Abstract

A new and simple technique is proposed and demonstrated for measuring the free spectral range (FSR) and bandwidth of optical resonators. For a broadband light input the resonator output forms an incoherent frequency comb with the spacing and linewidth corresponding to the FSR and bandwidth of the resonator, respectively. Photodetection of the resonator output produces heterodyne beat signals between the comb lines, from which the above two parameters can be estimated by spectrum analysis. The proposed technique overcomes the difficulties of conventional methods base on frequency-swept lasers. As demonstrations, fiber-optic Fabry-Perot and ring resonators are successfully characterized with the bandwidths as small as 10 kHz.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Malowicki, M. L. Fanto, M. J. Hayduk, and P. J. Delfyett., “Harmonically mode-locked glass waveguide laser with 21-fs timing jitter,” IEEE Photon. Technol. Lett.17(1), 40–42 (2005).
    [CrossRef]
  2. T. Okamoto, S. Sudo, K. Tsuruoka, M. L. Nielsen, K. Mizutani, K. Sato, and K. Kudo, “A monolithic wideband wavelength-tunable laser diode integrated with a ring/MZI loop filter,” IEEE J. Sel. Top. Quantum Electron.15(3), 488–493 (2009).
    [CrossRef]
  3. S. Y. Set, M. Jablonski, K. Hsu, C. S. Goh, and K. Kikuchi, “Rapid amplitude and group-delay measurement system based on intra-cavity-modulated swept-lasers,” IEEE Trans. Instrum. Meas.53(1), 192–196 (2004).
    [CrossRef]
  4. L. Duan and K. Gibble, “Locking lasers with large FM noise to high-Q cavities,” Opt. Lett.30(24), 3317–3319 (2005).
    [CrossRef] [PubMed]
  5. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
    [CrossRef] [PubMed]
  6. V. Roncin, S. Lobo, L. Bramerie, A. O’Hare, and J.-C. Simon, “System characterization of a passive 40 Gb/s all optical clock recovery ahead of the receiver,” Opt. Express15(10), 6003–6009 (2007).
    [CrossRef] [PubMed]
  7. M. Matsuura and E. Oki, “Optical carrier regeneration for carrier wavelength reuse in a multicarrier distributed WDM network,” IEEE Photon. Technol. Lett.22(11), 808–810 (2010).
    [CrossRef]
  8. L. L. Wang and T. Kowalcyzk, “A novel locking technique for very narrow tunable optical filters with sub-GHz 3-dB bandpass,” IEEE Photon. Technol. Lett.22(17), 1267–1269 (2010).
    [CrossRef]
  9. Y. Inoue, T. Kominato, Y. Tachikawa, and O. Ishida, “Finesse evaluation of integrated-optic ring resonators with heterodyne detection technique,” Electron. Lett.28(7), 684–686 (1992).
    [CrossRef]
  10. K. An, C. Yang, R. R. Dasari, and M. S. Feld, “Cavity ring-down technique and its application to the measurement of ultraslow velocities,” Opt. Lett.20(9), 1068–1070 (1995).
    [CrossRef] [PubMed]
  11. N. Uehara, A. Ueda, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, and I. Kataoka, “Ultralow-loss mirror of the parts-in-106 level at 1064 nm,” Opt. Lett.20(6), 530–532 (1995).
    [CrossRef] [PubMed]
  12. B. J. J. Slagmolen, M. B. Gray, K. G. Baigent, and D. E. McClelland, “Phase-sensitive reflection technique for characterization of a Fabry-Perot interferometer,” Appl. Opt.39(21), 3638–3643 (2000).
    [CrossRef] [PubMed]
  13. A. Schliesser, C. Gohle, T. Udem, and T. W. Hänsch, “Complete characterization of a broadband high-finesse cavity using an optical frequency comb,” Opt. Express14(13), 5975–5983 (2006).
    [CrossRef] [PubMed]
  14. C. R. Locke, D. Stuart, E. N. Ivanov, and A. N. Luiten, “A simple technique for accurate and complete characterisation of a Fabry-Perot cavity,” Opt. Express17(24), 21935–21943 (2009).
    [CrossRef] [PubMed]
  15. D. Mandridis, I. Ozdur, M. Bagnell, and P. J. Delfyett, “Free spectral range measurement of a fiberized Fabry-Perot etalon with sub-Hz accuracy,” Opt. Express18(11), 11264–11269 (2010).
    [CrossRef] [PubMed]
  16. M. Aketagawa, S. Kimura, T. Yashiki, H. Iwata, T. Q. Banh, and K. Hirata, “Measurement of a free spectral range of a Fabry–Perot cavity using frequency modulation and null method under off-resonance conditions,” Meas. Sci. Technol.22(2), 025302 (2011).
    [CrossRef]

