “Deliberate versus intrinsic disorder in photonic crystal nanocavities investigated by resonant light scattering,” Phys. Rev. B84(4), 045423 (2011).
[CrossRef]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express18(26), 27627–27638 (2010).
[CrossRef] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third harmonic generation in photonic crystal waveguides,” Nat. Photonics3(4), 206–210 (2009).
[CrossRef]

J. P. Hugonin, P. Lalanne, T. P. White, and T. F. Krauss, “Coupling into slow-mode photonic crystal waveguides,” Opt. Lett.32(18), 2638–2640 (2007).
[CrossRef] [PubMed]

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett.42(25), 1454–1455 (2006).
[CrossRef]

Kuipers, L.

Kuramochi, E.

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Opt. Express15(26), 17458–17481 (2007).
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorderinduced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
[CrossRef]

Lalanne, P.

Leijssen, R.

Li, J.

Liu, X.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics4(8), 557–560 (2010).
[CrossRef]

Loncar, M.

Mashanovich, G. Z.

M. M. Milošević, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett.101(12), 121105 (2012).
[CrossRef]

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express19(8), 7112–7119 (2011).
[CrossRef] [PubMed]

Mazoyer, S.

McIntyre, D.

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett.42(25), 1454–1455 (2006).
[CrossRef]

Melloni, A.

Miloševic, M. M.

M. M. Milošević, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett.101(12), 121105 (2012).
[CrossRef]

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express19(8), 7112–7119 (2011).
[CrossRef] [PubMed]

Mitsugi, S.

Monat, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third harmonic generation in photonic crystal waveguides,” Nat. Photonics3(4), 206–210 (2009).
[CrossRef]

Morichetti, F.

Morita, M.

Moss, D. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third harmonic generation in photonic crystal waveguides,” Nat. Photonics3(4), 206–210 (2009).
[CrossRef]

Nedeljkovic, M.

M. M. Milošević, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett.101(12), 121105 (2012).
[CrossRef]

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express19(8), 7112–7119 (2011).
[CrossRef] [PubMed]

Notomi, M.

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Opt. Express15(26), 17458–17481 (2007).
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorderinduced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
[CrossRef]

O’Faolain, L.

J. Li, L. O’Faolain, I. H. Rey, and T. F. Krauss, “Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations,” Opt. Express19(5), 4458–4463 (2011).
[CrossRef] [PubMed]

S. L. Portalupi, M. Galli, M. Belotti, L. C. Andreani, T. F. Krauss, and L. O’Faolain, “Deliberate versus intrinsic disorder in photonic crystal nanocavities investigated by resonant light scattering,” Phys. Rev. B84(4), 045423 (2011).
[CrossRef]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express18(26), 27627–27638 (2010).
[CrossRef] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third harmonic generation in photonic crystal waveguides,” Nat. Photonics3(4), 206–210 (2009).
[CrossRef]

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett.42(25), 1454–1455 (2006).
[CrossRef]

O'Faolain, L.

C. P. Reardon, I. H. Rey, K. Welna, L. O'Faolain, and T. F. Krauss, “Fabrication and characterisation of photonic crystal slow light waveguides and cavities,” J. Vis. Exp. (69): e50216 (2012), doi:, http://www.jove.com/video/50216/fabrication-characterisation-photonic-crystal-slow-light-waveguides?status=a52222k .
[CrossRef]

Osgood, R. M.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics4(8), 557–560 (2010).
[CrossRef]

Owens, N.

Portalupi, S. L.

S. L. Portalupi, M. Galli, M. Belotti, L. C. Andreani, T. F. Krauss, and L. O’Faolain, “Deliberate versus intrinsic disorder in photonic crystal nanocavities investigated by resonant light scattering,” Phys. Rev. B84(4), 045423 (2011).
[CrossRef]

Rae, C. F.