2011 (2)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
[CrossRef] [PubMed]

M. Aketagawa, S. Kimura, T. Yashiki, H. Iwata, T. Q. Banh, and K. Hirata, “Measurement of a free spectral range of a Fabry–Perot cavity using frequency modulation and null method under off-resonance conditions,” Meas. Sci. Technol.22(2), 025302 (2011).
[CrossRef]

2010 (3)

M. Matsuura and E. Oki, “Optical carrier regeneration for carrier wavelength reuse in a multicarrier distributed WDM network,” IEEE Photon. Technol. Lett.22(11), 808–810 (2010).
[CrossRef]

L. L. Wang and T. Kowalcyzk, “A novel locking technique for very narrow tunable optical filters with sub-GHz 3-dB bandpass,” IEEE Photon. Technol. Lett.22(17), 1267–1269 (2010).
[CrossRef]

D. Mandridis, I. Ozdur, M. Bagnell, and P. J. Delfyett, “Free spectral range measurement of a fiberized Fabry-Perot etalon with sub-Hz accuracy,” Opt. Express18(11), 11264–11269 (2010).
[CrossRef] [PubMed]

2009 (2)

C. R. Locke, D. Stuart, E. N. Ivanov, and A. N. Luiten, “A simple technique for accurate and complete characterisation of a Fabry-Perot cavity,” Opt. Express17(24), 21935–21943 (2009).
[CrossRef] [PubMed]

T. Okamoto, S. Sudo, K. Tsuruoka, M. L. Nielsen, K. Mizutani, K. Sato, and K. Kudo, “A monolithic wideband wavelength-tunable laser diode integrated with a ring/MZI loop filter,” IEEE J. Sel. Top. Quantum Electron.15(3), 488–493 (2009).
[CrossRef]

2007 (1)

2006 (1)

2005 (2)

L. Duan and K. Gibble, “Locking lasers with large FM noise to high-Q cavities,” Opt. Lett.30(24), 3317–3319 (2005).
[CrossRef] [PubMed]

J. E. Malowicki, M. L. Fanto, M. J. Hayduk, and P. J. Delfyett., “Harmonically mode-locked glass waveguide laser with 21-fs timing jitter,” IEEE Photon. Technol. Lett.17(1), 40–42 (2005).
[CrossRef]

2004 (1)

S. Y. Set, M. Jablonski, K. Hsu, C. S. Goh, and K. Kikuchi, “Rapid amplitude and group-delay measurement system based on intra-cavity-modulated swept-lasers,” IEEE Trans. Instrum. Meas.53(1), 192–196 (2004).
[CrossRef]

2000 (1)

1995 (2)

1992 (1)

Y. Inoue, T. Kominato, Y. Tachikawa, and O. Ishida, “Finesse evaluation of integrated-optic ring resonators with heterodyne detection technique,” Electron. Lett.28(7), 684–686 (1992).
[CrossRef]

Aketagawa, M.

M. Aketagawa, S. Kimura, T. Yashiki, H. Iwata, T. Q. Banh, and K. Hirata, “Measurement of a free spectral range of a Fabry–Perot cavity using frequency modulation and null method under off-resonance conditions,” Meas. Sci. Technol.22(2), 025302 (2011).
[CrossRef]

An, K.

Bagnell, M.

Baigent, K. G.

Banh, T. Q.

M. Aketagawa, S. Kimura, T. Yashiki, H. Iwata, T. Q. Banh, and K. Hirata, “Measurement of a free spectral range of a Fabry–Perot cavity using frequency modulation and null method under off-resonance conditions,” Meas. Sci. Technol.22(2), 025302 (2011).
[CrossRef]

Bramerie, L.

Dasari, R. R.

Delfyett, P. J.

D. Mandridis, I. Ozdur, M. Bagnell, and P. J. Delfyett, “Free spectral range measurement of a fiberized Fabry-Perot etalon with sub-Hz accuracy,” Opt. Express18(11), 11264–11269 (2010).
[CrossRef] [PubMed]

J. E. Malowicki, M. L. Fanto, M. J. Hayduk, and P. J. Delfyett., “Harmonically mode-locked glass waveguide laser with 21-fs timing jitter,” IEEE Photon. Technol. Lett.17(1), 40–42 (2005).
[CrossRef]

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
[CrossRef] [PubMed]

Duan, L.

Fanto, M. L.

J. E. Malowicki, M. L. Fanto, M. J. Hayduk, and P. J. Delfyett., “Harmonically mode-locked glass waveguide laser with 21-fs timing jitter,” IEEE Photon. Technol. Lett.17(1), 40–42 (2005).
[CrossRef]

Feld, M. S.

Gibble, K.

Goh, C. S.

S. Y. Set, M. Jablonski, K. Hsu, C. S. Goh, and K. Kikuchi, “Rapid amplitude and group-delay measurement system based on intra-cavity-modulated swept-lasers,” IEEE Trans. Instrum. Meas.53(1), 192–196 (2004).
[CrossRef]

Gohle, C.

Gray, M. B.

Hänsch, T. W.

Hayduk, M. J.

J. E. Malowicki, M. L. Fanto, M. J. Hayduk, and P. J. Delfyett., “Harmonically mode-locked glass waveguide laser with 21-fs timing jitter,” IEEE Photon. Technol. Lett.17(1), 40–42 (2005).
[CrossRef]

Hirata, K.

M. Aketagawa, S. Kimura, T. Yashiki, H. Iwata, T. Q. Banh, and K. Hirata, “Measurement of a free spectral range of a Fabry–Perot cavity using frequency modulation and null method under off-resonance conditions,” Meas. Sci. Technol.22(2), 025302 (2011).
[CrossRef]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
[CrossRef] [PubMed]

Hsu, K.

S. Y. Set, M. Jablonski, K. Hsu, C. S. Goh, and K. Kikuchi, “Rapid amplitude and group-delay measurement system based on intra-cavity-modulated swept-lasers,” IEEE Trans. Instrum. Meas.53(1), 192–196 (2004).
[CrossRef]

Inoue, Y.

Y. Inoue, T. Kominato, Y. Tachikawa, and O. Ishida, “Finesse evaluation of integrated-optic ring resonators with heterodyne detection technique,” Electron. Lett.28(7), 684–686 (1992).
[CrossRef]

Ishida, O.

Y. Inoue, T. Kominato, Y. Tachikawa, and O. Ishida, “Finesse evaluation of integrated-optic ring resonators with heterodyne detection technique,” Electron. Lett.28(7), 684–686 (1992).
[CrossRef]

Ivanov, E. N.

Iwata, H.

M. Aketagawa, S. Kimura, T. Yashiki, H. Iwata, T. Q. Banh, and K. Hirata, “Measurement of a free spectral range of a Fabry–Perot cavity using frequency modulation and null method under off-resonance conditions,” Meas. Sci. Technol.22(2), 025302 (2011).
[CrossRef]

Jablonski, M.

S. Y. Set, M. Jablonski, K. Hsu, C. S. Goh, and K. Kikuchi, “Rapid amplitude and group-delay measurement system based on intra-cavity-modulated swept-lasers,” IEEE Trans. Instrum. Meas.53(1), 192–196 (2004).
[CrossRef]

Kataoka, I.

Kikuchi, K.

S. Y. Set, M. Jablonski, K. Hsu, C. S. Goh, and K. Kikuchi, “Rapid amplitude and group-delay measurement system based on intra-cavity-modulated swept-lasers,” IEEE Trans. Instrum. Meas.53(1), 192–196 (2004).
[CrossRef]

Kimura, S.

M. Aketagawa, S. Kimura, T. Yashiki, H. Iwata, T. Q. Banh, and K. Hirata, “Measurement of a free spectral range of a Fabry–Perot cavity using frequency modulation and null method under off-resonance conditions,” Meas. Sci. Technol.22(2), 025302 (2011).
[CrossRef]

Kippenberg, T. J.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
[CrossRef] [PubMed]

Kitajima, N.

Kominato, T.

Y. Inoue, T. Kominato, Y. Tachikawa, and O. Ishida, “Finesse evaluation of integrated-optic ring resonators with heterodyne detection technique,” Electron. Lett.28(7), 684–686 (1992).
[CrossRef]

Kowalcyzk, T.

L. L. Wang and T. Kowalcyzk, “A novel locking technique for very narrow tunable optical filters with sub-GHz 3-dB bandpass,” IEEE Photon. Technol. Lett.22(17), 1267–1269 (2010).
[CrossRef]

Kudo, K.