D. J. M. Stothard, C. F. Rae, and M. H. Dunn, “An intracavity optical parametric oscillator with very high repetition rate and broad tunability based upon room temperature periodically-poled MgO:LiNbO3 with fanned grating design,” IEEE J. Quantum Electron.45(3), 256–263 (2009).
[CrossRef]

Ramunno, L.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorderinduced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
[CrossRef]

Reardon, C. P.

C. P. Reardon, I. H. Rey, K. Welna, L. O'Faolain, and T. F. Krauss, “Fabrication and characterisation of photonic crystal slow light waveguides and cavities,” J. Vis. Exp. (69): e50216 (2012), doi:, http://www.jove.com/video/50216/fabrication-characterisation-photonic-crystal-slow-light-waveguides?status=a52222k .
[CrossRef]

Reed, G. T.

M. M. Milošević, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett.101(12), 121105 (2012).
[CrossRef]

Rey, I. H.

C. P. Reardon, I. H. Rey, K. Welna, L. O'Faolain, and T. F. Krauss, “Fabrication and characterisation of photonic crystal slow light waveguides and cavities,” J. Vis. Exp. (69): e50216 (2012), doi:, http://www.jove.com/video/50216/fabrication-characterisation-photonic-crystal-slow-light-waveguides?status=a52222k .
[CrossRef]

J. Li, L. O’Faolain, I. H. Rey, and T. F. Krauss, “Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations,” Opt. Express19(5), 4458–4463 (2011).
[CrossRef] [PubMed]

Schares, L.

Schulz, S. A.

Shankar, R.

Shinya, A.

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Opt. Express15(26), 17458–17481 (2007).
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorderinduced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
[CrossRef]

Soref, R.

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010).
[CrossRef]

Spasenovic, M.

Stothard, D. J. M.

D. J. M. Stothard, C. F. Rae, and M. H. Dunn, “An intracavity optical parametric oscillator with very high repetition rate and broad tunability based upon room temperature periodically-poled MgO:LiNbO3 with fanned grating design,” IEEE J. Quantum Electron.45(3), 256–263 (2009).
[CrossRef]

D. J. M. Stothard, M. Ebrahimzadeh, and M. H. Dunn, “Low-pump-threshold continuous-wave singly resonant optical parametric oscillator,” Opt. Lett.23(24), 1895–1897 (1998).
[CrossRef] [PubMed]

Tanabe, T.

Taniyama, H.

Teo, E. J.

Thoms, S.

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett.42(25), 1454–1455 (2006).
[CrossRef]

Vlasov, Y. A.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics4(8), 557–560 (2010).
[CrossRef]

E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express14(9), 3853–3863 (2006).
[CrossRef] [PubMed]

Wang, B.

B. Wang, S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Backscattering in monomode periodic waveguides,” Phys. Rev. B78(24), 245108 (2008).
[CrossRef]

Watanabe, T.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorderinduced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
[CrossRef]

Welna, K.

C. P. Reardon, I. H. Rey, K. Welna, L. O'Faolain, and T. F. Krauss, “Fabrication and characterisation of photonic crystal slow light waveguides and cavities,” J. Vis. Exp. (69): e50216 (2012), doi:, http://www.jove.com/video/50216/fabrication-characterisation-photonic-crystal-slow-light-waveguides?status=a52222k .
[CrossRef]

White, T. P.

Xia, F.

Xiong, B.

Yuan, X.

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett.42(25), 1454–1455 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

M. M. Milošević, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett.101(12), 121105 (2012).
[CrossRef]

Electron. Lett. (1)

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett.42(25), 1454–1455 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. J. M. Stothard, C. F. Rae, and M. H. Dunn, “An intracavity optical parametric oscillator with very high repetition rate and broad tunability based upon room temperature periodically-poled MgO:LiNbO3 with fanned grating design,” IEEE J. Quantum Electron.45(3), 256–263 (2009).
[CrossRef]

J. Vis. Exp. (1)

C. P. Reardon, I. H. Rey, K. Welna, L. O'Faolain, and T. F. Krauss, “Fabrication and characterisation of photonic crystal slow light waveguides and cavities,” J. Vis. Exp. (69): e50216 (2012), doi:, http://www.jove.com/video/50216/fabrication-characterisation-photonic-crystal-slow-light-waveguides?status=a52222k .
[CrossRef]