T. Okamoto, S. Sudo, K. Tsuruoka, M. L. Nielsen, K. Mizutani, K. Sato, and K. Kudo, “A monolithic wideband wavelength-tunable laser diode integrated with a ring/MZI loop filter,” IEEE J. Sel. Top. Quantum Electron.15(3), 488–493 (2009).
[CrossRef]

Lobo, S.

Locke, C. R.

Luiten, A. N.

Malowicki, J. E.

J. E. Malowicki, M. L. Fanto, M. J. Hayduk, and P. J. Delfyett., “Harmonically mode-locked glass waveguide laser with 21-fs timing jitter,” IEEE Photon. Technol. Lett.17(1), 40–42 (2005).
[CrossRef]

Mandridis, D.

Matsuura, M.

M. Matsuura and E. Oki, “Optical carrier regeneration for carrier wavelength reuse in a multicarrier distributed WDM network,” IEEE Photon. Technol. Lett.22(11), 808–810 (2010).
[CrossRef]

McClelland, D. E.

Mitake, T.

Mizutani, K.

T. Okamoto, S. Sudo, K. Tsuruoka, M. L. Nielsen, K. Mizutani, K. Sato, and K. Kudo, “A monolithic wideband wavelength-tunable laser diode integrated with a ring/MZI loop filter,” IEEE J. Sel. Top. Quantum Electron.15(3), 488–493 (2009).
[CrossRef]

Nakamura, K.

Nielsen, M. L.

T. Okamoto, S. Sudo, K. Tsuruoka, M. L. Nielsen, K. Mizutani, K. Sato, and K. Kudo, “A monolithic wideband wavelength-tunable laser diode integrated with a ring/MZI loop filter,” IEEE J. Sel. Top. Quantum Electron.15(3), 488–493 (2009).
[CrossRef]

O’Hare, A.

Okamoto, T.

T. Okamoto, S. Sudo, K. Tsuruoka, M. L. Nielsen, K. Mizutani, K. Sato, and K. Kudo, “A monolithic wideband wavelength-tunable laser diode integrated with a ring/MZI loop filter,” IEEE J. Sel. Top. Quantum Electron.15(3), 488–493 (2009).
[CrossRef]

Oki, E.

M. Matsuura and E. Oki, “Optical carrier regeneration for carrier wavelength reuse in a multicarrier distributed WDM network,” IEEE Photon. Technol. Lett.22(11), 808–810 (2010).
[CrossRef]

Ozdur, I.

Roncin, V.

Sato, K.

T. Okamoto, S. Sudo, K. Tsuruoka, M. L. Nielsen, K. Mizutani, K. Sato, and K. Kudo, “A monolithic wideband wavelength-tunable laser diode integrated with a ring/MZI loop filter,” IEEE J. Sel. Top. Quantum Electron.15(3), 488–493 (2009).
[CrossRef]

Schliesser, A.

Sekiguchi, H.

Set, S. Y.

S. Y. Set, M. Jablonski, K. Hsu, C. S. Goh, and K. Kikuchi, “Rapid amplitude and group-delay measurement system based on intra-cavity-modulated swept-lasers,” IEEE Trans. Instrum. Meas.53(1), 192–196 (2004).
[CrossRef]

Simon, J.-C.

Slagmolen, B. J. J.

Stuart, D.

Sudo, S.

T. Okamoto, S. Sudo, K. Tsuruoka, M. L. Nielsen, K. Mizutani, K. Sato, and K. Kudo, “A monolithic wideband wavelength-tunable laser diode integrated with a ring/MZI loop filter,” IEEE J. Sel. Top. Quantum Electron.15(3), 488–493 (2009).
[CrossRef]

Tachikawa, Y.

Y. Inoue, T. Kominato, Y. Tachikawa, and O. Ishida, “Finesse evaluation of integrated-optic ring resonators with heterodyne detection technique,” Electron. Lett.28(7), 684–686 (1992).
[CrossRef]

Tsuruoka, K.

T. Okamoto, S. Sudo, K. Tsuruoka, M. L. Nielsen, K. Mizutani, K. Sato, and K. Kudo, “A monolithic wideband wavelength-tunable laser diode integrated with a ring/MZI loop filter,” IEEE J. Sel. Top. Quantum Electron.15(3), 488–493 (2009).
[CrossRef]

Udem, T.

Ueda, A.

Ueda, K.

Uehara, N.

Wang, L. L.

L. L. Wang and T. Kowalcyzk, “A novel locking technique for very narrow tunable optical filters with sub-GHz 3-dB bandpass,” IEEE Photon. Technol. Lett.22(17), 1267–1269 (2010).
[CrossRef]

Yang, C.

Yashiki, T.

M. Aketagawa, S. Kimura, T. Yashiki, H. Iwata, T. Q. Banh, and K. Hirata, “Measurement of a free spectral range of a Fabry–Perot cavity using frequency modulation and null method under off-resonance conditions,” Meas. Sci. Technol.22(2), 025302 (2011).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

Y. Inoue, T. Kominato, Y. Tachikawa, and O. Ishida, “Finesse evaluation of integrated-optic ring resonators with heterodyne detection technique,” Electron. Lett.28(7), 684–686 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Okamoto, S. Sudo, K. Tsuruoka, M. L. Nielsen, K. Mizutani, K. Sato, and K. Kudo, “A monolithic wideband wavelength-tunable laser diode integrated with a ring/MZI loop filter,” IEEE J. Sel. Top. Quantum Electron.15(3), 488–493 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

M. Matsuura and E. Oki, “Optical carrier regeneration for carrier wavelength reuse in a multicarrier distributed WDM network,” IEEE Photon. Technol. Lett.22(11), 808–810 (2010).
[CrossRef]

L. L. Wang and T. Kowalcyzk, “A novel locking technique for very narrow tunable optical filters with sub-GHz 3-dB bandpass,” IEEE Photon. Technol. Lett.22(17), 1267–1269 (2010).
[CrossRef]

J. E. Malowicki, M. L. Fanto, M. J. Hayduk, and P. J. Delfyett., “Harmonically mode-locked glass waveguide laser with 21-fs timing jitter,” IEEE Photon. Technol. Lett.17(1), 40–42 (2005).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

S. Y. Set, M. Jablonski, K. Hsu, C. S. Goh, and K. Kikuchi, “Rapid amplitude and group-delay measurement system based on intra-cavity-modulated swept-lasers,” IEEE Trans. Instrum. Meas.53(1), 192–196 (2004).
[CrossRef]

Meas. Sci. Technol. (1)

M. Aketagawa, S. Kimura, T. Yashiki, H. Iwata, T. Q. Banh, and K. Hirata, “Measurement of a free spectral range of a Fabry–Perot cavity using frequency modulation and null method under off-resonance conditions,” Meas. Sci. Technol.22(2), 025302 (2011).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Science (1)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the measurement apparatus.

Fig. 2
Fig. 2

Experimental results for the 5-GHz Fabry-Perot resonator. (a) Optical spectra for the input and output lights. (b) Beat signal spectrum for 0 – 20 GHz frequency range. The RBW and number of averaging are 1 MHz, and 64, respectively. (c) Normalized beat signal spectra for 400-MHz span, where the center frequency and number of averaging are 5.041 GHz and 64, respectively.

Fig. 3
Fig. 3

Experimental results for the 2-MHz Fabry-Perot resonator. (a) Beat signal spectrum for 0 – 20 MHz frequency range, where the RBW and number of averaging are 10 kHz and 128, respectively. (b) Normalized beat signal spectra for 400-kHz span, where the center frequency and number of averaging are 2.00 MHz 128, respectively. (c) Normalized beat signal spectra for different wavelengths, where the center frequency, RBW, and number of averaging are 160.125 MHz, 300 Hz, and 128, respectively. (d) Wavelength dependence of the measured FSR and bandwidth.

Fig. 4
Fig. 4

Experimental results for the 1-km fiber ring resonator. (a) Structure of the resonator. (b) Beat signal spectrum for 2-MHz span, where the RBW and number of averaging are 1 kHz and 128, respectively. (c) Normalized beat signal spectra for 200-kHz span, where the center frequency and number of averaging are 199.67 kHz and 128, respectively. (d) Dependence of the measured FSR and bandwidth on the order of the beat signal.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S n (f)= ( Δ ν FSR / πΔ ν 1/2 ) 2 1+ ( Δ ν FSR / πΔ ν 1/2 ) 2 sin 2 { π( fnΔ ν FSR ) / Δ ν FSR } ,
V n P ASE Δ ν 1/2 Δ ν OBPF nΔ ν FSR .

Metrics