Nat. Photonics (3)

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010).
[CrossRef]

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics4(8), 557–560 (2010).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third harmonic generation in photonic crystal waveguides,” Nat. Photonics3(4), 206–210 (2009).
[CrossRef]

Opt. Express (7)

E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express14(9), 3853–3863 (2006).
[CrossRef] [PubMed]

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Opt. Express15(26), 17458–17481 (2007).
[CrossRef] [PubMed]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express18(26), 27627–27638 (2010).
[CrossRef] [PubMed]

J. Li, L. O’Faolain, I. H. Rey, and T. F. Krauss, “Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations,” Opt. Express19(5), 4458–4463 (2011).
[CrossRef] [PubMed]

R. Shankar, R. Leijssen, I. Bulu, and M. Lončar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express19(6), 5579–5586 (2011).
[CrossRef] [PubMed]

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express19(8), 7112–7119 (2011).
[CrossRef] [PubMed]

R. Shankar, I. Bulu, R. Leijssen, and M. Lončar, “Study of thermally-induced optical bistability and the role of surface treatments in Si-based mid-infrared photonic crystal cavities,” Opt. Express19(24), 24828–24837 (2011).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (3)

S. L. Portalupi, M. Galli, M. Belotti, L. C. Andreani, T. F. Krauss, and L. O’Faolain, “Deliberate versus intrinsic disorder in photonic crystal nanocavities investigated by resonant light scattering,” Phys. Rev. B84(4), 045423 (2011).
[CrossRef]

B. Wang, S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Backscattering in monomode periodic waveguides,” Phys. Rev. B78(24), 245108 (2008).
[CrossRef]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorderinduced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
[CrossRef]

Other (2)

C. Reimer, M. Nedeljkovic, D. J. M. Stothard, G. Z. Mashanovich, and T. F. Krauss, “Mid-infrared photonic crystal waveguides in SOI,” in Proceedings of IEEE International Conference of Group IV Photonics (GFP), ed. (Conference Publications, San Diego, Calif., 2012), pp 12–14.

M. I. T. Photonic Bands, http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

SEM image of a mid-IR W1 PhC and access waveguide.

Fig. 2
Fig. 2

Schematic of the cavity design of the custom made intra-cavity OPO.

Fig. 3
Fig. 3

Measured transmission through photonic crystal waveguides with lattice periods between a = 1040 – 1120 nm, measured with the free-space OPO, as well as the fibre couple QCL setup. Clear cut-offs are visible, showing good agreement with simulations [8].

Fig. 4
Fig. 4

Transmission measurement of a PhC waveguide with lattice period a = 1060 nm. The full tuning range of the OPO is exploited in order to measure the transmission above and below the light line. Three separate cut-offs are measured, corresponding to the beginning of guided modes, the light line and the PhC bandgap, respectively. The inset shows the simulated band diagram of the PhC waveguide, where the cut-off positions and guided modes above and below the light line are highlighted [8].

Fig. 5
Fig. 5

SEM images of (a) an integrated unbalanced mid-IR MZI used to measure the group index of the PhC waveguides. The PhC waveguide (b) is placed in one arm of the MZI and two single-mode 50:50 y-splitters (c) are used to split into and recombine the two arms. A single hole of the PhC is shown in (d), showing relatively high sidewall roughness.

Fig. 6
Fig. 6

Group indices measured using an integrated MZI (orange triangles), and simulated group index curve using the MPB package (black line). The normalized experimental interference pattern of a single wavelength scan is shown in the inset.

Fig. 7
Fig. 7

Propagation loss measurement of mid-IR PhC W1 waveguide with lattice period a = 1040 nm, measured at group index ng = 5 at 3.4 µm wavelength. The loss was determined by measuring the transmission through twelve PhC waveguides, and by fitting a line through the normalized intensity as a function of waveguide length.

Metrics